PENTAGON-GENERATED TRIVALENT GRAPHS WITH GIRTH 5

NEIL ROBERTSON

1. Fundamentals. The terminology of [1] will be assumed in what follows. Let $P_{5}(G)$ stand for the set of pentagons in the graph G. Call a graph pentagongenerated when it is the union of its contained pentagons. Let $P_{\dot{5}, 3}$ be the class of connected trivalent pentagon-generated graphs with girth 5 . These graphs form a family including the Petersen graph and the graph of the dodecahedron. They are studied here and completely classified in terms of a decomposition which all but some specifically determined indecomposable graphs admit.
Assume henceforth that $H \in P_{5,3}$. Let $E_{k}(H)$ be the set of edges in exactly $k \geqq 0$ pentagons of H. Clearly $E_{k}(H)=\emptyset$ if $k \neq 1,2,3,4$ and $\left|E_{1}(H) \cap E(P)\right| \leqq 2$, for all $P \in P_{5}(H) . \quad P \in P_{5}(H)$ is singular when $\left|E_{1}(H) \cap E(P)\right|=2$. Then, the link graph $I \subseteq P$ whose ends are incident with the two members of $E_{1}(H) \cap E(P)$ is called a pivot. We will also call the $A \in E(I)$ a pivot edge and any $x \in V(I)$ a pivot vertex. Each pivot I is con tained in exactly two pentagons P, Q of H. These P, Q are singular, have I as pivot, and $P \cap Q=I$. Pivots are thus disjoint.
We say that $P, Q \in P_{5}(H)$ are related when $Q_{0}, Q_{1}, \ldots, Q_{n} \in P_{5}(H)$ exist, with $P=Q_{0}, Q=Q_{n}$, such that $Q_{i-1} \cap Q_{i}$ is neither null nor a pivot of H, for $i=1, \ldots, n$. This is an equivalence relation on $P_{5}(H) . H$ is decomposable if it has a singular pentagon and indecomposable otherwise. The constituents of H are the unions of the pentagons in its equivalence classes of related pentagons. By definition, constituents are non-separable and pentagon-generated.
Suppose that G and G_{1} are unions of constituents of H and have no common pentagon. Then the components of $G \cap G_{1}$ are the pivots of H in one pentagon of G and one of G_{1}. To see this, note that the valencies of $a \in V\left(G \cap G_{1}\right)$ in G, G_{1}, and H ensure the existence of an incident $A \in E\left(G \cap G_{1}\right)$. Pentagons $P \subseteq G, Q \subseteq G_{1}$ containing A also exist and, not being related, must be singular and such that $P \cap Q$ is a pivot. Pivots are disjoint, and so $G \cap G_{1}$ is as claimed. A constituent is thus joined to the rest of H by pivots. When H is indecomposable, it has only one constituent. Figure 1A shows that the converse statement is false.

[^0]$H \cdot\left(E_{1}(H) \cup E_{3}(H)\right)$ is clearly a divalent subgraph of H. Its components are the structure polygons of H. If a structure polygon contains more than one pivot vertex, the residual arcs of its pivot vertices are the structure arcs of H. Each structure arc, or structure polygon with at most one pivot vertex, is in one constituent of H because the pentagons of H containing its edges are clearly related.

A function $f: X \rightarrow Y$ is k-to- 1 when each $y \in f X$ is the image of exactly k distinct $x \in X$. Let $f: L \rightarrow H$ be a graph mapping [1, Chapter 6] and $M \subseteq H$. f is 2 -to-1 on M and one-to-one off M when f maps vertices to vertices, forming a vertex function, and edges to edges, forming an edge function, and these functions are 2 -to- 1 on and one-to-one off their elements in M.

The constituents G of H can be described in terms of a slightly simpler class of graphs. A part L of H is a pentagon-generated graph for which there exists a mapping $f: L \rightarrow H$ such that $f L=G$ is a constituent of H and f is 2 -to- 1 on and one-to-one off the pivots of H whose singular pentagons are in G. Then L is said to represent G under $f: L \rightarrow H$ and we write $L \rightarrow G$, specializing to $L \cong G$ when f is an isomorphism. Such a mapping is illustrated in Figure 1A. Labels a, b determine the 2 -to- 1 restriction of $f: L \rightarrow H$, hence the whole mapping.

Figure 1A
Two problems are solved here. The first is to find a minimum set W of parts for all H and the second is to show how these parts combine to produce the decomposable H. The diagrams in § 2 provide a set W and this fact is verified in § 3. In § 4 each decomposable H is assigned a map (drawn on a closed surface), with vertices corresponding to the constituents of H, labelled appropriately from W, and edges the pivots of H. The surface determines how the parts combine to produce H. These labelled maps are intrinsically characterized.
2. Representative parts for $P_{5,3}$. The graphs C_{i} are drawn in Figure 2A as though embedded in a cylinder or Moebius band, the dotted line $A B$ to the left in the figure being identified with the dotted line $A B$ immediately above C_{i}. In

S_{1}

S_{2}

S_{3}

Figure 2A
this scheme the C_{i}, for odd $i \geqq 5$ and even $i \geqq 10$, together with S_{1}, S_{2}, S_{3}, make up a set of representative indecomposable graphs. All structure polygons of C_{i}, for odd $i>5$ and even $i>10$, and S_{2}, S_{3} are distinguished, as are the edges of S_{1} in $E_{4}\left(S_{1}\right) . C_{5}, C_{10}$, and S_{1} have no structure polygons.

An infinite sequence D_{1}, D_{2}, \ldots of graphs is suggested in Figure 2B, with a finite sequence $T_{1}, T_{2}, \ldots, T_{7}$. These graphs act as representative parts for the constituents of any decomposable H.

Let W be the set of graphs defined by the diagrams in Figures 2A and 2B (deleting D_{1} because $T_{1} \cong D_{1}$).

Theorem 2.1. If G is a constituent of $H \in P_{5,3}$, then a unique $L \in W$ exists with $L \rightarrow G$.

This is proved in § 3, with the fact that W is minimal. It is evident that any two such W are equivalent, within isomorphisms of their members.

Suppose that $L \in W$ represents a constituent G of H under a mapping $f: L \rightarrow H$. In L the divalent vertices form the ends of disjoint link graphs, each

Figure 2B (Continued)

T_{5}

T_{6}

T_{7}

Figure 2B
contained in exactly one pentagon. The mapping $\rho: P_{5}(L) \rightarrow P_{5}(G)$, defined by $\rho P=f P$, for $P \in P_{5}(L)$, is an isomorphism. This follows easily, because f is one-to-one off the pivots of G and the above-mentioned link graphs map under f onto the pivots of G, while the pentagons containing them map under ρ onto the singular pentagons of G in a one-to-one manner. This justifies calling corresponding objects the pivots, singular pentagons, and structure polygons or structure arcs in L and G. These objects are distinguished in Figure 1A. The parts of decomposable H in W contain no structure polygons, although structure arcs in L can map onto structure polygons in H.

Each diagram in Figure 2B has a number of distinguished arcs, ending on pivot vertices, called its angles. Except for T_{1} (and D_{1}), these are just its structure arcs. Angles in D_{k}, for odd $k \geqq 3$, and T_{3}, T_{4} are not symmetrical. There the shorter angle is called the top angle of the part. When $L \rightarrow G$, the subgraphs of G corresponding to angles of L will also be called angles.
3. Verification of the standard forms. Suppose that $A \in E(H)$ is not a pivot edge of H and that G is the unique constituent of H containing A. Let H_{A} be the union of the 2 -arcs in H having a common end with A.

Proposition 3.1. H_{A} is isomorphic to one of Figures 3A(B)-(F) (denoted throughout by $H_{A} \cong(\mathbf{B}), \ldots, H_{A} \cong(\mathbf{F})$, respectively $)$.

Proof. Label H_{A} according to Figure 3A(A). Girth $\gamma(H)=5$ implies that $x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, y_{4}, z_{1}, z_{3}, z_{5}, z_{7}$ are distinct, although each z_{i} for i even may coincide with a z_{i} for i odd (henceforth referred to as even z_{i} and odd z_{i}). It is routine to verify, within symmetries of H_{A}, that $z_{1}=z_{6} ; z_{1}=z_{6}, z_{2}=z_{7}$; $z_{1}=z_{6}, z_{3}=z_{8} ; z_{1}=z_{6}, z_{2}=z_{7}, z_{3}=z_{8}$, and $z_{1}=z_{6}, z_{2}=z_{7}, z_{3}=z_{8}, z_{4}=z_{5}$ enumerates possible coincidences, yielding Figures $3 \mathrm{~A}(\mathbf{B})-(\mathbf{F})$.
(A)

(B)

(C)

(D)

2
(E)

(F)

4
Figure 3A

When G is simple and $A \in E(G)$ has ends x, y, we can write $A=x y$ and $G \cdot\{A\}=[x, y]$. Denote by $L=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ the arc in G with $V(L)=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ and $E(L)=\left\{a_{i-1} a_{i}: i=1,2, \ldots, n\right\}$. If, also $a_{0} a_{n} \in E(G)$, we may speak of the polygon $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$.

To prove Theorem 2.1 we consider sequences $G_{0}, G_{1}, \ldots, G_{k} \subseteq H$ with $G_{0}=H_{A}, \quad G \subseteq G_{k}, \quad$ and $G_{i}=G_{i-1} \cup\left[a_{i}, b_{i}\right]$, where $a_{i} \in V\left(G_{i-1}\right)$ and
$A_{i}=a_{i} b_{i} \notin E\left(G_{i-1}\right)$, for $i=1, \ldots, k$, to show that for any G some $L \in W$ exists with $L \rightarrow G$. Symmetries of the G_{i} will be used to eliminate redundancies. Similarly, routine use of the definition of $P_{5,3}$ (H connected, $\gamma(H)=5$, $\operatorname{val}(H, x) \equiv 3$ and $\left.H=\bigcup P_{5}(H)\right)$ in proofs will be left to the reader. When $x, y \in V\left(G_{i}\right)$ exist at distance $d(x, y)=3$ in G_{i}, then distinct

$$
P, Q \in P_{5}(H) \backslash P_{5}\left(G_{i}\right)
$$

exist, each containing x or y. Call this statement (*) in what follows. The proof of Theorem 2.1 falls into three (disjoint) cases, $H_{A} \cong(\mathbf{F}), H_{A} \cong(\mathbf{E})$, and $G \subseteq H \cdot\left(E_{1}(H) \cup E_{2}(H)\right)$. It is easy to verify that the following propositions cover the alternatives for these cases.

Case 1. Assume that $H_{A} \cong(\mathbf{F})$ and let $H_{A}=G_{0}$.
Proposition 3.2. $C_{5} \cong G, S_{1} \cong G$, or $T_{2} \cong G$.
Proof. If $A_{1} \in E(H) \backslash E\left(H_{A}\right)$ exists with both ends in H_{A}, then

$$
A_{1}=z_{1} z_{3} \in E(H)
$$

can be assumed. Then $A_{2}=z_{2} z_{4} \in E(H)$, forming $G_{2} \cong C_{5}$. Otherwise, there exist $u_{i} \notin V\left(H_{A}\right)$ such that $A_{i}=z_{i} u_{i} \in E(H)$, for $i=1,2,3,4$. The even u_{i} are distinct from the odd u_{i}.

When the u_{i} are not distinct, we can assume that $u_{1}=u_{3}=u$. Then $u u_{2}, u u_{4} \in E(H)$ so that $u_{2}=u_{4}=u^{\prime}$ and $A_{5}=u u^{\prime} \in E(H)$. Now $S_{1} \cong G_{5}=H$, with $A, A_{5} \in E_{4}(H)$. If the u_{i} are distinct, then $A_{i} \in E_{1}(H) \cup E_{2}(H)$ for $i=1,2,3,4$. If $A_{i} \in E_{1}(H)$, for $i=1,2,3,4$, then $A_{5}=u_{1} u_{2}, A_{6}=u_{3} u_{4} \in E(H)$, and $u_{2} u_{3}, u_{4} u_{1} \notin E(H)$ can be assumed. Then $T_{2} \cong G_{6}=G$, with A corresponding to $a_{3} b$ in T_{2}. Alternatively, $A_{2} \in E_{2}(H)$ can be assumed, with $A_{5}=u_{1} u_{2}, A_{6}=u_{2} u_{3} \in E(H) . A_{4} \notin E_{0}(H)$, and so $A_{7}=u_{3} u_{4} \in E(H)$ can be chosen. This is contrary to (*), and hence cannot occur.

Case 2. Assume that $H_{A} \cong(\mathbf{E})$ and let $H_{A}=G_{0}$. Then there exist edges $A_{1}=z_{1} u_{1}, A_{2}=z_{2} u_{2}$, and $A_{3}=z_{3} u_{3}$, each belonging to $E(H) \backslash E\left(H_{A}\right)$.

Proposition 3.3. $A_{1} \neq A_{3}$.
Proof. If $A_{1}=A_{3}$, then $z_{2} z_{4}, z_{2} z_{5} \in E(H)$, contrary to the trivalency of z_{2}.
Proposition 3.4. If $u_{2}=z_{4}$ or $u_{2}=z_{5}$, then $T_{1} \cong G$.
Proof. Without loss of generality, assume that $u_{2}=z_{4}$. Then

$$
A_{4}=z_{4} u_{4} \in E(H) \backslash E\left(G_{3}\right)
$$

exists and, before further assumptions are introduced, G_{4} has a symmetry fixing $x_{2} y_{4}$ and sending $z_{5}, y_{1}, x_{1}, y_{3}, z_{3}, u_{3}$ to $u_{1}, z_{1}, y_{2}, z_{2}, z_{4}, u_{4}$, respectively. If u_{1}, u_{3}, u_{4}, and z_{5} are distinct, then $A_{5}=u_{3} u_{4} \in E(H)$, the pentagons of G_{5} containing $y_{1} z_{1}$ and $u_{3} u_{4}$ are singular and $T_{1} \cong G \subseteq G_{5}$. Otherwise $u_{3}=z_{5}$ can be assumed and $A_{5}=z_{5} u_{5} \in E(H) \backslash E\left(G_{5}\right)$ exists. $A_{4} \notin E_{0}(H)$ implies that $u_{4}=u_{1}$ or $u_{4}=u_{5}$, contrary to (*), ruling out this possibility.

Proposition 3.5. If $u_{2} \notin V\left(H_{A}\right)$ and $u_{1}=z_{4}$ or $u_{3}=z_{5}$, then $S_{2} \cong G$ or $T_{3} \cong G$.

Proof. Without loss of generality, assume that $u_{1}=z_{4}$. Then $z_{3}, u_{2} z_{2}$ and $z_{4}, z_{5} y_{1}$ are symmetrical in $G_{2} . T \in P_{5}(H)$ and $z_{5} y_{1} \in E(T)$ imply that $T \cap G_{2}$ is the unique 3 -arc or 4 -arc joining z_{5} to z_{4} or z_{3}, respectively. If $u_{3}=z_{5}$, then $A_{4}=u_{2} z_{4}, A_{5}=u_{2} z_{5} \in E(H)$ exist, and $S_{2} \cong H=G_{5}$. Otherwise,

$$
u_{2} z_{4}, z_{3} z_{5} \notin E(H)
$$

can be assumed. Then $u_{2} z_{2}, z_{5} y_{1} \in E_{1}(H)$, implying that $A_{4}=z_{4} u_{4}, A_{5}=u_{2} u_{3}$, $A_{6}=z_{5} u_{4}$ exist, with $u_{4} \notin V\left(G_{3}\right)$. By $(*), u_{2}$ and u_{3} are not joined to u_{4} and z_{5}; thus $A_{3}, A_{4} \in E_{1}(H)$ and $T_{3} \cong G=G_{6}$. The angles of G are $\left[z_{5}, y_{1}, x_{1}, x_{2}, y_{2}, z_{2}, u_{2}\right]$ and $\left[u_{3}, z_{3}, y_{4}, z_{4}, u_{4}\right]$.

Proposition 3.6. If $u_{1}, u_{2}, u_{3} \notin V\left(H_{A}\right)$, then u_{1}, u_{2}, and u_{3} are distinct.
Proof. If they are not distinct, then $u_{1}=u_{3} . A_{2} \notin E_{0}(H)$ implies $A_{4}=u_{1} u_{2} \in E(H)$. Similarly, $z_{4} u_{2} z_{5} u_{2} \in E(H)$, contrary to the trivalency of u_{2}.

Proposition 3.7. If $u_{1}, u_{2}, u_{3} \notin V\left(H_{A}\right)$ and $A_{2} \notin E_{1}(H)$, then $S_{3} \cong G$ or $T_{4} \cong G$.
Proof. By hypothesis, $A_{2} \in E_{2}(H)$ and $A_{4}=u_{1} u_{2}, A_{5}=u_{2} u_{3} \in E(H)$. $y_{4} z_{4} \notin E_{0}(H)$ implies that $A_{6}=u_{3} u_{4}, A_{7}=u_{4} z_{4} \in E(H)$ exist for some $u_{4} \in V(H)$. If $u_{4} \in V\left(G_{5}\right)$, then $u_{4}=z_{5}$ and $A_{8}=u_{1} z_{4} \in E(H)$. Thus $S_{3} \cong H=G_{8}$, with $x_{1} x_{2}, A_{7} \in E_{3}(H)$. If $u_{4} \notin V\left(G_{5}\right)$, there exists $u_{5} \notin V\left(G_{7}\right)$ such that $A_{8}=u_{1} u_{5}, A_{9}=u_{5} z_{5} \in E(H)$. By (*), $u_{4} u_{5} \notin E(H)$, so that $T_{4} \cong G=G_{9}$. The angles of G_{9} are $\left[u_{5}, u_{1}, u_{2}, u_{3}, u_{4}\right]$ and $\left[z_{5}, y_{1}, x_{1}, x_{2}, y_{4}, z_{4}\right]$.

Proposition 3.8. If $u_{1}, u_{2}, u_{3} \notin V\left(H_{A}\right)$ and $A_{2} \in E_{1}(H)$, then $D_{k} \rightarrow G$ for some $k \geqq 2$.

Proof. $A_{4}=u_{1} u_{2} \in E(H)$ and $u_{2} u_{3} \notin E(\mathrm{H})$ can be assumed since $A_{2} \in E_{1}(H)$. Let M_{2} be the pentagon-generated subgraph of G_{4}, changing labels $x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, y_{4}, z_{1}, z_{2}, z_{3}, u_{1}, u_{2}$ to $d_{5}, d_{4}, a_{2}, b_{1}, d_{1}, d_{3}, b_{2}, a_{1}, d_{2}, b_{3}, a_{3}$, respectively, as in D_{3}. Suppose, inductively, that $M_{k} \subseteq G$ is labelled $d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{k+1}, b_{k+1}$, as in D_{k+1}. Any pentagon of H not in M_{k} but containing a_{k} can be written $L_{k}=\left[a_{k}, b_{k}, b_{k+1}, b_{k+2}, a_{k+2}\right]$ or $N_{k}=\left[a_{k}, b_{k}, b_{k+1}, a_{k+1}, d_{1}{ }^{\prime}\right]$ because $d_{1} d_{2}, d_{3} d_{4} \in E_{1}(H)$.

If $L_{k} \subseteq G$, then $M_{k+1}=M_{k} \cup L_{k}$ is as in D_{k+2}, for otherwise $a_{k+2} b_{k+2}=d_{2} d_{3}$ and M_{k+1} has only one non-trivalent vertex. Thus $N_{k} \subseteq G$, for some $k \geqq 2$, because H is finite. Then $d_{1}{ }^{\prime} \notin V\left(M_{k}\right)$ and $N_{k}{ }^{\prime}=\left[d_{1}{ }^{\prime}, d_{2}{ }^{\prime}, d_{3}{ }^{\prime}, d_{4}{ }^{\prime}, d_{5}{ }^{\prime}\right] \in P_{5}(H)$ exist, with $N_{k} \notin P_{5}\left(M_{k} \cup N_{k}\right)$ and $a_{k+1}=d_{5}{ }^{\prime}, b_{k+1}=d_{4}{ }^{\prime} . N_{k}{ }^{\prime}$ is the only such pentagon containing d_{1}^{\prime} or b_{k+1}, hence is singular in H. Then

$$
D_{k} \rightarrow G=M_{k} \cup N_{k} \cup N_{k}^{\prime} .
$$

When labels are not distinct, $d_{2} d_{3}={d_{2}}^{\prime}{ }^{\prime}{ }_{3}{ }^{\prime}$. Then $k \geqq 2$ and $k>2$ if also $d_{2}=d_{2}{ }^{\prime}, d_{3}=d_{3}{ }^{\prime}$.

Case 3. Suppose that $G \subseteq E_{1}(H) \cup E_{2}(H)$ and let $H_{A}=G_{0}$.
Proposition 3.9. $H_{A} \cong(\mathbf{C})$ or $H_{A} \cong(\mathbf{B})$, for all $A \in E(G)$.
Proof. Otherwise, by Proposition 3.1, $H_{A} \cong(\mathbf{D})$, for some $A \in E(G)$. Then $x_{2} y_{2} \in E(G)$ is in two pentagons of Figure $3 \mathrm{~A}(\mathbf{D})$ plus all pentagons of H containing $x_{2} y_{4}$.

Let $w \in V(H)$ be an a-vertex when it is in a structure polygon and a b-vertex otherwise. Here, a-vertices are joined only by edges of $E_{1}(H)$ or pivot edges.

Proposition 3.10. If H is decomposable, then $T_{5} \rightarrow G, T_{6} \cong G$ or $T_{7} \cong G$.
Proof. G has a singular pentagon $P=\left[x_{1}, x_{2}, z_{1}, y_{2}, y_{1}\right]$ with unique arcs $X_{i}=\left[x_{1}, x_{2}, \ldots, x_{i}\right], Y_{i}=\left[y_{1}, y_{2}, \ldots, y_{i}\right]$ of a-vertices, for $2 \leqq i \leqq 6$. Set $K_{1}=P \cup X_{4} \cup Y_{4}$ and $K_{i+1}=K_{i} \cup Q_{i}$ for certain $Q_{i} \in P_{5}(G)$. The labels on $V\left(K_{1}\right)$ are distinct, except possibly when $x_{4}=y_{4}=z$. If

$$
V\left(Q_{i}\right) \cap\left\{x_{1}, y_{1}\right\} \neq \emptyset,
$$

then Q_{i} is singular and $P \cap Q_{i}=\left[x_{1}, y_{1}\right]$.
$\gamma(H)=5$ and $G=\bigcup P_{5}(G)$ imply that $z_{2}, u_{1}, u_{2} \notin V\left(K_{1}\right)$ exist with $Q_{1}=\left[x_{3}, x_{2}, z_{1}, z_{2}, u_{1}\right], Q_{2}=\left[y_{3}, y_{2}, z_{1}, z_{2}, u_{2}\right]$, and $H_{A} \cong(\mathbf{C})$, for $A=z_{1} z_{2}$. If z_{2} is an a-vertex, then Q_{1} and Q_{2} are singular and $T_{6} \cong G \subset K_{3}$. Otherwise, $Q_{3}=\left[u_{1}, z_{2}, u_{2}, u_{4}, u_{3}\right], \quad Q_{4}=\left[x_{4}, x_{3}, u_{1}, u_{3}, u_{5}\right], \quad$ and $Q_{5}=\left[y_{4}, y_{3}, u_{2}, u_{4}, u_{6}\right]$ exist. Q_{3} is not singular, and so $u_{3}, u_{4} \notin V\left(K_{3}\right)$. Pentagons meet in at most one edge and z is trivalent if it exists; thus $x_{4}, y_{4}, u_{5}, u_{6}$ are distinct with $u_{5}, u_{6} \notin V\left(K_{4}\right)$. If u_{3} is an a-vertex, then $T_{7} \cong G=K_{6}$. Otherwise $Q_{6}=\left[u_{5}, u_{3}, u_{4}, u_{6}, z_{3}\right], Q_{7}=\left[x_{5}, x_{4}, u_{5}, z_{3}, z_{4}\right], Q_{8}=\left[y_{5}, y_{4}, u_{6}, z_{3}, z_{4}\right]$ exist, none singular. Thus $z_{3} \notin V\left(K_{6}\right), H_{B} \cong(\mathbf{C})$ for $B=z_{3} z_{4}$ and $x_{5}, z_{4}, y_{5} \notin V\left(K_{7}\right)$. Finally, $Q_{9}=\left[x_{6}, x_{5}, z_{4}, y_{5}, y_{6}\right]$ exists and is singular. Then $T_{5} \rightarrow G=K_{10}$, with possibly $x_{6}=y_{1}$ and $y_{6}=x_{1}$.

Proposition 3.11. If H is indecomposable, then $C_{k} \cong G$ for odd $k \geqq 7$ and even $k \geqq 10$.

Proof. Suppose that $P \in P_{5}(H)$ exists with $E(P) \subseteq E_{2}(H)$. Write

$$
P=\left[a_{1}, a_{3}, a_{5}, a_{7}, a_{9}\right]
$$

and define $Q=\left[a_{2}, a_{4}, a_{6}, a_{8}, a_{10}\right], \quad Q_{i}=\left[a_{i-1}, b_{i-1}, b_{i}, b_{i+1}, a_{i+1}\right], i$ taken modulo 10. If the Q_{i} all exist and the vertices are distinct, then $C_{10} \cong H$. By assumption, the even Q_{i} exist, using $\gamma(H)=5$ and Proposition 3.9, the odd a_{i} and b_{i} are distinct and disjoint and the even b_{i} are distinct, non-adjacent and disjoint from the odd a_{i} and b_{i}. The even $a_{i} b_{i} \in E(H)$ exist with the a_{i} disjoint from the even Q_{i}. Since H is indecomposable and pentagon-generated, Q_{1}, Q_{3}, Q_{5}, and Q_{7} can be assumed to exist. $\gamma(H)=5$ implies that the even a_{i} are distinct; thus $a_{8} a_{10} \in E(H)$ and $C_{10} \cong H$.

Now each $P \in P_{5}(H)$ can be assumed to have exactly one edge of $E_{1}(H)$. Let $B=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ be a component of the divalent subgraph of H generated by its b-vertices and let $a_{1}, a_{2}, \ldots, a_{n}$ be the respective adjacent a-vertices. No a-vertex is joined to two b-vertices, and so these a-vertices are distinct. Each 1 -arc of B is in two pentagons and each 3 -arc is in 0 pentagons hence each 2 -arc of B is in exactly one pentagon. Then $a_{i} a_{i+2} \in E(H)$, for $i=1,2, \ldots, n(\bmod n)$. The a-vertices generate an n-gon, for odd $n>5$, and two ($n / 2$)-gons, for even $n>10$, proving that $C_{n} \cong H$ for all n required.
4. The structure of decomposable graphs. Define a map $M=(R, U)$, where R is a connected trivalent graph and $U=\left(U_{0}, U_{1}, U_{2}\right)$ is a triple of edge-disjoint spanning subgraphs of valency 1 such that the components of $U_{2} \cup U_{0}$ are quadrilaterals. Then the vertex set $V(M)$, edge set $E(M)$, and face set $F(M)$ are the sets of components of $U_{0} \cup U_{1}, U_{2} \cup U_{0}$, and $U_{1} \cup U_{2}$, respectively. The members of $V(R), E\left(U_{0}\right), E\left(U_{1}\right)$, and $E\left(U_{2}\right)$ are termed the corners, ties, angles, and sides of M, in that order. The valency of a vertex or face of M is the number of angles it contains. The graph of $M, G(M)$, is the one with the above vertex and edge sets, its incidence determined by the ties in common to such vertices and edges. M has a dual map $M^{*}=\left(R, U^{*}\right)$, where $U^{*}=\left(U_{2}, U_{1}, U_{0}\right)$, and dual graph $G^{*}(M)=G\left(M^{*}\right)$. Clearly $M^{* *}=M$, and $G^{* *}(M)=G(M)$. It is not hard to see intuitively the equivalence of these maps with those defined in the standard way (i.e., with connected graph and simply connected faces) on closed surfaces.

Suppose that H is decomposable. The structure map of $H, M(H)=(R, U)$, is such that $V(R)$ is the set of $E_{1}(H)$ edges in the singular pentagons of $H, E\left(U_{0}\right)$ is the set of singular pentagons in $H, E\left(U_{1}\right)$ is the set of angles for the constituents in H, and $E\left(U_{2}\right)$ is the set of pivot vertex graphs in H. Subgraphs are used to ensure that the $E\left(U_{i}\right)$ are disjoint. $A \in V(R)$ is incident in R with the singular pentagon and angle containing it and its incident pivot vertex graph.

For present classification purposes, a labelled map (M, l, m) is composed of a map M, a function $l: V(M) \rightarrow W$ such that $a \in V(M)$ and $f a \in W$ have the same number of angles, and a function m, such that $m a$ is an angle of $a \in V(M)$, defined when $l a$ has a top angle. (M, l, m) is properly labelled if and only if there exists an isomorphism $\theta: M \rightarrow M(H)$, for some $H \in P_{5,3}$ such that when $a \in V(M), l a$ represents the constituent of H containing the vertices and edges of θa, and $\theta m a$, if defined, is the top angle of θa. These easily characterized properly labelled maps illustrate the abundance of distinct graphs in $P_{5,3}$. Figure 4A contains a properly labelled map and corresponding H.

A graph K can be built from a labelled map (M, l, m) in the following way. Let D be a graph with components $D_{a} \cong l a$, for $a \in V(M)$, such that $D_{a} \cap D_{b}=\Omega$ (the null graph) when $a \neq b$. Let L be a graph with link graph components L_{A}, for $A \in E(M)$, disjoint from the non-pivot vertices and edges of D and such that $L_{A} \cap L_{B}=\Omega$ when $A \neq B$. Identify the angles, corners, and ties of D_{a} with those of a, in their natural cyclic order, so that when D_{a} has

Figure 4A
a top angle it is identified with $m a$. Identify the vertices of L_{A} with the sides of A. Form K using L and the non-pivot vertices, edges, and incidences of D. Set corners of D and sides of L incident, when their counterparts in R (where $M=(R, U))$ are incident, to complete the definition. Any two graphs so produced are easily seen to be isomorphic. When H is decomposable it is associated with $M(H)$ in this manner. (M, l, m) is clearly properly labelled provided that $\gamma(K)=5, E(L) \subseteq E_{2}(K)$ and if $P \in P_{5}(K)$ and $P \cap L=\Omega$, then $P \in P_{5}(D)$.

Theorem 4.1. Necessary and sufficient conditions that a labelled map (M, l, m) be properly labelled are:
(1) If $a \in V(M)$ is incident with a loop, then $G(M)$ is a loop graph. When M has only one face, la $=T_{5}$ or D_{k} for $k \geqq 3$. When M has two faces, $l a=D_{k}$ for $k \geqq 4$;
(2) Suppose that $a, b \in V(M)$ are the distinct trivalent ends of distinct $A, B \in E(M)$. If a divalent $f \in F(M)$, with sides in A, B exists, then $l a=l b=T_{7}$. If $f \in F(M)$, with three consecutive sides in A, B exists, then la or $l b=T_{7}$.
Proof. Section 3 implies that $L \rightarrow G$ and $L \not \not G$ for some constituent G of a decomposable H and $L \in W$, if and only if $L=T_{5}$ or D_{k}, for $k \geqq 3$. Then only one $T_{5} \rightarrow G$ or $D_{3} \rightarrow G$ is possible, and both $D_{k} \rightarrow G$, for $k \geqq 4$, are possible. Otherwise, $M(H)$ has no loop because all $L \rightarrow G$ are isomorphisms.

We can suppose that K is built from (M, l, m), with $G(M)$ loopless, which is not properly labelled. Then a polygon $P \subseteq K$ exists, with girth $\leqq 5$, formed from (a) some L_{A} and two angles in distinct $D_{a}, D_{b} \cong T_{6}$ or (b) two angles in $\operatorname{distinct} D_{a}, D_{b} \cong T_{6}$ or $D_{a} \cong T_{6}, D_{b} \cong T_{7}$. These are exactly the cases excluded by condition (2).

Acknowledgements. I wish to thank my thesis supervisor, Professor W. T. Tutte, for the suggestions, encouragement, and support given throughout this research. I am grateful also for the helpful advice received from Professors C. St. J. A. Nash-Williams (University of Waterloo) and W. G. Brown (McGill University) during the preparation of this work.

Reference

1. W. T. Tutte, Connectivity in graphs, Mathematical Expositions, No. 15 (Univ. Toronto Press, Toronto, Ontario; Oxford Univ. Press, London, 1966).

The Ohio State University,
Columbus, Ohio

[^0]: Received November 5, 1969 and in revised form, October 15, 1970. This material constitutes part of the author's doctoral dissertation written at the University of Waterloo, where the basic research was supervised by Professor W. T. Tutte. During the preparation of this paper, the author was supported as a Fellow at McGill University (1968/69) under NRC Operating Grants A2984 and A3069, and at the Ohio State University (September, 1969) under NSF Research Grant GP9375 (Ohio State Research Foundation; Project Nos. 2548 and 2736).

