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Abstract

We provide character-free proofs of some results on idempotents in p-adic group rings, centering
around Brauer’s Second Main Theorem on Blocks.

1991 Mathematics subject classification (Amer. Math. Soc.): 20C05,20C 11,20 C 20, 16 S 34.

The main purpose of this paper is to provide character-free proofs of some
(known) results on central idempotents in p-adic group rings of finite groups.
The results we have in mind are all directly or indirectly related to Brauer’s
Second Main Theorem on Blocks. Thus we also prove a character-free version
of the Second Main Theorem, using ideas of Puig [18, 19].

In the following, & will denote a complete discrete valuation ring with
algebraically closed residue field F of prime characteristic p, and o — @ will
denote the standard epimorphism & — F.

Unless stated otherwise, the algebras we will consider are all associative with
identity element, and free of finite rank over their ring of coefficients (& or [F).
For such an algebra A, we denote by JA its Jacobson radical, by ZA its center,
by UA its group of units and by [A, A] its ZA-submodule consisting of all finite
sums of elements of the form [a, b] = ab — ba (a, b € A).

For a finite group G, &G and FG denote the group algebras of G over £ and
[, respectively. There is a useful map A : £G — & defined in the following
way: If a = dec a,8 € 0G witha, € 0 for g € G then A(a) = a;. Itis
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well-known that A vanishes on [6G, OG].

We will have to use properties of G-algebras. We therefore recall that a
G-algebra over 0 is a pair consisting of an £-algebra A and a homomorphism
¢ from G into the automorphism group Aut(A) of A. We write éa instead of
(p(g))(a) for g € G and a € A and define

A" :={ae A:"a=a forh € H},

for every subgroup H of G. If K is a subgroup of H and b € AX then **b ="b
for h € H and k € K. We therefore write "X b instead of *b. The transfer map
Ty : A¥ — A" is then defined by Tr (b) := Y, xcpy/x b for b € A¥; here
H /K denotes the set of cosets hK (h € H). We set A# := Tr} (A¥). Then A¥
is an ideal in A¥.

The group algebra &G will be considered as a G-algebra in such a way that
8q = gag~' for g € G and a € OG. In this case the map

6G — FCo(Q), D) agr— D &g,

2eG 8€Cq(Q)

restricts to a homomorphism Bry : (6G)? — FCg(Q) which is called the
Brauer homomorphism with respect to Q, for any p-subgroup Q of G.

We will prove Brauer’s Second Main Theorem on Blocks in the following
form.

THEOREM 1. Let G be a finite group, u a p-element in G, s a p-regular
element in Cg(u) and e an idempotent in ZOG. We denote by e, the unique
idempotent in ZOCs(u) such that Br, (e) = Bry,(e,). Then eus = e,us
(mod [OG, OG)).

We note that the existence and uniqueness of e, follow from lifting theorems
for idempotents.

In order to get from Theorem 1 the Second Main Theorem in its usual form
(see 5.4.1 in [16], for example) we just apply an irreducible character x to the
congruence above (using the fact that x vanishes on [6G, 6G]).

The reader may wish to consult the references for other proofs of the Second
Main Theorem.

PROOF. We may assume that u # 1 and wish to show that (e — e,)su €
[£G, 6G]. Since s is a linear combination of idempotents in £'(s} it suffices to
show that (e — e,) fu € [0G, O6G] for any idempotent f in 6Cgs(u). By the
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definition of e,, the idempotent (e — e,) f € (6€G)™ is contained in the kernel
of Bry,,. But it is well-known (and easy to see) that Ker(Bry,) is the sum of
the two ideals J&)(OG)™ and (é’G)E';; (where v := u?) of (#G)™. Since
0 is the only idempotent contained in (J&)(6G)™ it therefore follows from
Rosenberg’s lemma (see 5.1 in [13], for example) that (e — e,) f € (é’G)ﬁZ;.
Hence, by Puig’s version of Green’s indecomposability theorem (see [18] or
Theorem 9 below), there is an idempotent j in (6G)™ orthogonal to ¢ for

g € (u) \ (v) such that (e — ¢,) f = Tr!4)(j). Thus
ju=ju—j¢ju=jju)~(ujel0G, 6G]
and
(e — e,) fu = Tr(y(ju) € Tr) ([0G, 6G1N (6G)™) C [6G, OG],

as we wanted to show.

We would like to add some related results on idempotents. We start with a
simple lemma due to Cliff [3]. Similar results can also be found in Oliver [17]
and Taylor [20]. The analogous fact in prime characteristic goes back to Brauer.
For a recent account, see Kiilshammer [12].

LEMMA 2. Let A be the free O-algebrain generators x, . .., X;, and let m and
n be non-negative integers suchthatm < n. Then (x,+---+x)” =a+b+c
where a € p™A, b is a sum of p""'-th powers of monomials in x,, ..., x,
andc € [A, Al.

PROOF. We write (x; + --- + x;)”" as the sum of the k?" different terms
Viyooos Ypr With yy, oo, ypr € {x1, ..., %}, The cyclic group Z = (z) of order
p" acts on the set of these terms in such a way that *(y1y2 ... Ypr) = Y2... Ypr ).
It is obvious that terms in the same Z-orbit lie in the same coset modulo [A, A].
Hence, if B is a Z-orbit containing at least p™ elements then ) _, _, b is contained
in p™A + [A, A]. On the other hand, if B is a Z-orbit containing less than p”
elements then, for b € B, the stabilizer of b in Z has order at least p"~™*!. This
means that b is of the form b = (y; ... y,»-1)”" """, and the result follows.

We wish to apply Lemma 2 to group algebras. Thus let G be a finite group,
and let K be a conjugacy class of G. We call K p-regular if it consists of
p-regular elements, and p-singular otherwise. For a subset X of G, we set
Xt =3 ,.x8 €0G.

The following result is due to Cliff [3].
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PROPOSITION 3. Let G be a finite group, and let e be an idempotent in G.
We write e = 3. €,8 withe, € O for g € G. Then }_ ., €, = O for every
p-singular conjugacy class L of G.

gel

PROOF. Let L be a p-singular conjugacy class of G. It suffices to show that
3 ccL € € p" O forevery positive integer m. We therefore fix a positive integer
m and choose a positive integer n > m such that g”"™" = 1forevery p-element
g€G.

Let A be the free £-algebra in |G| generators x, (g € G). There is a unique
homomorphism of algebras ¢ : A — &G satisfying ¢(x,) = €,¢ for g € G.

Thus n n
¢((gezcxg)”) = (o) =e=e

We write (dec x,)” = a+b+c witha,b,c as in Lemma 2. Then e =
¢(a) + ¢(b) + ¢(c) where ¢p(a) € p"OG, ¢(b) is a linear combination of
p-regular elements in G, and ¢ (c) € [€G, €G]. Hence

Zég =Me(L™)) = Me@(L™)) + AMeB)L ™)) + @)L

geL
where A(¢(a)(L™1)*") € p™ O, A(¢(b)(L™)") = O since L is p-singular, and
AMp(L™HH =0
since ¢(c)(L~)* € [OG, OG]. Thus deL €, € p™ O as we wished to show.

An immediate consequence of Proposition 3 is the following result.

COROLLARY 4. Let G be a finite group, s a p-regular element in G and e an
idempotent in ZOG. We write es = ) _,.; 0,8 wWitha, € O for g € G. Then
> ccL 0 = 0 for every p-singular conjugacy class L of G.

PROOF. The p-regular element s € G is a linear combination of idempotents
in O(s), so es is a linear combination of idempotents in £'G, and the result
follows from Proposition 3.

We recall that every element g € G can be written uniquely in the form
g = us where u is a p-element in G and s is a p-regular element in G such that
us = su. Then u is called the p-factor of g, and s is called the p-regular factor
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of g. Two elements in G are said to be contained in the same p-section of G if
their p-factors are conjugate in G.

The following result is known to be a consequence of the Second Main
Theorem (see [11], for example). We present a proof using the ideas above.

PROPOSITION 5. Let K be a conjugacy class of G, and let ¢ be an idempotent
inZO0G. Then K*e is a linear combination of elements contained in the same

p-section as K. In particular, e is a linear combination of p-regular elements
inG.

PROOF. We write K*e = | . o,g witha, € O forg € G. Thena, =
MK*eg™) for g € G, so it suffices to show that A(Kteg™!) = 0 whenever g is
not contained in the same p-section as K. We fix such an element g and denote
by u the p-factor and by s the p-regular factor of g~!, so that g7! = us =
su. Moreover, we denote by e, the unique idempotent in Z&6'Cg (1) such that
Br, (e) = Bry,(e,). Then, by Theorem 1, eus = e,us (mod [OG, OG)), so
KTeg™' = KTe,g7! (mod [0G, 6G)), and therefore

AMKTeg™) = r(KTe,g7) = A(K NCsu)) e,g™)

since e,g~' € OCq(u). We write e,s = Y, ., Buh with B, € O for h €
Cg(u). Then, by Corollary 4, >, , B» = O for every p-singular conjugacy
class L of Cs(u). But, since g and K are contained in different p-sections,
(K N Cg(u))u is a union of p-singular conjugacy classes of Cs(u). Thus we
have

MENCs@)reg™ = ) Bri=0

he(KNCg(u))u

as we wanted to show.

Let u be a p-element in G, and let K be a conjugacy class of G contained in
the same p-section of G as u. Then the elements in K with p-factor u form a
conjugacy class K, of Cs(u), and the map K — K|, is a bijection between the
set of conjugacy classes of G contained in the same p-section of G as u and the
set of conjugacy classes of Cg(u) contained in the same p-section of Cg(u) as
u.

Let e be an idempotent in ZO'G, and let e, be the unique idempotent in
Z0Cg(u) such that Bry,,(e) = Bry,(e,). We wish to compare K*e and K/e,.

The following result can be found in lizuka [11].
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THEOREM 6. Let G be a finite group, u a p-element in G, K a conjugacy class
of G contained in the p-sectionofu inG,and K, := {g € K : g has p-factor u}.
Let e be an idempotent inZ.€ G, and let e, be the unique idempotent in ZOCg (u)
such that Bry,(e) = Bry(e,). We write KTe = dec a8 and K}le, =
> hecow Brh with ag, B, € O for g € G and h € Cg(u). Thenay =0 if g is
not contained in the p-section of u, and o,; = B, for any p-regular element s
inCg(u).

PROOF. The first assertion follows from Proposition 5. Thus let s be a p-
regularelementin C(u). Thena,; = A(Kteu~'s ) and B,, = AM(KFe,u~'s71).
As in the proof of Proposition 5, we have

MKYeu 's™) = MK euls™) = A(K NCou))tute,s™).

If L is a conjugacy class of Cg(u) contained in (K N Cg(u)) \ K, then Lu~! is
a p-singular conjugacy class of Cg(u), so A(L*u"'e,s™!) = 0 by Corollary 4.
Thus

MK NCom) u"e,s™") = MK u"'e,s™") = Bus

as we wanted to show.

The theorem implies that one can compute K *e from K e, and vice versa.
As an application, we mention the following result taken from Broué [2].

PROPOSITION 7. Let G be a finite group, u a p-element in G and U the p-
section of G containing u. Let B be a block of €G with block idempotent e and
defect group D. If u is not conjugate in G to an element in D then K*e = 0 for
every conjugacy class K of G contained in U.

PROOF. If u is not conjugate to an element in D then Br,,(e) = 0. But then
e, = 0, in the notation of Theorem 6. Thus K }e, = 0 for every conjugacy class
K of G contained in U, and therefore K*e = 0 by Theorem 6.

The following result also appears in Broué [2].

PROPOSITION 8. Let G be a finite group, u a p-element in G and U the
p-section of G containing u. Moreover, let B be a block of 6G with block
idempotent e and defect group D. Then the following statements are equivalent:

(1) K'*e € JZOG for every conjugacy class K of G contained in U ;

(2) u is not conjugate in G to an element in Z(D).
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PROOF. Suppose first that u € Z(D). By Brauer’s First Main Theorem on
Blocks, Brp(e) is a block idempotent in FNg(D) with defect group D. Since
Bry(e)? = Brp(e), Proposition 5 implies that there is a p-regular conjugacy class
S of Ng (D) with defect group D such that StBrp(e) ¢ JZFNg (D). We choose
s € S and note that S € Cz(D). Moreover, we denote by L the conjugacy class
of N¢ (D) containing us = su, and by v : FNg(D) — F[Ng(D)/D] the natural
epimorphism. It is easy to see that

V(L™) = [Ng(D) N Cg(s) : Ng(D) N Cq(us)|v(ST) # 0.
Since the kermel of v is nilpotent this means that
LT — [Ng(D) NCg(s) : Ng(D) N Cg(us)|ST € JZFNg (D),

so Brp(e)L* ¢ JZFNg (D). If K denotes the conjugacy class of G containing
us then K has defect group D, and K N Cgz(D) = L. Thus

Brp(K*e) = Brp(K*)Brp(e) = L*Brp(e) ¢ JZFNg (D),

so Kte ¢ JZOG.

Now suppose conversely that u is not conjugate to an element in Z(D), and
let K be a conjugacy class of G contained in U. If @ denotes a defect group of
K then

K¥e e (6G)GN(0G)] C Y (6G); +(0)ZOG,

R<D

so K*te € (Y p(OG)s + (JOYZOEG)NZOGe CIZOG.

Appendix: Green’s theorem a la Puig

The theorem we need is the following one.

THEOREM 9. Let P be a finite p-group, let A be a P-algebra, and let i be
an idempotent in A{ . Then there is an idempotent j in A orthogonal to 8 j for
g € P\ {1} such thati = Trf (j).

The theorem proved by Puig in [18] is more general, but this version suffices
for our purposes.

In the proof of Theorem 1, the theorem is applied with P = (u)/{(v), A =
(O andi =(e—e,)f.
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PROOF. Since i ATi = (i Ai)¥ we may replace A by i Ai and therefore assume
that i = 1,. We denote by Mp(A) the £-algebra consisting of all matrices
of degree | P| with coefficients in A. It will be convenient to index rows and
columns of elements in Mp(A) by elements in P. Then Mp(A) becomes a
P-algebra over & in such a way that *m), , = *(m,-, ;) forx, y,z € P and
m € Mp(A).

For a € A, we define §(a) € Mp(A) by 8(a),, :=aifx =y =1, and
8(a),,y = Ootherwise. Thend : A — Mp(A) is a (non-unitary) monomorphism
of algebras.

For a € A, we define 6(a) := Tt} (§(a)) € Mp(A)". Since

e(a)x,y = Z(Z‘S(a))x,y = Zz(a(a)z“x,z*‘y)

zeP zeP

fora € A and x,y € P we have 8(a),, = *a if x = y, and 6(a),,, = O
otherwise. Thus 6 : A — Mp(A)” is a unitary homomorphism of algebras.

We write 1, = Trf(c) with ¢ € A and define a(a) € Mp(A) fora € A by
a(a),y = (Fc)aforx,y € P. Thena : A — Mp(A) is a homomorphism of
P-algebras since

@@a®)y = Y _a@.ab)., =Y (caCc)b = (‘c)ab = a(ab),,

zeP zeP

and

(xa(a))y,z = x(a(a)xfly‘x"z) = ,r((x"yc)a) = (yc)(xa) = a(xa)y,z

for x, y,z € P and a € A. Moreover, « is injective since

Za(a)x,l = Z("C)a =a

xeP xeP

fora € A. Finally, a(A) = a(1)Mp(A)x (1) since

(@Mma(D)),, = Y a(D)ume ().,

u,veP
= Z (Xc)mu,v(vc) = (Z mu,v(vc))
X,y

u,vepP u,veP

form e Mp(A) and x, y € P.
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For x € P, we define y(x) € Mp(A) by y(x),, = 1if z = yx, and
y(x)y,. = O otherwise. Then

V@Y @)ey =D ¥ Wiy Wy =¥ @y = Y UD),,

zeP

and
(“)’(U))x,y = u(y(v)u“x,u‘ly) = y(v)u‘lx,u’ly = y(v)x,y

foru,v,x,y € P. Since y(1) =1,y : P — UM (A)” is a homomorphism of
groups.
If m € Mp(A)? thenm, , = (m), , = *(M,-1, ,,) for x, y,z € P. Thus

(Ze<m1,z)y<z)) =Y 0(m1)en¥ (Duy
x,y

zepP , u,zeP
= Ze(ml,u"y)x,u
ueP
= X(ml,x"y) =My,

forx,y € P,som =Y, ,0(m;,)y(z) and Mp(A)* = 3 _,0(A)y(2).
Moreover,

()’(X)O(a))’(x_l))y,z = Z y(x)y.ue(a)u,vy(x_l)v,z = O(a)yx,zx = e(xa)y,z

u,veP

forx,y,z € Panda € A, so y(x)8(a) = 68(a)y(x) fora € Aand x € P.
Suppose that er p0(a)y(x) =0 wherea, € A forx € P. Then

0= Z(e(ax)y(X))l,y = Z G(GX)IVZ}/(X)Z'), = Zg(ax)lvyx_, =a,

x€eP x,zeP xepP

for y € P, so Mp(A)" = @, 0(A)y(2) is isomorphic to the skew group
algebra A P of P over A. The usual proof of Green’s indecomposability theorem
(see [10] or the proposition below) shows that any primitive idempotent in A
stays primitive in A P. Let us therefore write 1, = e; + - - - + e, with pairwise
orthogonal primitive idempotents e, ...,e, in A. Then we have ly,4 =
A(1) = O(e;) + --- + O(e,) with pairwise orthogonal primitive idempotents
B(ey),...,0(e,) inMp(A)F. Since a(1) is an idempotent in Mp(A)? there are a
subset J of {1, ..., r} and a unit w in Mp(A)” such that a(1) = Y i 0(e))
(see 2.10 in [13], for example). Then j' := “’(Zie, 8(e;)) is an idempotent in
M;(A) orthogonal to ¢ j' for g € P\ {1} such that (1) = Trf(j’); in particular,
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J € a()Mp(A)a(l) = a(A), so j' = a(j) for an idempotent j in A satisfying
the required properties.

The seemingly technical calculations of the proof are by now standard tools
in ring theory (see Cohen and Montgomery [4], for example).

It remains to prove Green’s indecomposability theorem in the following
version.

PROPOSITION 10. Let P be a finite p-group, A a P-algebra over & and AP
the corresponding skew group algebra of P over A. Then every primitive
idempotent in A remains primitive in AP.

PROOF. Let i be a primitive idempotent in A. Then / 4+ JA is a primitive
idempotentin A/JA. Since JA isa P-invariant ideal of A, it generates a nilpotent
ideal JA)(AP) = (AP)(JA) of AP such that AP/(JA)(AP) is isomorphic to
(A/JA)P, the skew group algebra of P over the P-algebra A/JA. Since it
suffices to prove that { 4+ JA is primitive in (A/JA) P, we may assume that
JA=0.

In this case A is a direct product of complete matrix algebras over F permuted
by P. If A is isomorphic to A; x A, with P-algebras A,, A, then AP is
isomorphic to A; P x A, P. Thus we may assume that A = B, x --- x B, with
complete matrix algebras By, ..., B, over [ transitively permuted by P. We
denote by Q the stabilizer of B, in P and by g, ..., g, a set of represesentatives
for the cosets g Q in P. Then the map

q
Mat(B,Q) — AP, [bj]+— Z gibijgj_l’

ij=1

is easily seen to be an isomorphism of algebras. In particular, any primitive
idempotent in B, Q remains primitive in A P. Thus we may assume that A itself
is a complete matrix algebra over [.

For g € G, there is an element u, € UA such that 2a = u,au;' fora € A,
by the Skolem-Noether thecorem. Moreover, ugu,,u;,,l € UZA = UF1, for
g,h € P, and the map (g, h) — ugu,,u;,,1 is a 2-cocycle of P with values in
UZA = UF1,. Since P is a p-group we have H*(P, UF) = 1, so we may
assume that u,u, = u,, for g, h € P. But then the map

AQrFP — AP, a®g+— auglg,
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is an isomorphism of algebras; in particular, A P /J(A P) is isomorphic to A, and
the result follows.

The result is known to hold, more generally, for crossed products instead of
skew group algebras. Essentially the same proof works in this more general
situation.

Acknowledgement

Part of the work on this paper was done while the author was visiting the
Australian National University (August—September 1991), the University of
Chicago and the University of Illinois at Chicago (October 1991). I would like
to thank these institutions, especially L. Kovécs, J. L. Alperin and P. Fong, for
their hospitality.

References

[1]  R.Brauer, ‘Zur Darstellungstheorie der Gruppen endlicher Ordnung II’, Math. Z. 72 (1959),
25-46.

[2}] M. Broué, ‘Radical, hauteurs, p-sections et blocs’, Ann. Math. 107 (1978), 89-107.

{31 G. Cliff, ‘Zero divisors and idempotents in group rings’, Canad. J. Math. 32 (1980),
596-602.

[4] M. Cohen and S. Montgomery, ‘Group-graded rings, smash products, and group actions’,
Trans. Amer. Math. Soc. 282 (1984), 237-258.

[51 C. Curtis and 1. Reiner, Methods of representation theory Vol. 11 (J. Wiley, New York,
1987).

[6] E.C.Dade, ‘On Brauer’s second main theorem’, J. Algebra 2 (1965), 299-311.

[7] L. Dornhoff, Group representation theory Part B (Marcel Dekker, New York, 1972).

[8]  W. Feit, The representation theory of finite groups (North-Holland, Amsterdam, 1982).

[9]1  D. Goldschmidt, Lectures on character theory (Publish or Perish, Berkeley, 1980).

[10] B. Huppert and N. Blackburn, Finite Groups I (Springer, Berlin, 1982).

[11] K. lizuka, ‘On Brauer’s theorem on sections in the theory of group characters’, Math. Z.
75 (1961), 299-304.

[12] B. Kiilshammer, ‘Group-theoretical descriptions of ring-theoretical invariants of group
algebras’, in: Representation theory of finite groups and finite-dimensional algebras
(Birkhiduser, Basel, 1991).

[13] , Lectures on block theory (Cambridge Univ. Press, London, 1991).

[14] P Landrock, Finite group algebras and their modules (Cambridge Univ. Press, London,
1983).

{15] H. Nagao, ‘A proof of Brauer’s theorem on generalized decomposition numbers’, Nagoya
J. Math. 22 (1963), 73-77.

https://doi.org/10.1017/51446788700034881 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700034881

[12] Central idempotents in p-adic group rings 289

[16] H. Nagao and Y. Tsushima, Representations of finite groups (Academic Press, Boston,
1989).

[17] R. Oliver, Whitehead groups of finite groups (Cambridge Univ. Press, London, 1988).

[18] L. Puig, ‘Sur un théore¢me de Green’, Math. Z. 166 (1979), 117-129.

[19] , ‘Pointed groups and construction of characters’, Math. Z. 176 (1981), 265-292.

[20] M. Taylor, Class groups of group rings (Cambridge Univ. Press, London, 1984).

Universitidt Augsburg
Augsburg
Germany

https://doi.org/10.1017/51446788700034881 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700034881

