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Abstract

In this paper we prove two inequalities relating the warping function to various curvature terms, for
warped products isometrically immersed in Riemannian manifolds. This extends work by B. Y. Chen
[‘On isometric minimal immersions from warped products into real space forms’, Proc. Edinb. Math.
Soc. (2) 45(3) (2002), 579–587 and ‘Warped products in real space forms’, Rocky Mountain J. Math.
34(2) (2004), 551–563] for the case of immersions into space forms. Finally, we give an application
where the target manifold is the Clifford torus.
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1. Introduction
Let (B, gB) and (F, gF) be Riemannian manifolds, where gB and gF are Riemannian
metrics on manifolds B and F, respectively. Let f be a positive differentiable function
on B. Consider the product manifold B× F with the natural projections π1 : B× F 7→ B
and π2 : B × F 7→ F. The warped product manifold M = B × f F is the product
manifold B × F equipped with the Riemannian metric g such that

||X||2 = ||dπ1X||2 + f 2(π1(x))||dπ2X||2

for any tangent vector X ∈ TxM, x ∈ M. Thus, we get g = gB + f 2gF . The function f
is called the warping function of the warped product manifold M [4].

Warped product manifolds play important roles in differential geometry and in
physics, particularly in general relativity, and there are many papers on this topic
(see, for example, [4] and the references therein). According to the result of Nash
[9] which says that every Riemannian manifold can be isometrically embedded in
some Euclidean space, every warped product can be isometrically embedded in some
Euclidean space. The main results of this paper, Theorems 3.1 and 3.4, generalise
Chen’s results [2, 3] by giving upper and lower bounds for 4 f / f .

The paper is organised as follows. In Section 2 we recall some notions which are
needed in later sections. In Section 3 we obtain the main results from which we can
see both the upper bound and the lower bound of the function 4 f / f . In Section 4 we
give some applications.
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2. Preliminaries

Let (M, g) be an m-dimensional Riemannian manifold and N an n-dimensional
submanifold of (M, g). Denote by ∇ and ∇ the Levi-Civita connections of N and
M, respectively. The Gauss and Weingarten formulas are given by

∇XY = ∇XY + h(X,Y),
∇XZ = −AZ X + DXZ,

respectively, for tangent vector fields X, Y ∈ Γ(T N) and a normal vector field Z ∈
Γ(T N⊥), where h denotes the second fundamental form, D the normal connection,
and A the shape operator of N in M.

The second fundamental form and the shape operator are related by

〈AZ X,Y〉 = 〈h(X,Y),Z〉,

where 〈 , 〉 denotes the induced metric on N as well as the Riemannian metric g on M.
Choose a local orthonormal frame {e1, . . . , em} of T M such that e1, . . . , en are tangent
to N and en+1, . . . , em are normal to N. Then the mean curvature vector

−→
H is defined

by
−→
H =

1
n

trace h =
1
n

n∑
i=1

h(ei, ei)

and the squared mean curvature is given by H2 := 〈
−→
H,
−→
H〉.

The squared norm of the second fundamental form h is given by

||h||2 =

n∑
i, j=1

〈h(ei, e j), h(ei, e j)〉.

Let hr
i j := 〈h(ei, e j), er〉 for 1 ≤ i, j ≤ n and n + 1 ≤ r ≤ m.

A submanifold N is said to be totally geodesic in M if the second fundamental form
of N in M vanishes identically. Denote by K(π) and K(π) the sectional curvatures of a
plane π ⊂ TpN, p ∈ N, in N and in M, respectively. That is, if the plane π is spanned
by vectors X,Y ∈ TpN, then

K(π) =
〈R(X,Y)Y, X〉

〈X, X〉 · 〈Y,Y〉 − 〈X,Y〉2
and K(π) =

〈R(X,Y)Y, X〉
〈X, X〉 · 〈Y,Y〉 − 〈X,Y〉2

,

where R and R are the Riemann curvature tensors of N and M, respectively.
The scalar curvature τ of N is defined by

τ =
∑

1≤i< j≤n

K(ei ∧ e j),

where K(ei ∧ e j) = 〈R(ei, e j)e j, ei〉 for 1 ≤ i, j ≤ n.
Let

(inf K)(p) := inf{K(π) | π ⊂ TpN, dim π = 2}
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and
(sup K)(p) := sup{K(π) | π ⊂ TpN, dim π = 2}

for p ∈ N.
The Gauss equation is given by

R(X,Y,Z,W) = R(X,Y,Z,W) + 〈h(X,W), h(Y,Z)〉 − 〈h(X,Z), h(Y,W)〉 (2.1)

for tangent vectors X, Y, Z,W ∈ TpN, p ∈ N, where R(X, Y, Z,W) = 〈R(X, Y)Z,W〉 and
R(X,Y,Z,W) = 〈R(X,Y)Z,W〉.

Then we easily obtain

n∑
i, j=1

K(ei ∧ e j) = 2τ + ||h||2 − n2H2.

The Laplacian of a differentiable function f on N is defined by

4 f =

n∑
i=1

((∇ei ei) f − e2
i f ).

3. Some inequalities

Let (B, gB) be an n1-dimensional Riemannian manifold and (F, gF) an n2-
dimensional Riemannian manifold, with n = n1 + n2. Let (M, g) be a warped product
manifold of (B, gB) and (F, gF) such that M = B × f F and g = gB + f 2gF with
the projections π1 : B × F 7→ B and π2 : B × F 7→ F, and (M, g) an m-dimensional
Riemannian manifold. Let D1 and D2 denote the distributions in M obtained from
the vectors tangent to the horizontal lifts of B and F, respectively.

Let φ : (M, g) 7→ (M, g) be an isometric immersion. We choose a local orthonormal
frame {e1, . . . , en} of the tangent bundle T M of M such that e1, . . . , en1 ∈ Γ(D1) and
en1+1, . . . , en ∈ Γ(D2). For convenience, we identify dφ(ei) with ei for 1 ≤ i ≤ n. We
also choose a local orthonormal frame {en+1, . . . , em} of the normal bundle T M⊥ of M
in M via φ such that en+1 is in the direction of the mean curvature vector field.

Then we have

4 f =

n1∑
i=1

((∇ei ei) f − e2
i f ). (3.1)

Denote by tr h1 and tr h2 the trace of h restricted to B and F, respectively. that is,

tr h1 =

n1∑
i=1

h(ei, ei) and tr h2 =

n∑
j=n1+1

h(e j, e j).

Given unit vector fields X, Y ∈ Γ(T M) such that X ∈ Γ(D1) and Y ∈ Γ(D2), we easily
obtain

∇XY = ∇Y X = (X ln f )Y,
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where ∇ is the Levi-Civita connection of (M, g), so that

K(X ∧ Y) = 〈∇Y∇XX − ∇X∇Y X,Y〉

=
1
f

((∇XX) f − X2 f ).

Hence,
4 f
f

=

n1∑
i=1

K(ei ∧ e j)

for each j = n1 + 1, . . . , n.
The map φ is called mixed totally geodesic if h(ei, e j) = 0 for 1 ≤ i ≤ n1 and

n1 + 1 ≤ j ≤ n.
Then we get the following theorem.

Theorem 3.1. Let (M = B × f F, g) be a warped product manifold of Riemannian
manifolds (B, gB) and (F, gF) with the warping function f , and (M, g) a Riemannian
manifold. Let φ : (M, g) 7→ (M, g) be an isometric immersion. Then we obtain

4 f
f
≤

n2

4n2
H2 + n1 sup K, (3.2)

where n1 = dim B and n2 = dim F, with n = n1 + n2. The equality case of (3.2) holds
identically if and only if φ is a mixed totally geodesic immersion such that tr h1 = tr h2

and K(X ∧ Y) = sup K for unit vectors X ∈ Γ(D1) and Y ∈ Γ(D2).

Proof. Given a local orthonormal frame {e1, . . . , en} of T M such that e1, . . . , en1 ∈

Γ(D1) and en1+1, . . . , en ∈ Γ(D2), we have

4 f
f

=

n1∑
i=1

K(ei ∧ e j) (3.3)

for each j = n1 + 1, . . . , n.
By the Gauss equation, we get

2τ = n2H2 − ||h||2 +

n∑
i, j=1

K(ei ∧ e j),

where K(ei ∧ e j) = g(R(ei, e j)e j, ei) and R is the Riemann curvature tensor of M.
Let

δ := 2τ −
n∑

i, j=1

K(ei ∧ e j) −
n2

2
H2. (3.4)

Then we obtain
n2H2 = 2δ + 2||h||2. (3.5)
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Given a local orthonormal frame {en+1, . . . , em} of the normal bundle such that en+1 is
in the direction of the mean curvature vector field, from (3.5) we have( n∑

i=1

hn+1
ii

)2
= 2

(
δ +

n∑
i=1

(hn+1
ii )2 +

∑
i, j

(hn+1
i j )2 +

m∑
r=n+2

n∑
i, j=1

(hr
i j)

2
)
. (3.6)

Let a1 :=
∑n1

i=1 hn+1
ii and a2 :=

∑n
i=n1+1 hn+1

ii .
Using the relation

a2
1 + a2

2 ≥
1
2 (a1 + a2)2,

by (3.6) we obtain

∑
1≤ j<k≤n1

hn+1
j j hn+1

kk +
∑

n1+1≤s<t≤n

hn+1
ss hn+1

tt ≥
1
2
δ +

∑
1≤i< j≤n

(hn+1
i j )2 +

1
2

m∑
r=n+2

n∑
i, j=1

(hr
i j)

2. (3.7)

From (3.3) and the Gauss equation (2.1), we get

n24 f
f

= τ −
∑

1≤i< j≤n1

K(ei ∧ e j) −
∑

n1+1≤s<t≤n

K(es ∧ et)

= τ −
∑

1≤i< j≤n1

K(ei ∧ e j) −
m∑

r=n+1

∑
1≤i< j≤n1

(hr
iih

r
j j − (hr

i j)
2)

−
∑

n1+1≤s<t≤n

K(es ∧ et) −
m∑

r=n+1

∑
n1+1≤s<t≤n

(hr
ssh

r
tt − (hr

st)
2)

= τ −
1
2

n∑
i, j=1

K(ei ∧ e j) +
∑

1≤i≤n1
n1+1≤s≤n

K(ei ∧ es)

−

m∑
r=n+1

∑
1≤i< j≤n1

(hr
iih

r
j j − (hr

i j)
2)

−

m∑
r=n+1

∑
n1+1≤s<t≤n

(hr
ssh

r
tt − (hr

st)
2). (3.8)

By (3.4), (3.7), and (3.8), we obtain

n24 f
f
≤ τ −

1
2

n∑
i, j=1

K(ei ∧ e j) +
∑

1≤i≤n1
n1+1≤s≤n

K(ei ∧ es)

−
1
2
δ −

∑
1≤i≤n1

n1+1≤s≤n

(hn+1
is )2 −

1
2

m∑
r=n+2

n∑
i, j=1

(hr
i j)

2
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−

m∑
r=n+2

∑
1≤i< j≤n1

(hr
iih

r
j j − (hr

i j)
2)

−

m∑
r=n+2

∑
n1+1≤s<t≤n

(hr
ssh

r
tt − (hr

st)
2)

≤ τ −
1
2

n∑
i, j=1

K(ei ∧ e j) + n1n2 sup K −
1
2
δ

−

m∑
r=n+1

∑
1≤i≤n1

n1+1≤s≤n

(hr
is)

2 −
1
2

m∑
r=n+2

( ∑
1≤i≤n1

hr
ii

)2

−
1
2

m∑
r=n+2

( ∑
n1+1≤ j≤n

hr
j j

)2

≤ τ −
1
2

n∑
i, j=1

K(ei ∧ e j) + n1n2 sup K −
1
2
δ

=
n2

4
H2 + n1n2 sup K. (3.9)

Therefore, we have
4 f
f
≤

n2

4n2
H2 + n1 sup K.

Similarly, using [2, Theorem 1.4], from (3.7) and (3.9), we see that the equality sign
in (3.2) holds if and only if the immersion φ is mixed totally geodesic such that
tr h1 = tr h2 and K(X ∧ Y) = sup K for unit vectors X ∈ Γ(D1) and Y ∈ Γ(D2). Notice
that we can choose e1 and en1+1 such that the plane spanned by e1 and en1+1 is equal to
the plane spanned by X and Y so that K(e1 ∧ en1+1) = K(X ∧ Y). �

Remark 3.2. (1) If (M, g) is a Riemannian manifold of constant sectional curvature c,
then (3.2) becomes (1.2) of [2, Theorem 1.4].

(2) Let Mm1,m2 := S m1 (
√

m1/m) × S m2 (
√

m2/m) ⊂ S m+1(1) be the Clifford torus,
where m = m1 + m2, m ≥ 4, and 2 ≤ m1 ≤ m − 2 [6, 8]. As we know, Mm1,m2 is
a compact minimal hypersurface in S m+1(1) and has only two distinct principal
curvatures

√
m2/m1, −

√
m1/m2 with multiplicities m1, m2, respectively. The squared

norm of the second fundamental form of Mm1,m2 in S m+1(1) is equal to m so that by
using the Gauss equation, the scalar curvature of Mm1,m2 is equal to m(m − 2)/2 [7, 10].

Moreover, if we take two unit vectors e1, e2 ∈ TpMm1,m2 , p ∈ Mm1,m2 such that
Ape1 =

√
m2/m1e1 and Ape2 = −

√
m1/m2e2, then, given x, y ∈ R with x2 + y2 = 1, we

have

Ric(xe1 + ye2) = m − 1 −
(m2

m1
x2 +

m1

m2
y2 +

m2

m1m2
x2y2

)
,
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where Ric denotes the Ricci curvature of Mm1,m2 . With a simple computation, we easily
obtain

Ric ≥ m − 1 −
(m2

m1
+

m1

m2

)
with equality holding if and only if (x, y) = (±

√
m2/m,±

√
m1/m) [5, 11].

In particular, we know that Mm1,m2 is not a constant curvature space but has only
three types of sectional curvatures {0,m/m1,m/m2} so that when we consider an
isometric immersion φ : M 7→ Mm1,m2 , Theorem 3.1 will be useful [2].

To prove the next theorem, we need to introduce the following lemma, which we
get from [1].

Lemma 3.3. Let a1, . . . , an, c be any real numbers with n ≥ 2 such that( n∑
i=1

ai

)2
= (n − 1)

( n∑
i=1

a2
i + c

)
.

Then
2a1a2 ≥ c

with equality holding if and only if a1 + a2 = a3 = · · · = an.

Theorem 3.4. Let (M = B × f F, g) be a warped product manifold of Riemannian
manifolds (B, gB) and (F, gF) with the warping function f , and (M, g) a Riemannian
manifold. Let φ : (M, g) 7→ (M, g) be an isometric immersion. Then

4 f
f
≥

n1n2

2(n − 1)
H2 −

n1

2
||h||2 + n1 inf K, (3.10)

where n1 = dim B and n2 = dim F, with n = n1 + n2.

Proof. We choose a local orthonormal frame {e1, . . . , en} of T M such that e1, . . . , en1 ∈

Γ(D1) and en1+1, . . . , en ∈ Γ(D2), and a local orthonormal frame {en+1, . . . , em} of the
normal bundle such that en+1 is in the direction of the mean curvature vector field.

Using the Gauss equation, we get

2τ = n2H2 − ||h||2 +

n∑
i, j=1

K(ei ∧ e j). (3.11)

Let

δ := 2τ −
n2(n − 2)

n − 1
H2 −

n∑
i, j=1

K(ei ∧ e j). (3.12)

From (3.11) and (3.12), we obtain

n2H2 = (n − 1)||h||2 + (n − 1)δ (3.13)
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so that( n∑
i=1

hn+1
ii

)2
= (n − 1)

( n∑
i=1

(hn+1
ii )2 +

∑
i, j

(hn+1
i j )2 +

m∑
r=n+2

n∑
i, j=1

(hr
i j)

2 + δ
)
. (3.14)

Applying Lemma 3.3 to (3.14) with a1 = hn+1
11 and a2 = hn+1

n1+1n1+1, we have

2hn+1
11 hn+1

n1+1n1+1 ≥
∑
i, j

(hn+1
i j )2 +

m∑
r=n+2

n∑
i, j=1

(hr
i j)

2 + δ

so that

K(e1 ∧ en1+1) ≥
m∑

r=n+1

∑
j∈S 1n1+1

{(hr
1 j)

2 + (hr
n1+1 j)

2}

+
1
2

∑
i, j∈S 1n1+1

i, j

(hn+1
i j )2 +

1
2

m∑
r=n+2

∑
i, j∈S 1n1+1

(hr
i j)

2

+
1
2

m∑
r=n+2

(hr
11 + hr

n1+1n1+1)2 +
δ

2
+ inf K

≥
δ

2
+ inf K,

where S 1n1+1 = {1, . . . , n} − {1, n1 + 1}.
Similarly, we obtain

K(ei ∧ en1+1) ≥
δ

2
+ inf K (3.15)

for 1 ≤ i ≤ n1.
Since K(ei ∧ en1+1) = 1/ f ((∇ei ei) f − e2

i f ) for 1 ≤ i ≤ n1, by (3.1), (3.13) and (3.15),
we get

4 f
f
≥

n1

2
δ + n1 inf K

≥
n1n2

2(n − 1)
H2 −

n1

2
||h||2 + n1 inf K.

Therefore, we have the result. �

Remark 3.5. (1) In a similar way, using [3, Theorem 1], we can also give a condition
for equality to hold in (3.10). This is just the same as the conditions of [3, Theorem 1],
except for the additional condition K(X ∧ Y) = inf K for X ∈ Γ(D1) and Y ∈ Γ(D2).

(2) From Theorems 3.1 and 3.4, we obtain both the upper bound and the lower
bound of the function 4 f / f :

n1n2

2(n − 1)
H2 −

n1

2
||h||2 + n1 inf K ≤

4 f
f
≤

n2

4n2
H2 + n1 sup K.
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4. Applications

Let M(c1, c2) := M(c1) × M(c2) be the product manifold of Riemannian manifolds
M(c1) and M(c2), where M(ci) is a constant curvature space of constant sectional
curvature ci for i = 1, 2. Then we know that M(c1, c2) has only three types of sectional
curvatures {c1, c2, 0}.

Let c := min{c1, c2, 0} and c̄ := max{c1, c2, 0}. Using Theorem 3.1, we easily get the
following corollary.

Corollary 4.1. Let (B × f F, g) be a warped product manifold of Riemannian
manifolds (B, gB) and (F, gF) with the warping function f such that n1 = dim B,
n2 = dim F, and n = n1 + n2. Let φ be an isometric immersion from the warped product
manifold (B × f F, g) to the product manifold M(c1, c2). Then

4 f
f
≤

n2

4n2
H2 + n1c̄.

Remark 4.2. Let (B × f F, g) be a warped product manifold of Riemannian manifolds
(B, gB) and (F, gF) with the warping function f such that n1 = dim B, n2 = dim F,
and n = n1 + n2. Let φ be an isometric minimal immersion from the warped product
manifold (B × f F, g) to the product manifold M(c1, c2). Then we obtain

4 f
f
≤ n1c̄.

By Remark 4.2, we get the following theorem.

Theorem 4.3. Let (M = B × f F, g) be a warped product manifold of Riemannian
manifolds (B, gB) and (F, gF) with the warping function f such that n1 = dim B, n2 =

dim F, and n = n1 + n2, and let M(c1, c2) be the product manifold of constant curvature
spaces M(c1) and M(c2). Then there does not exist an isometric minimal immersion φ
from the warped product manifold (M, g) to the product manifold M(c1, c2) such that
(4 f / f )(π1(p)) > n1c̄ for some p ∈ M.

Using Theorem 3.4, we have the following corollary.

Corollary 4.4. Let (B × f F, g) be a warped product manifold of Riemannian
manifolds (B, gB) and (F, gF) with the warping function f such that n1 = dim B,
n2 = dim F, and n = n1 + n2. Let φ be an isometric immersion from the warped product
manifold (B × f F, g) to the product manifold M(c1, c2). Then we obtain

4 f
f
≥

n1n2

2(n − 1)
H2 −

n1

2
||h||2 + n1c.

From Remark 3.2, we know that the Clifford torus Mm1,m2 is a product manifold
of spheres S m1 (

√
m1/m) and S m2 (

√
m2/m). That is, Mm1,m2 is a product manifold

of constant curvature spaces S m1 (
√

m1/m) and S m2 (
√

m2/m), where S m1 (
√

m1/m) and
S m2 (
√

m2/m) are constant curvature spaces of constant sectional curvatures m/m1 and
m/m2, respectively.
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Thus, by using Corollary 4.1, we immediately obtain the following result.

Corollary 4.5. Let (B × f F, g) be a warped product manifold of Riemannian
manifolds (B, gB) and (F, gF) with the warping function f such that n1 = dim B,
n2 = dim F, and n = n1 + n2. Let φ be an isometric immersion from the warped product
manifold (B × f F, g) to the Clifford torus Mm1,m2 with 2 ≤ m1 ≤ m/2, m = m1 + m2, and
m ≥ 4. Then

4 f
f
≤

n2

4n2
H2 +

n1m
m1

.

Remark 4.6. Let (B × f F, g) be a warped product manifold of Riemannian manifolds
(B, gB) and (F, gF) with the warping function f such that n1 = dim B, n2 = dim F,
and n = n1 + n2. Let φ be an isometric minimal immersion from the warped product
manifold (B × f F, g) to the Clifford torus Mm1,m2 with 2 ≤ m1 ≤ m/2, m = m1 + m2, and
m ≥ 4. Then we obtain

4 f
f
≤

n1m
m1

.

By Remark 4.6, we get the following theorem.

Theorem 4.7. Let (M = B × f F, g) be a warped product manifold of Riemannian
manifolds (B, gB) and (F, gF) with the warping function f such that n1 = dim B,
n2 = dim F, and n = n1 + n2, and let Mm1,m2 be the Clifford torus S m1 (

√
m1/m) ×

S m2 (
√

m2/m) such that 2 ≤ m1 ≤ m/2, m = m1 + m2, and m ≥ 4. Then there does not
exist an isometric minimal immersion φ from the warped product manifold (M, g) to
the Clifford torus Mm1,m2 such that (4 f / f )(π1(p)) > n1m/m1 for some p ∈ M.

Using Corollary 4.4, we have the following result.

Corollary 4.8. Let (B × f F, g) be a warped product manifold of Riemannian
manifolds (B, gB) and (F, gF) with the warping function f such that n1 = dim B,
n2 = dim F, and n = n1 + n2. Let φ be an isometric immersion from the warped product
manifold (B × f F, g) to the Clifford torus Mm1,m2 with 2 ≤ m1 ≤ m/2, m = m1 + m2, and
m ≥ 4. Then we obtain

4 f
f
≥

n1n2

2(n − 1)
H2 −

n1

2
||h||2.
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