A SEMIGROUP APPROACH TO LINEAR ALGEBRAIC GROUPS III. BUILDINGS

MOHAN S. PUTCHA

Introduction. Let K be an algebraically closed field, G = SL(3, K) the group of 3×3 matrices over K of determinant 1. Let $\mathcal{M}_3(K)$ denote the monoid of all 3×3 matrices over K. If e is an idempotent in $\mathcal{M}_3(K)$, then

$$C_G^r(e) = \{a \in G | ae = eae\},\$$
$$C_G^l(e) = \{a \in G | ea = eae\}$$

are opposite parabolic subgroups of G in the usual sense [1], [28]. However the map

$$e \rightarrow (C_G^r(e), C_G^l(e))$$

does not exhaust all pairs of opposite parabolic subgroups of G. Now consider the representation $\phi: G \to SL(6, K)$ given by

$$\phi(a) = a \oplus (a^{-1})^t.$$

Let *M* denote the Zariski closure of $K\phi(G)$ in $\mathcal{M}_6(K)$. Let *S* denote the set of zero determinant elements of *M*. Then *S* is a regular semigroup. The set of idempotents of *S*,

$$E(S) = \{ e \oplus f | e^2 = e, f^2 = f \in \mathcal{M}_3(K), \rho(e), \rho(f) \leq 1, \\ ef^t = f^t e = 0 \}.$$

Here ρ denotes rank. If $e \in E(S)$, then let

$$P(e) = \{a \in G | \phi(a)e = e\phi(a)e\},\$$

$$P^{-}(e) = \{a \in G | e\phi(a) = e\phi(a)e\}.$$

Then the map ψ given by $\psi(e) = (P(e), P^{-}(e))$ is a bijection between E(S) and all pairs of opposite parabolic subgroups of G. Furthermore if e, $f \in E(S)$, then ef = f if and only if $P(e) \subseteq P(f)$ and fe = f if and only if $P^{-}(e) \subseteq P^{-}(f)$. This example suggests that pairs of opposite parabolic subgroups of a reductive group should correspond naturally with the idempotents of a suitable regular semigroup. We will show this to be true

Received November 20, 1984. This research was partially supported by NSF Grant MCS 8025597.

in the more general setting of a Tits system with a finite Weyl group or a Tits building with a finite Weyl complex.

1. Regular semigroups. Let S be a regular semigroup, i.e., $a \in aSa$ for all $a \in S$. If $a, b \in S$, then $a \not J b$ if SaS = SbS, $a \mathcal{R} b$ if aS = bS, $a \mathcal{L} b$ if Sa = Sb, $\mathcal{H} = \mathcal{R} \cap \mathcal{L}$, $\mathcal{D} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}$. The semigroups encountered in this paper turn out to have the property that $\mathcal{J} = \mathcal{D}$. If $a \in S$, then J_a, R_a, L_a, H_a will denote the \mathcal{J} -class, \mathcal{R} -class, \mathcal{H} -class of a, respectively. If $a, b \in S$, then $J_a \ge J_b$ if $SaS \supseteq SbS$, $R_a \ge R_b$ if $aS \supseteq bS$, $L_a \ge L_b$ if $Sa \supseteq Sb$. See [2] for details. We will denote the partially ordered set S/\mathcal{J} by $\mathcal{U}(S)$. Let

$$E = E(S) = \{e \in S | e^2 = e\},\$$

If $e, f \in E$, then define $f \leq_r e$ if $ef = f, f \leq_f e$ if $fe = f, \leq f = \leq_r \cap \leq_l$, $\mathscr{R} = \leq_r \cap (\leq_r)^{-1}, \mathscr{L} = \leq_l \cap (\leq_l)^{-1}$. If $f \leq_r e$, then set $e \circ f = f$, $f \circ e = fe \in E$. If $f \leq_l e$, then set

 $f \circ e = f, e \circ f = ef \in E.$

Then the partial algebra (E, \circ) satisfies certain axioms [7, Theorem 1.1] and the resulting system is called a *regular biordered set*. This is the work of Nambooripad [7] who then goes on to show that conversely every regular biordered set (E, \circ) is isomorphic to the biordered set of idempotents of some regular semigroup. We denote the 'smallest' such semigroup by $\langle E \rangle$. The $\langle E \rangle$ is characterized by the properties of being generated by its idempotent set E and being fundamental (i.e., having no non-trivial idempotent separating congruences). See [7] for details.

A regular semigroup S is said to be an *inverse semigroup* if ef = fe for all $e, f \in E(S)$. S is said to be a *locally inverse semigroup* if eSe is an inverse semigroup for all $e \in E(S)$. By [7, Theorem 7.6], S is a locally inverse semigroup if and only if the 'sandwich set' of any two idempotents in S consists of a single idempotent. The biordered set of a locally inverse semigroup is called a *local semilattice*. Local semilattices and locally inverse semigroups have also been called pseudo-semilattices and pseudo-inverse semigroups. Local semilattices were first studied by Nambooripad [8], [9], [10]. A weaker system was studied earlier by Schein [26]. Recently there has been much interest in local semilattices and locally inverse semigroups (see for example [4]-[11], [29]). We encounter local semilattices in the following special way.

Let $\Omega = (\Omega, \leq) = (\Omega, \wedge)$ be a meet semilattice with a minimum element 0. Let \perp be a symmetric relation defined on Ω such that $0 \perp 0$. We will say that $\Omega = (\Omega, \perp)$ is a *parabolic semilattice* if the following conditions hold.

(1) $\alpha \Omega = \{\beta \in \Omega | \beta \leq \alpha\}$ is finite (and hence a lattice) for all $\alpha \in \Omega$.

(2) If γ , α_1 , α_2 , β_1 , $\beta_2 \in \Omega$, $\alpha_1 \perp \alpha_2$, $\beta_1 \perp \beta_2$, $\alpha_1 \ge \beta_1$, $\gamma \ge \alpha_2$, $\gamma \ge \beta_2$, then $\alpha_2 \ge \beta_2$.

(3) If $\alpha_1, \alpha_2, \beta_1 \in \Omega, \alpha_1 \perp \alpha_2, \alpha_1 \ge \beta_1$, then there exists $\beta_2 \in \Omega$ (unique by (2)) such that $\alpha_2 \ge \beta_2, \beta_1 \perp \beta_2$.

(4) If α , α_1 , α_2 , β , β_1 , $\beta_2 \in \Omega$, $\alpha \ge \alpha_i$, $\beta \ge \beta_i$, $\alpha_i \perp \beta_i$, i = 1, 2, then $(\alpha_1 \lor \alpha_2) \perp (\beta_1 \lor \beta_2)$.

If $\Omega = (\Omega, \bot)$ is a parabolic semilattice, then we let

$$E_{\Omega} = \{ (\alpha, \alpha') | \alpha, \alpha' \in \Omega, \alpha \perp \alpha' \}.$$

If $e = (\alpha, \alpha'), f = (\beta, \beta') \in E_{\Omega}$, then define $f \leq_r e$ if $\beta \leq \alpha, f \leq_l e$ if $\beta' \leq \alpha'$. If $f \leq_r e$, then let $ef = f, fe = (\beta, \beta^-)$ where $\beta^- \in \Omega$ is such that $\beta \perp \beta^-, \beta^- \leq \alpha'$. If $f \leq_l e$, then let

$$fe = f$$
, $ef = (\beta_1, \beta')$

where $\beta_1 \in \Omega$ is such that $\beta_1 \perp \beta'$ and $\beta_1 \leq \alpha$.

THEOREM 1.1. E_{Ω} is a local semilattice with an involution.

Proof. Clearly the map $(\alpha, \alpha') \rightarrow (\alpha', \alpha)$ is an involution of E_{Ω} . We need to show that the axioms (B1)-(B4) of [7, p. 2] are satisfied and that the sandwich set $\mathscr{S}(e, f)$ consists of a single element for any $e, f \in E_{\Omega}$. We let

$$\leq = \leq_r \cap \leq_l, \mathscr{R} = (\leq_r) \cap (\leq_r)^{-1}, \mathscr{L} = (\leq_l) \cap (\leq_l)^{-1}.$$

Let $E = E_{\Omega}$ and let

$$e = (\alpha, \alpha^{-}), f = (\beta, \beta^{-}), g = (\gamma, \gamma^{-}) \in E.$$

Suppose first that $f, g \leq_r e, g \leq_l f$. Then

 $\beta \leq \alpha, \gamma \leq \alpha, \gamma^{-} \leq \beta^{-}.$

Since $\beta \perp \beta^-$, $\gamma \perp \gamma^-$, we see that $\gamma \leq \beta$. So $g \leq f$. Now if $ge = (\gamma, \gamma')$, $fe = (\beta, \beta')$, then $\beta', \gamma' \leq \alpha^-$. Since $\gamma \leq \beta$, we see that $\gamma' \leq \beta'$. Thus $ge \leq fe$. So

(*) $f, g \leq_r e, g \leq_l f$ imply $g \leq f, ge \leq fe$.

Next assume that $g \leq_r f \leq_r e$. Then $\gamma \leq \beta \leq \alpha$. If $ge = (\gamma, \gamma')$, then $\gamma' \leq \alpha^-$. Let

$$(ge)f = (\gamma, \gamma'').$$

Then $\gamma'' \leq \beta^-$. So by definition

$$gf = (\gamma, \gamma'') = (ge)f.$$

Thus the axioms (B1)-(B32) of [7, p. 2] are satisfied. Now let $e = (\alpha, \alpha^{-}), f = (\beta, \beta^{-}) \in E$ and set $M(e, f) = \{h \in E | h \leq_r f, h \leq_l e\}.$

Then $M(e, f) \subseteq \beta \Omega \times \alpha^{-} \Omega$ is finite. Let

 $M(e, f) = \{h_1, \ldots, h_k\}$ $h_i = (\gamma_i, \gamma_i), i = 1, \ldots, k.$

Then $\gamma_i \leq \beta, \gamma_i^- \leq \alpha^-, i = 1, \dots, k$. So

$$\gamma = \gamma_1 \vee \ldots \vee \gamma_k \perp \gamma^- = \gamma_1^- \vee \ldots \vee \gamma_k^-.$$

Clearly

$$h = (\gamma, \gamma^{-}) \in M(e, f), \quad h_i \leq h, i = 1, \dots, k.$$

It follows that the sandwich set $\mathscr{S}(e, f) = \{h\}$. Now let $g \in E$ and suppose that $e, f \leq_r g$. Then $h \leq_r g, h \leq_l e$. So by (*), $h \leq e, hg \leq eg$. Also,

 $hg \Re h \leq_r f \Re fg$

whereby

$$hg \leq fg$$

Hence $hg \in M(eg, fg)$. Let

 $\mathscr{S}(eg, fg) = \{h'\}.$

We claim that h' = hg. Now

 $h\mathcal{R}hg \leq h' \leq_r fg\mathcal{R}f \leq_r g.$

So $h' \leq_r g$. Also $h' \leq_l eg \leq g$. So by (*), $h' \leq eg \Re e$. So $h' \leq_r e$ and $h'e \leq e$. Now

 $h'e\mathcal{R}h' \leq_r f.$

So

 $h'e \leq_r f$ and $h'e \in M(e, f)$.

Hence $h'e \leq h$. So $h'\mathcal{R}h'e \leq h$ whereby $h' \leq_r h$. Hence $h'\mathcal{R}h\mathcal{R}hg$. Now $hg \leq eg, h' \leq eg$. So by the dual of (*), h' = hg. Thus

 $\mathscr{S}(eg, fg) = \mathscr{S}(e, f)g$ whenever $e, f \leq_r g$.

Hence axiom (B4) of [7, p. 2] is also satisfied. It follows that E is a local semilattice.

2. Buildings. By a *complex* is meant a semilattice $\Omega = (\Omega, \leq) = (\Omega, \wedge)$ with a minimum element 0 such that for all $\alpha \in \Omega$,

 $\alpha\Omega = \{\beta \in \Omega | \beta \leq \alpha\}$

is a finite Boolean lattice. The minimal elements of $\Omega \setminus \{0\}$ are called *vertices*. If $\alpha \in \Omega$, then the *rank* of α is defined to be the number of

vertices in $\alpha\Omega$. The maximum elements of Ω are called *chambers*. We will assume that all chambers are of the same rank d and that every element of Ω is \leq a chamber. We define the *rank* of Ω to be d. Let α , α' be chambers. We will assume that Ω is *connected* i.e., there exist chambers $\alpha = \alpha_0$, $\alpha_1, \ldots, \alpha_m = \alpha'$ such that $\alpha_i \wedge \alpha_{i+1}$ has rank d - 1 for $i = 0, \ldots, m - 1$. If m is minimal, then we set

 $dist(\alpha, \alpha') = m.$

An ideal of Ω is said to be a *subcomplex*. Ω is said to be *thick* if every element of rank d - 1 is less than at least three chambers. Ω is said to be *thin* if every element of rank d - 1 is less than exactly two chambers.

A (Tits) building is a pair $\Delta = (\Delta, \mathscr{A})$ where Δ is a complex and \mathscr{A} is a family of finite subcomplexes called *apartments* such that

(1) Δ is thick.

(2) Each apartment Σ is thin.

(3) Any two elements of Δ belong to an apartment.

(4) If $\Sigma, \Sigma' \in \mathscr{A}$ and if $\alpha, \beta \in \Sigma \cap \Sigma'$, then there exists an isomorphism $\phi: \Sigma \to \Sigma'$ such that

$$\phi(\gamma) = \gamma$$
 for all $\gamma \in \alpha \Delta \cap \beta \Delta$.

We refer to [27, Chapter 3, Section 3], [28, Section 3] for details. We will follow Tits [28]. Let $\Sigma \in \mathcal{A}, \alpha$ a chamber in Σ . Then there exists a unique retraction $\rho_{\alpha}: \Sigma \to \alpha \Sigma$, i.e., (i) $\rho_{\alpha}(\beta) = \beta$ for all $\beta \in \alpha \Sigma$ and (ii) ρ_{α} restricted to $\alpha' \Sigma$ is an isomorphism for any chamber $\alpha' \in \Sigma$. If $\beta, \beta' \in \Sigma$, then β , β' are said to be of the same type, type (β) = type (β'), if $\rho_{\alpha}(\beta) = \rho_{\alpha}(\beta')$. This concept is independent of the choice of the chamber α . If $\alpha \in \Sigma$ is a chamber, then there exists a unique $\alpha' \in \Sigma$ called the opposite of α in Σ such that dist (α, α') is maximum. There exists a unique automorphism $\mu: \Sigma \to \Sigma$ such that for any chamber α of Σ , α and $\mu(\alpha)$ are opposite. We then define β and $\mu(\beta)$ to be *opposite* for any $\beta \in \Sigma$. Now let $\beta, \beta' \in \Delta$. Then we define β, β' to be of the same type, type $(\beta) =$ type (β'), if they are of the same type in some (and hence every) apartment containing them. β , β' are defined to be *opposite* ($\beta \perp \beta'$) if they are opposite in some (and hence every) apartment containing them. If α , α' , β , $\beta' \in \Delta$ and if $\alpha \perp \alpha', \beta \perp \beta'$, then type $(\alpha) =$ type (β) if and only if type $(\alpha') = \text{type}(\beta')$. Let $\alpha, \beta \in \Delta$. Then by [28, Proposition 3.30], type $(\alpha) =$ type (β) if and only if there exists $\gamma \in \Delta$ with $\alpha \perp \gamma$, $\beta \perp \gamma$. If Δ is of rank 1, then any two non-zero elements have the same type and any two non-zero unequal elements are opposite.

It is easily seen that (Δ, \perp) satisfies the axioms of a parabolic semilattice, defined in Section 1. Hence we can construct the local semilattice E_{Δ} by Theorem 1.1. If

$$e = (\alpha, \alpha'), f = (\beta, \beta') \in E_{\Lambda},$$

then we define e, f to be of the same type $(e \sim f)$ if type $(\alpha) =$ type (β) or equivalently type $(\alpha') =$ type (β') . It follows from the above that

 $\sim = \mathscr{R} \circ \mathscr{L} \circ \mathscr{R} = \mathscr{L} \circ \mathscr{R} \circ \mathscr{L}.$

In particular if $e, f_1, f_2 \in E_{\Delta}, e \geq f_i, i = 1, 2$ and if $f_1 \sim f_2$, then $f_1 = f_2$. Thus by [9, Corollary 1.5], $\prec E \succ$ has the property that $e \prec E \succ e$ is a semilattice for all $e \in E$. Also $\mathscr{U}(\prec E \succ) \cong E/\sim$ is clearly a Boolean lattice. We have shown,

THEOREM 2.1. (i) E_{Δ} is a local semilattice. (ii) $e \prec E_{\Delta} \succ e$ is a semilattice for all $e \in E_{\Delta}$. (iii) $\sim = \Re \circ \mathscr{L} \circ \Re = \mathscr{L} \circ \Re \circ \mathscr{L}$ on E_{Δ} and $\mathscr{U}(\prec E_{\Delta} \succ) \cong E_{\Delta}/\sim$ is a finite Boolean lattice.

Let $\alpha \in \Delta$ be a chamber, $\beta \in \Delta$. Then by [28, Section 3.19] there exists a unique chamber $\alpha' \in \Delta$, $\alpha' \geq \beta$ such that $dist(\alpha, \alpha')$ is minimum. α' is denoted by $proj_{\beta}(\alpha)$. Let $\alpha, \alpha' \in \Delta$ be chambers, $\beta, \beta' \in \Delta$ be of rank d - 1. Suppose $\alpha > \beta, \alpha' > \beta', \beta \perp \beta'$. Then by [28, Proposition 3.29] $\alpha \perp \alpha'$ if and only if $proj_{\beta}\alpha' \neq \alpha$. Let $E = E_{\Delta}$, E_{max} be the set of maximum elements of (E, \leq) .

LEMMA 2.2. Let $e = (\alpha, \alpha^{-}) \in E_{\max}$, $h = (\beta, \beta^{-}) \in E$, e covers h. Then there exists a unique $f^* = f^*(e, h) \in E_{\max}$ such that $ef^* = f^*e = h$ in $\prec E \succ$. Moreover

 $f^* = (\operatorname{proj}_{\beta}(\alpha^{-}), \operatorname{proj}_{\beta^{-}}(\alpha)).$

Let $f \in E_{\max}$, $f \ge h$. Then ef = h if and only if $f \mathscr{R} f^*$, and fe = h if and only if $f \mathscr{L} f^*$.

Proof. Since $\alpha \perp \alpha^{-}$, we see that

 $\operatorname{proj}_{\beta^{-}}(\alpha) \neq \alpha^{-}.$

But by [28, Theorem 3.28],

 $\alpha^- = \operatorname{proj}_{\beta^-} \operatorname{proj}_{\beta}(\alpha^-).$

Hence

 $\operatorname{proj}_{\beta}(\alpha^{-}) \perp \operatorname{proj}_{\beta^{-}}(\alpha).$

So

$$f^* = (\operatorname{proj}_{\beta}(\alpha^-), \operatorname{proj}_{\beta^-}(\alpha)) \in E_{\max}.$$

Let

$$f = (\gamma, \gamma^{-}) \in E_{\max}, f > h.$$

Then $\gamma > \beta$, $\gamma^- > \beta^-$. Suppose $f \not = f^*$. Then $\gamma \neq \operatorname{proj}_{\beta}(\alpha^-)$. So $\gamma \perp \alpha^-$. Hence

$$e = (\alpha, \alpha^{-}) \mathscr{L}(\gamma, \alpha^{-}) \mathscr{R}(\gamma, \gamma^{-}) = f.$$

Hence effe in $\prec E \succ$. Thus $ef \neq h$. Next suppose that $f \mathscr{R} f^*$. Then

$$\gamma = \operatorname{proj}_{\beta} \alpha^{-}$$
.

So γ is not opposite to α^- . It follows that there is no $e_1 \in E$ with $e\mathcal{L}e_1\mathcal{R}f$. So effe. Now

efh = hef = h.

Since J_e covers J_f , $ef \mathcal{J}h$. It follows that ef = h. This proves the lemma.

If $e, f \in E_{\text{max}}$, then define $e\delta f$ if in $\prec E \succ$, ef = fe is covered by e. Let δ^* denote the transitive closure of δ . Let

$$[e] = \{h \in E | h \leq f, f \delta^* e \text{ for some } f \in E_{\max} \}.$$

Now let

 $e = (\alpha, \alpha^{-}) \in E_{\max}.$

Let Σ be the unique apartment of Δ containing α , α^- . If $\beta \in \Sigma$, then let β^- denote the unique opposite of β in Σ . Let

 $\hat{\Sigma} = \{ (\beta, \beta^{-}) | \beta \in \Sigma \}.$

By Lemma 2.2, $[e] = \hat{\Sigma}$. So

 $([e], \leq) \simeq \Sigma.$

Let $\lambda: E \to E/\mathscr{R}$ denote the natural map. Let

 $\mathscr{A}' = \{\lambda([e]) | e \in E_{\max}\}.$

We then clearly have,

THEOREM 2.3. $(E/\mathcal{R}, \mathscr{A}')$ is a building isomorphic to (Δ, \mathscr{A}) .

Let Aut**E* denote the group of all automorphisms ϕ of *E* such that $e \sim e\phi$ for all $e \in E$. Let Aut* $\prec E \succ$ denote the group of all automorphisms of the semigroup $\prec E \succ$ such that a $\mathcal{J}a\phi$ for all $a \in \prec E \succ$. Let Aut* Δ denote the group of all automorphisms ϕ of Δ such that type (α) = type ($\alpha\phi$) for all $\alpha \in \Delta$.

THEOREM 2.4. Aut* $E_{\Lambda} \cong \operatorname{Aut}^* \prec E_{\Lambda} \succ \cong \operatorname{Aut}^* \Delta$.

Proof. That Aut* $E \cong$ Aut* $\prec E \succ$ follows from [7]. So we need to show that

 $\operatorname{Aut}^*E \cong \operatorname{Aut}^*\Delta.$

First let $\phi \in \operatorname{Aut}^*\Delta$. Then $\overline{\phi} \in \operatorname{Aut}^*E$ where

 $(\alpha, \alpha')\overline{\phi} = (\alpha\phi, \alpha'\phi).$

Conversely let $\psi \in \text{Aut}^*E$. Then for all $e, e' \in E$, $e\mathcal{R}e'$ if and only if $e\psi\mathcal{R}e'\psi$ and $e\mathcal{L}e'$ if and only if $e\psi\mathcal{L}e'\psi$. It follows that there exist ϕ_1 , $\phi_2 \in \text{Aut}^*\Delta$ such that

$$(\alpha, \beta)\psi = (\alpha\phi_1, \beta\phi_2)$$
 for all $(\alpha, \beta) \in E$.

We claim that $\phi_1 = \phi_2$. For suppose $\alpha \phi_1 \neq \alpha \phi_2$ for some $\alpha \in \Delta$. Then $\alpha \phi_1 \phi_2^{-1} \neq \alpha$. Now α , $\alpha \phi_1 \phi_2^{-1} \in \Sigma$ for some apartment Σ . So $\alpha \perp \beta$ for a unique $\beta \in \Sigma$. Then $\alpha \phi_1 \phi_2^{-1}$ is not opposite to β . So $\alpha \phi_1$ is not opposite to $\beta \phi_2$. Thus $(\alpha, \beta) \in E$, $(\alpha \phi_1, \beta \phi_2) \notin E$. But

 $(\alpha\phi_1, \beta\phi_2) = (\alpha, \beta)\psi \in E,$

a contradiction. Hence $\phi_1 = \phi_2$. It follows that

Aut* $E \cong$ Aut* Δ .

This proves the theorem.

Many important classes of groups, including reductive algebraic groups and finite simple groups of Lie type, admit what has come to be called a Tits system (see [27, Section 3.3], [3, Section 29]). A *Tits system* is a quadruple (G, B, N, S) where G is a group, B, N are subgroups of G generating G, $T = B \cap N \triangleleft N$, S a generating set of order 2 elements of W = N/T such that

(1) $\rho B \rho \neq B$ for any $\rho \in S$

(2) $\sigma B \rho \subseteq B \sigma B \cup B \sigma \rho B$ for all $\sigma \in W$, $\rho \in S$.

We will assume that the Weyl group W is finite. If $I \subseteq S$, then let

$$W_I = \langle I \rangle, P_I = B W_I B.$$

The P'_{IS} are exactly the subgroups of G containing B. For any $x \in G$, I, $I' \subseteq S$, we have by [28, Section 3.2.3] that $x^{-1}P_{I}x \subseteq P_{I'}$, if and only if $x \in P_{I'}$, $I \subseteq I'$. Thus for $x, y \in G$,

$$x^{-1}P_I x \subseteq y^{-1}P_{I'} y$$

if and only if $P_I x \subseteq P_{I'} y$. Let

$$\Sigma = \{ \sigma^{-1} P_I \sigma | \sigma \in W, I \subseteq S \}.$$

Let

$$\mathscr{A} = \{ x^{-1} \Sigma x | x \in G \}.$$

Let

$$\Delta = \{ x^{-1} P_I x | x \in G, I \subseteq S \}.$$

If $P_1, P_2 \in \Delta$, then define $P_1 \ge P_2$ if $P_1 \subseteq P_2$. Then by [28, Theorem 3.2.6], $\Delta = \Delta_G = (\Delta, \mathscr{A})$ is a building which we call the *building of G*. The elements of Δ are called *parabolic subgroups* of *G*. Two parabolic subgroups are of the same *type* if and only if they are conjugate. The

conjugates of B are called *Borel subgroups*. We will call $E_G = E_{\Delta}$ the *local semilattice of G*.

3. Algebraic monoids. Let K be an algebraically closed field and $\mathcal{M}_n(K)$ the monoid of all $n \times n$ matrices over K. A (Zariski) closed and irreducible submonoid of $\mathcal{M}_n(K)$ will be called *connected*. Let M be a connected monoid with zero and group of units G. Then by [16] and [21], G is a reductive group if and only if M is a regular semigroup. The theory of connected regular monoids with zero is being developed by the author [12]-[20] and Renner [21]-[24].

Let *M* be a connected regular monoid with zero and group of units *G*. Let E = E(M) denote the biordered set of idempotents of *M*. For the purposes of this section, we need only consider the weaker system (E, \leq_r, \leq_l) where $f \leq_r e$ if ef = f, $f \leq_l e$ if fe = f. As usual,

$$\mathscr{R} = \leq_r \cap (\leq_r)^{-1}, \mathscr{L} = \leq_l \cap (\leq_l)^{-1} \text{ and } \leq \leq_r \cap \leq_l.$$

We wish to show that E_G (and hence the building Δ_G of G) is completely determined by E. The length of (any) maximal chain in (E, \leq) is called the *rank* of E. If $e, f \in E$, we define $e \sim f$ if there exist $e', f' \in E$ such that

eRe'Lf'Rf.

By [13, Lemma 1.12], $e \sim f$ if and only if $e \mathscr{J} f$ in M. If $e, f \in E$, then $J_e \geq J_f$ if and only if $e \geq f'$ for some $f' \in E$ with $f \sim f'$. Thus the finite lattice $\mathscr{U} = \mathscr{U}(M) \cong E/\sim$ is completely determined by E.

LEMMA 3.1. Let $e, h, f \in E$ such that e > h > f, e covers h covers f. Then there exists a unique $h^* = h^*(e, f) \in E$ such that $e > h^* > f$ and $hh^* = h^*h = f$. Let $h_1 \in E$, $e > h_1 > f$. Then $h_1 \neq h^*$ if and only if there exists $h_2 \in E$, $e > h_2 > f$ such that either $h \Re h_2 \mathscr{L} h_1$ or $h \mathscr{L} h_2 \Re h_1$. In particular h^* is determined by E.

Proof. By general considerations [14, Theorems 3, 11], we reduce to the case when e = 1, f = 0. If G is a torus, then |E| = 4, and the lemma is trivial. Otherwise dim M = 4 and the width of h is 2. We are then done by [18, Theorem 13].

A useful concept in the theory of linear algebraic monoids is that of cross-section lattices [15], [17], [19]. A subset Λ of E is a cross-section lattice if (i) for all $e \in E$ there exists a unique $e' \in \Lambda$ such that $e \sim e'$ and (ii) for all $e, f \in \Lambda$, $e \ge f$ if and only if $J_e \ge J_f$. If $\Gamma \subseteq \Lambda$, then we let

$$C_G^r(\Gamma) = \{a \in G | ae = eae \text{ for all } e \in \Gamma\},\$$

$$C_G^l(\Gamma) = \{a \in G | ea = eae \text{ for all } e \in \Gamma\},\$$

$$C_G(\Gamma) = \{a \in G | ae = ea \text{ for all } e \in \Gamma\}.$$

Fix a cross-section lattice Λ of E. Let

$$B = C_G^r(\Lambda), B^- = C_G^l(\Lambda), T = C_G(\Lambda).$$

By [17, Theorem 10], [19, Theorem 1.2], B, B^- are opposite Borel subgroups of G with respect to the maximal torus T. Any parabolic subgroup P of G containing B is of the form $P = C'_G(\Gamma)$ for some chain $\Gamma \subseteq \Lambda$. Moreover $P^- = C'_G(\Gamma)$ is the parabolic subgroup G opposite to Pwith respect to T. See [18, Theorem 4], [19, Theorem 2.7]. Let $[\Lambda]$ denote the smallest subset of E containing Λ such that for all $e, h, f \in [\Lambda]$ with e covering h covering f in (E, \leq) , we have $h^*(e, f) \in [\Lambda]$ where $h^*(e, f)$ is as in Lemma 3.1. Since $E(\overline{T})$ is a finite relatively complemented lattice, we see that $[\Lambda] = E(\overline{T})$. The point here is that $[\Lambda]$ is determined by E. Clearly

$$\mathscr{E} = \mathscr{E}_{\Lambda} = ([\Lambda], \leq, \sim)$$

is the \mathscr{E} -structure of M studied by the author [15, Section 3]. In particular by [15, Theorem 3.9], the Weyl group $W = N_G(T)/T$ is recovered from \mathscr{E} as the group of all permutations σ of [Λ] such that (i) $e \leq f$ if and only if $e^{\sigma} \leq f^{\sigma}$ for any $e, f \in [\Lambda]$, and (ii) $e \sim e^{\sigma}$ for all $e \in [\Lambda]$. Let

 $S_{\Lambda} = \{ \sigma \in W | \sigma \neq 1, \sigma^2 = 1, \}$

 σ fixes a chain of length rank E - 1 in Λ .

By [19, Corollary 2.8], S_{Λ} is just the set of simple reflections with respect to the Borel subgroup *B* and maximal torus *T*. Let $I \subseteq S_{\Lambda}$, W_I the subgroup of *W* generated by *I*. Then by [3, Theorem 29.3], $P_I = BW_IB$ is the (unique) parabolic subgroup of *G* containing *B* and having W_I as its Weyl group. We let

$$\Lambda_I = \{ e \in \Lambda | e^{\sigma} = e \text{ for all } \sigma \in I \},\$$

$$\mathscr{U}_I = \{J_e | e \in \Lambda_I\}.$$

By [19, Theorem 2.7], $P_I = C_G^r(\Gamma)$ for some chain $\Gamma \subseteq \Lambda$. By [15, Theorem 2.3], $\Gamma \subseteq \Lambda_I$. Clearly

 $B \subseteq C_G^r(\Lambda_I) \subseteq C_G^r(\Gamma) = P_I$

and W_I is contained in the Weyl group of $C_G^r(\Lambda_I)$. It follows that

 $P_I = C_G^r(\Lambda_I).$

Similarly

$$P_I^- = B^- W_I B^- = C_G^l(\Lambda_I).$$

Let

$$\mathscr{U}^* = \{ \mathscr{U}_I | I \subseteq S_{\Lambda} \}.$$

If $I, I' \subseteq S_{\Lambda}$, then

https://doi.org/10.4153/CJM-1986-039-1 Published online by Cambridge University Press

760

$$\mathscr{U}_{I} \cap \mathscr{U}_{I'} = \mathscr{U}_{I \cup I'}.$$

Also $I \subseteq I'$ if and only if $\mathscr{U}_{I'} \subseteq \mathscr{U}_{I}$. Note also that \mathscr{U}^* is a family of sublattices of \mathscr{U} . Since any two cross-section lattices of E are conjugate by [17, Theorems 10, 12], we see that \mathscr{U}^* is independent of the particular choice of the cross-section lattice Λ .

If $\mathscr{V} \in \mathscr{U}^*$ and if Λ is any cross-section lattice of E, then we let

$$\Lambda_{\mathscr{V}} = \{ e \in \Lambda | J_e \in \mathscr{V} \}.$$

Let

 $\hat{E} = \{\Lambda_{\mathscr{V}} | \Lambda \text{ is a cross-section lattice of } E, \, \mathscr{V} \in \, \mathscr{U}^* \}.$

If $A, A' \in \hat{E}$, then define $A \leq A'$ if for all $e \in A$ there exists (necessarily unique) $e' \in A'$ such that $e\mathcal{R}e'$. Similarly we define $A \leq A'$ if for all $e \in A$, there exists $e' \in A'$ such that $e\mathcal{L}e'$. As usual we let

$$\leq = \leq_r \cap \leq_l, \mathscr{R} = \leq_r \cap (\leq_r)^{-1}, \mathscr{L} = \leq_l \cap (\leq_l)^{-1}.$$

If $A \in \hat{E}$, then we define

 $type(A) = \{J_e | e \in A\} \in \mathscr{U}^*.$

Let $A, A' \in \hat{E}, A \leq_r A'$. Then type $(A) \subseteq$ type A'. We define

$$A'A = A$$
, $AA' = \{f \in A' | J_f \in \text{type}(A)\}$.

Similarly if $A \leq A'$, we define

$$AA' = A, A'A = \{ f \in A' | J_f \in \text{type}(A) \}.$$

Note that $A \leq A'$ if and only if $A \subseteq A'$. Define

 $\theta: \hat{E} \to E_G$ as $\theta(A) = (C_G^r(A), C_G^l(A)).$

THEOREM 3.2. \hat{E} is a local semilattice and $\theta: \hat{E} \cong E_G$ is a type preserving isomorphism.

Proof. It is clear from the preceding discussion that θ is a surjection. Let $A, A' \in \hat{E}$. Suppose $A \leq_r A'$. Then $A \subseteq \Lambda, A' \subseteq \Lambda'$ for some cross-section lattices Λ, Λ' . By [17], $x\Lambda x^{-1} = \Lambda'$ for some $x \in G$. Since type $(A) \subseteq$ type (A'), we see that $xAx^{-1} \subseteq A'$. Thus

 $xex^{-1}\Re e$ for all $e \in A$.

Hence

xe = exe for all $e \in A$ and $x \in C'_G(A)$.

Thus

$$C_{C}^{r}(A') \subseteq C_{C}^{r}(xAx^{-1}) = xC_{C}^{r}(A)x^{-1} = C_{C}^{r}(A).$$

Thus $\theta(A) \leq_r \theta(A')$. Clearly $\theta(A')\theta(A) = \theta(A)$. Since $A\mathcal{R}AA' \subseteq A'$, we have

$$\theta(AA') = (C_G^r(A), C_G^l(AA')), C_G^l(A') \subseteq C_G^l(AA').$$

It follows that

 $\theta(A)\theta(A') = \theta(AA').$

Next assume that $A, A' \in \hat{E}, \theta(A) \leq_r \theta(A')$. Let $\mathscr{V} =$ type $(A), \mathscr{V}' =$ type A'. Now $A \subseteq \Lambda, A' \subseteq \Lambda'$ for some cross-section lattices Λ, Λ' . So $A = \Lambda_{\mathscr{V}}, A' = \Lambda'_{\mathscr{V}'}$. Now $x\Lambda x^{-1} = \Lambda'$ for some $x \in G$. So

$$xC_G^r(\Lambda_{\mathscr{V}})x^{-1} = C_G^r(\Lambda'_{\mathscr{V}}) = C_G^r(A') \subseteq C_G^r(A) = C_G^r(\Lambda_{\mathscr{V}}).$$

By [28, Section 3.2.3], $x \in C'_G(\Lambda_{\mathscr{V}})$ and $\mathscr{V} \subseteq \mathscr{V}'$. So for all $e \in \Lambda_{\mathscr{V}}$,

 $e\Re xex^{-1} \in \Lambda'_{\mathscr{V}} \subseteq \Lambda'_{\mathscr{V}'}.$

Hence

$$A = \Lambda_{\mathscr{V}} \leq_r \Lambda'_{\mathscr{V}'} = A'.$$

The dual statements concerning \leq_l are similarly proved. In particular for $A, A' \in \hat{E}, \theta(A) = \theta(A')$ implies $A \leq A' \leq A$. Thus θ is an isomorphism. Let $A, A \in \hat{E}$,

type (A) = type $(A') = \mathscr{V}$.

Let $A \subseteq \Lambda$, $A' \subseteq \Lambda'$ where Λ , Λ' are cross-section lattices. Then $A = \Lambda_{\gamma\gamma}$, $A' = \Lambda'_{\gamma\gamma}$ Now $x^{-1}\Lambda x = \Lambda'$ for some $x \in G$. So

$$x^{-1}Ax = A'$$
 and $x^{-1}C'_{G}(A)x = C'_{G}(A')$.

So $\theta(A)$, $\theta(A')$ are of the same type. Assume conversely that $A, A' \in \hat{E}$ such that $\theta(A), \theta(A')$ have the same type. So

 $x^{-1}C_G^r(A)x = C_G^r(A')$ for some $x \in G$.

Thus

 $\theta(x^{-1}Ax)\mathcal{R}\theta(A').$

Hence by the above, $x^{-1}Ax\mathcal{R}A'$. So

type
$$(A) =$$
 type $(x^{-1}Ax) =$ type (A') .

This proves the theorem.

If $A, A' \in \hat{E}$, then define $A \sim A'$ if type (A) = type (A'). Then we have by Theorems 2.1, 3.2,

COROLLARY 3.3. In \hat{E} , $\sim = \mathscr{R} \circ \mathscr{L} \circ \mathscr{R} = \mathscr{L} \circ \mathscr{R} \circ \mathscr{L}$.

Consider the natural map $\xi: \hat{E} \to \hat{E}/\mathscr{R}$. If Λ is a cross-section lattice of E, then let

$$\Sigma_{\Lambda} = \{\Lambda_{\mathscr{V}} | \mathscr{V} \in \mathscr{U}^* \}.$$

Let

 $\mathscr{A}' = \{\xi(\Sigma_{\Lambda}) | \Lambda \text{ is cross-section lattice of } E\}.$

Then we have,

COROLLARY 3.4. $(\hat{E}/\mathcal{R}, \mathcal{A}')$ is a building isomorphic to Δ_G .

Aut**E* is the group of all permutations ϕ of *E* such that (i) $f \leq_r e$ if and only if $f\phi \leq_r e\phi$ for all $e, f \in E$, (ii) $f \leq_l e$ if and only if $f\phi \leq_l e\phi$ for all $e, f \in E$, and (iii) $e \sim e\phi$ for all $e \in E$. Aut* \hat{E} is the group of all permutations ϕ of \hat{E} such that (i) $A \leq_r A'$ if and only if $A\phi \leq_r A'\phi$ for all *A*, $A' \in \hat{E}$, (ii) $A \leq_l A'$ if and only if $A\phi \leq_l A'\phi$ for all *A*, $A' \in \hat{E}$, and (iii) type (*A*) = type ($A\phi$) for all $A \in \hat{E}$.

THEOREM 3.5. Aut* $E \cong \operatorname{Aut}^* \hat{E} \cong \operatorname{Aut}^* E_G \cong \operatorname{Aut}^* \Delta_G$.

Proof. That $\operatorname{Aut}^* \hat{E} \cong \operatorname{Aut}^* E_G \cong \operatorname{Aut}^* \Delta_G$ follows from Theorems 2.4, 3.2. So we need to show that $\operatorname{Aut}^* E \cong \operatorname{Aut}^* \hat{E}$. Let $\psi \in \operatorname{Aut}^* E$. Define $\hat{\psi}: \hat{E} \to \hat{E}$ as

$$A\hat{\psi} = \{e\psi|e \in A\} \in \hat{E}.$$

It is routinely verified that $\hat{\psi} \in \operatorname{Aut}^* \hat{E}$ and that the map $\psi \to \hat{\psi}$ is a homomorphism. Now let $\phi \in \operatorname{Aut}^* \hat{E}$, $e \in E$. Let $\mathscr{U}(e)$ denote the smallest element of \mathscr{U}^* containing J_e . Let Λ be a cross-section lattice of E with $e \in \Lambda$. Let

$$I = \{ \sigma \in S_{\Lambda} | e^{\sigma} = e \}.$$

Clearly

$$e \in \Lambda_I = \Lambda_{\mathscr{U}(e)}.$$

If $B = C'_G(\Lambda)$ then

$$C_G^r(e) = BW_I B = C_G^r(\Lambda_I) = C_G^r(\Lambda_{\mathcal{U}(e)}).$$

Similarly

$$C_G^l(e) = C_G^l(\Lambda_{\mathscr{U}(e)}).$$

If Λ' is another cross-section lattice with $e \in \Lambda'$, then

$$(C_G^r(\Lambda'_{\mathscr{U}(e)}), C_G^l(\Lambda'_{\mathscr{U}(e)})) = (C_G^r(e), C_G^l(e))$$
$$= (C_G^r(\Lambda_{\mathscr{U}(e)}), C_G^l(\Lambda_{\mathscr{U}(e)})).$$

By Theorem 3.2,

 $\Lambda_{\mathscr{U}(e)} = \Lambda'_{\mathscr{U}(e)}.$

Hence $\Lambda_{\mathscr{U}(e)}$ is independent of the choice of the cross-section lattice Λ containing *e*. Let

$$\Gamma_e = \Lambda_{\mathscr{U}(e)} \in \widehat{E}.$$

Now

type $\Gamma_e = \text{type } \Gamma_e \phi$.

Hence there exists a unique $e\overline{\phi} \in \Gamma_e \phi$ with $e \sim e\overline{\phi}$. Clearly

$$(e\overline{\phi})\phi^{-1} = e.$$

Hence $\overline{\phi}: E \to E$ is a bijection. Let $e, f \in E$. Suppose $e\mathcal{R}f$. Then by [12, Theorems 1, 9], $C_G^r(e) = C_G^r(f)$. Hence

 $C_G^r(\Gamma_e) = C_G^r(\Gamma_f).$

So by Theorem 3.2, $\Gamma_e \mathscr{R} \Gamma_f$. Hence

 $\Gamma_{\rho}\phi \mathscr{R}\Gamma_{f}\phi.$

So $e\overline{\phi}\mathscr{R}f\overline{\phi}$. Next assume that $e \ge f$. Then by [15, Theorem 6.2], there exists a cross-section lattice Λ of E such that $e, f \in \Lambda$. Since $\Gamma_e \le \Lambda$, we have

 $e\overline{\phi} \in \Gamma_e \phi \leq \Lambda \phi.$

So $e\overline{\phi} \in \Lambda\phi$. Similarly $f\overline{\phi} \in \Lambda\phi$. Since $e \sim e\overline{\phi}$, $f \sim f\overline{\phi}$, we see that $e\overline{\phi} \ge f\overline{\phi}$. Next suppose that $f \le_r e$. Then for some $f' \in E$, $f\mathscr{R}f' \le e$. So

 $f\bar{\phi}\mathcal{R}f'\bar{\phi} \leq e\bar{\phi}.$

Hence $f\bar{\phi} \leq_r e\bar{\phi}$. Conversely if $f\bar{\phi} \leq_r e\bar{\phi}$, then

$$f = (f\bar{\phi})\overline{\phi^{-1}} \leq_r (e\bar{\phi})\overline{\phi^{-1}} = e.$$

Similarly $f \leq_l e$ if and only if

$$f\overline{\phi} \leq l e\overline{\phi}.$$

Hence $\overline{\phi} \in \text{Aut}^*E$. Let Λ be a cross-section lattice of E. Then clearly

 $\Lambda \phi = \{ e\overline{\phi} | e \in \Lambda \}.$

Let $\mathscr{V} \in \mathscr{U}^*$. Then $\Lambda_{\mathscr{V}} \phi \leq \Lambda \phi$, type $(\Lambda_{\mathscr{V}} \phi) = \mathscr{V}$. So

 $\Lambda_{\mathscr{V}}\phi = \{e\overline{\phi}|e \in \Lambda_{\mathscr{V}}\}.$

Thus for all $A \in \hat{E}$,

 $A\phi = \{e\overline{\phi}|e \in A\}.$

Hence the maps $\phi \to \overline{\phi}$, $\psi \to \hat{\psi}$ are inverses of each other. This proves the theorem.

Let *R* denote the radical of *G*. Then $G = RG_1 \dots G_m$, where G_1, \dots, G_m are simple algebraic groups, $(G_i, G_j) = 1$ for $i \neq j$ (see [3, Theorem 27.5]). Let C_i denote the center of $G_i, G'_i = G_i/C_i$. Then

$$\Delta_{G_i} \cong \Delta_{G'_i}$$

If the rank of $G_i \ge 2$, then by a theorem of Tits [28, Corollaries 5.9, 5.10], Aut* $\Delta_{G'_i}$ is an extension of G'_i by Aut K. Here Aut K denotes the automorphism group of K. Now

$$\operatorname{Aut}^*\Delta_G \cong \operatorname{Aut}^*\Delta_{G_1} \times \ldots \times \operatorname{Aut}^*\Delta_{G_m}$$

Let C denote the center of G. We then clearly have,

THEOREM 3.6. Suppose no reflection in W is in the center of W (i.e., each G_i has rank ≥ 2). Then Aut*E is an extension of G/C by the m-fold direct product Aut $K \times \ldots \times$ Aut K.

Besides being a biordered set, E is a closed subset of M. Let $Aut^{**}(E)$ denote the subgroup of Aut^*E consisting of those ϕ which are also automorphisms of the affine variety E.

Conjecture 3.7. Aut^{**}(E) \cong G/C.

THEOREM 3.8. Let $S = M \setminus G$. Then $E(S) \cong E_G$ if and only if $\mathcal{U}(S)$ is a Boolean lattice. In such a case, S is a locally inverse semigroup.

Proof. Suppose first that $\mathscr{U}(S)$ is a Boolean lattice. By [14, Theorem 14], for any $e \in E(S)$, H_e is a torus. In particular $eSe = \overline{H}_e$ is commutative. Hence S is a locally inverse semigroup. It is also clear that for any e, f_1 , $f_2 \in E(S), e \ge f_1, e \ge f_2, f_1 \mathscr{J}_2$ imply $f_1 = f_2$. Define $\phi: E(S) \to E_G$ as

$$\phi(e) = (C_G^r(e), C_G^l(e)).$$

Let $e, f \in E(S)$. Suppose $f \leq_r e$. Then by [12, Theorem 1],

$$f \in C_G^r(e).$$

Let *B* be any Borel subgroup of $C_G^r(e)$ and let *T* be a maximal torus of *B*. By [19, Theorem 1.2], $B = C_G^r(\Lambda)$ for some cross-section lattice $\Lambda \subseteq E(\overline{T})$. There exists $a \in C_G^r(e)$ such that

 $e' = aea^{-1} \in E(\bar{T}).$

Then $e\mathcal{R}e'$. Hence by [12, Theorems 1, 9],

$$C_G^r(e) = C_G^r(e').$$

So $B \subseteq C_G^r(e')$. By [19, Theorem 1.2], $e' \in \Lambda$. Let $f' \in J_f \cap \Lambda$. Then since $J_e \ge J_f$, we have $e' \ge f'$. Since $f \le re'$, we have

$$f \Re f e' \leq e'.$$

Hence $e' \ge f'$, $e' \ge fe'$, $f' \mathcal{J} fe'$ in S. Thus f' = fe. Hence $f \mathcal{R} f'$. So

$$B \subseteq C_G^r(f') = C_G^r(f).$$

Since B is an arbitrary Borel subgroup of $C_G^r(e)$, we see that

$$C_G^r(e) \subseteq C_G^r(f)$$

So $\phi(f) \leq_r \phi(e)$. Clearly

 $\phi(e)\phi(f) = \phi(f).$

Now $f \mathscr{R} f e \leq e$. So

$$\phi(fe) = (C_G^r(fe), C_G^l(fe)), C_G^r(fe) = C_G^r(f), C_G^l(fe) \supseteq C_G^l(e).$$

Thus $\phi(f)\phi(e) = \phi(fe)$.

Assume now that $e, f \in E(S)$. $\phi(f) \leq_r \phi(e)$. Then

$$C'_G(e) \subseteq C'_G(f).$$

Let T be a maximal torus of $C_G^r(e)$ with $e \in E(\overline{T})$. Let J denote the maximum \mathcal{J} -class of S,

$$A = \{h \in J \cap E(\overline{T}) | h \ge e\} = \{h_1, \dots, h_k\}.$$

Since $E(\overline{T})$ is a relatively complemented lattice, $e = h_1 \dots h_k$. There exists $a \in C_G^r(f)$ such that

$$f' = afa^{-1} \in E(\bar{T})$$

Then $f\mathscr{R}f'$. Let $h \in A$. Then $h \ge e$. So by [15, Theorem 6.2], there exists a cross-section lattice $\Lambda \subseteq E(\overline{T})$ such that $e, h \in \Lambda$. So

 $B = C'_G(\Lambda) \subseteq C'_G(e) \subseteq C'_G(f) = C'_G(f').$

So by [19, Theorem 1.2], $f' \in \Lambda$. Since $J \ge J_f$, we see that $h \ge f'$. So

 $e = h_1 \dots h_k \ge f'.$

Hence $f \leq_r e$. Similarly $\phi(f) \leq_l \phi(e)$ if and only if $f \leq_l e$. In particular ϕ is injective. Now let $(P, P^-) \in E_G$. Then by [19, Theorem 2.7], there exists a chain Γ in E(S) such that

 $P = C_G^r(\Gamma), P^- = C_G^l(\Gamma).$

Let e denote the maximum element of Γ . Then by the above,

 $(P, P^{-}) = (C_{G}^{r}(e), C_{G}^{l}(e)) = \phi(e).$

Hence $E(S) \cong E_G$. Conversely if $E(S) \cong E_G$, then by Theorem 2.1, $\mathcal{U}(S) \cong E(S)/\sim$ is a Boolean lattice. This proves the theorem.

Remark. Renner [25] has been studying algebraic monoids M for which $\mathcal{U}(M) \setminus \{0\}$ is a Boolean lattice. Thus the monoids encountered in Theorem 3.8 are dual to these.

Let G be a reductive group, $\phi: G \to GL(n, K)$ a representation. Let

$$M(\phi) = \overline{K\phi(G)} \subseteq \mathcal{M}_n(K)$$

denote the Zariski closure of $K\phi(G)$ in $\mathcal{M}_n(K)$. We call $M(\phi)$ the monoid of ϕ . We call $E(\phi) = E(M(\phi))$ the biordered set of ϕ . $E(\phi)$ is a geometrical object which, in light of the results of this paper, may be viewed as a

766

BUILDINGS

generalized building. Thus the same group G gives rise to an infinite number of biordered sets $E(\phi)$. We conjecture that for irreducible representations ϕ , the biordered sets $E(\phi)$ are finite in number.

For a finite simple group G of Lie type we get one finite biordered set (a local semilattice) directly from its Tits system. Getting other natural finite biordered sets related to the representations of G and finding geometrical interpretations for them, remains an important open problem.

REFERENCES

- 1. A. Borel and J. Tits, Groupes reductifs, Publ. Math. I.H.E.S. 27 (1965), 55-150.
- 2. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, vol. 1, Math. Survey, No. 7 (Amer. Math. Soc., Providence, R.I., 1962).
- 3. J. E. Humphreys, Linear algebraic groups (Springer-Verlag, 1981).
- 4. D. B. McAlister, Rees matrix covers for locally inverse semigroups, Trans. Amer. Math. Soc. 277 (1983), 727-738.
- 5. J. Meakin, The free local semilattice on a set, Journal of Pure and Applied Algebra 27 (1983), 263-275.
- 6. J. Meakin and F. Pastijn, The structure of pseudo-semilattices, Algebra Universalis 13 (1981), 335-373.
- 7. K. S. S. Nambooripad, Structure of regular semigroups I, Mem. Amer. Math. Soc. 224 (1979).
- 8. —— Pseudo-semilattices and biordered sets I, Simon Stevin 55 (1981), 103-110.
 9. —— Pseudo-semilattices and biordered sets II, Simon Stevin 56 (1982), 143-160.
- 10. —— Pseudo-semilattices and biordered sets III, Simon Stevin 56 (1982), 239-256.
- 11. F. Pastijn, The structure of pseudo-inverse semigroups, Trans. Amer. Math. Soc. 273 (1982), 631-655.
- 12. M. S. Putcha, Green's relations on a connected algebraic monoid, Linear and Multilinear Algebra 12 (1982), 205-214.
- ---- Connected algebraic monoids, Trans. Amer. Math. Soc. 272 (1982), 693-709. 13. -
- 14. ----- The J-class structure of connected algebraic monoids, Journal of Algebra 73 (1981), 601-612.
- 15. —— A semigroup approach to linear algebraic groups, Journal of Algebra 80 (1983), 164-185.
- 16. ——— Reductive groups and regular semigroups, Semigroup Forum 30 (1984), 253-261.
- 17. —— Idempotent cross-sections of J-classes, Semigroup Forum 26 (1983), 103-109.
- --- Determinant functions on algebraic monoids, Communications in Algebra 11 18. — (1983), 695-710.
- 19. ---A semigroup approach to linear algebraic groups II. Roots, Journal of Pure and Applied Algebra 39 (1986), 153-163.
- ---- Regular linear algebraic monoids, Trans. Amer. Math. Soc. 290 (1985), 615-626. 20. -
- 21. L. Renner, Reductive monoids are von-Neumann regular, Journal of Algebra 93 (1985), 237-245.
- 22. ---- Classification of semisimple rank one monoids, Trans. Amer. Math. Soc. 287 (1985), 457-473.
- Classification of semisimple algebraic monoids, Trans. Amer. Math. Soc. 292 23. -(1985), 193-224.
- 24. —— Analogue of the Bruhat decomposition for algebraic monoids, to appear.
 25. —— Private communication.
- 26. B. M. Schein, Pseudo-semilattices and pseudo-lattices, Izv. Vyss. Ucebn, Zaved. Mat. 2 (117) (1972), 81-94; English transl. in Amer. Math. Soc. Transl. (2) 119, (1983).

MOHAN S. PUTCHA

- 27. M. Suzuki, Group theory I (Springer-Verlag, 1982).
- 28. J. Tits, Buildings of spherical type and finite B-N pairs, Lecture Notes in Math. 386 (Berlin, Springer-Verlag, 1974).
- 29. Y. Zalcstein, Locally testable semigroups, Semigroup Forum 5 (1973), 216-227.

North Carolina State University, Raleigh, North Carolina