BULL. AUSTRAL. MATH. SOC. VOL. 20 (1979), 377-384.

Composition operators on a functional Hilbert space

R.K. Singh and S.D. Sharma

Let T be a mapping from a set X into itself and let H(X) be a functional Hilbert space on the set X. Then the composition operator C_T on H(X) induced by T is a bounded linear transformation from H(X) into itself defined by $C_T f = f \circ T$. In this paper composition operators are characterized in the case when $H(X) = H^2(\pi^+)$ in terms of the behaviour of the inducing functions in the vicinity of the point at infinity. An estimate for the lower bound of $||C_T||$ is given. Also the invertibility of C_T is characterized in terms of the invertibility of T.

1. Introduction and preliminaries

Let H(X) denote a functional Hilbert space on a set X, and let T be a mapping from X into itself. Then the composition mapping C_T , defined as

$$C_T f = f \circ T$$
,

maps H(X) into the vector space of all complex-valued functions on X. This mapping C_T is a linear transformation. If for every f in H(X), $C_T f$ is also in H(X), then by the closed graph theorem C_T is a bounded linear transformation on H(X). The Banach algebra of all bounded linear transformations from H(X) into itself is denoted by B(H(X)). If

Received 23 March 1979.

 $C_T \in B(H(X))$, we call it a composition operator on H(X) induced by T. Some of the pertinent questions about these operators are: for which T is the mapping $C_T \in B(H(X))$; when is an element $A \in B(H(X))$ a composition operator; if $C_T \in B(H(X))$, when is it invertible, compact, Fredholm, or normal? The answers of most of these questions are given by Nordgren [5] and Caughran and Schwartz [1]. If H(X) is taken to be a nice well known functional Hilbert space, then some of the results obtained turn out to be very interesting. For example, if $H(X) = H^2(D)$, the classical Hardy space of the unit disc D, then every analytic mapping from D into itself induces a composition operator [6].

In this note we are interested in the case when H(X) is equal to $H^2(\pi^+)$, the Hilbert space of all those functions f analytic on the upper half-plane π^+ for which

$$\sup_{y>0} \left\{ \int_{-\infty}^{\infty} |f(x+iy)|^2 dx \right\} < \infty .$$

A characterization of all analytic mappings T from π^+ into itself for which C_T is an operator on $H^2(\pi^+)$ is reported in this paper in terms of the behaviour of T in the neighbourhood of the point at infinity. An estimate of the norm of C_T is given and the invertibility of C_T is characterized.

The symbols P and \tilde{P} will stand for the Poisson integrals in the disc and in the upper half-plane respectively. The linear fractional transformation L(z) = i(1+z)/(1-z) maps D onto π^+ and the unit circle onto the real line with L^{-1} defined as $L^{-1}(w) = (w-i)/(w+i)$. The linear transformation Q on $L^2(m)$, where m is the normalized Lebesgue measure on the unit circle, defined by

$$(Qf)(x) = (1/\sqrt{\pi})(f \circ L^{-1})(x)/(x+i)$$
,

is a well established isometric isomorphism of $L^2(m)$ onto $L^2(\mu)$, where μ is the Lebesgue measure on the real line [4]. The set of all analytic functions $T: \pi^+ \to \pi^+$ such that the only singularity that T can have is a pole at ∞ will be denoted by $A(\pi^+)$.

378

2. Boundedness of composition operators

If t is an analytic mapping from the unit disc D into itself, then it is shown by Schwartz [6] that C_t is a bounded operator on $H^2(D)$. But this is not true in the case of analytic mappings on π^+ , as is shown later in an example in this section. In the following theorem a necessary and sufficient condition for an analytic mapping to induce a composition operator on $H^2(\pi^+)$ is given.

THEOREM 2.1. Let $T \in A(\pi^+)$. Then C_T is a bounded operator on $H^2(\pi^+)$ if and only if the point at infinity is a pole of T.

Proof. We first suppose that the point at infinity is a pole of T. Since T is analytic in a neighbourhood of ∞ , the function $t = L^{-1} \circ T \circ L$ is analytic in a neighbourhood of 1, and t(1) = 1. So by Corollary 2 of [8], C_{π} belongs to $B(H^2(\pi^+))$.

For necessity we suppose that C_T is a bounded operator on $H^2(\pi^+)$. Then $f \circ T \in H^2(\pi^+)$ for every $f \in H^2(\pi^+)$. Hence by Corollary 2 of [2, p. 191], f(T(w)) tends to zero as w tends to infinity within each half-plane im $w \ge \delta > 0$, where im w stands for the imaginary part of w. Since the function 1/(i+w) belongs to $H^2(\pi^+)$, it follows that 1/(i+T(w)) tends to zero as w tends to infinity, which in turn implies that T(w) tends to infinity as w tends to infinity. This shows that the point at infinity is a pole of T.

COROLLARY 2.2. Let $T \in A(\pi^+)$. If C_T is a bounded operator on $H^2(\pi^+)$, then M_β belongs to $B(H^2(D))$, where M_β is the multiplication operator on $H^2(D)$ induced by $\beta(z) = (1-t(z))/(1-z)$, and $t = L^{-1} \circ T \circ L$.

Proof. This follows trivially from Theorem 2.1.

EXAMPLES. (1) Let $T(\omega) = a\omega + \omega_0$, where *a* is a non-zero positive real number and $\omega_0 \in \pi^+$. Then *T* induces a composition operator on

 ${\rm H}^2(\pi^+)$.

(2) Let

$$T(w) = i((w+i)^{n+1}+w(w-i)^{n})/((w+i)^{n+1}-w(w-i)^{n}) ,$$

where n is a positive integer. Since the mapping

$$t(z) = (L^{-1} \circ T \circ L)(z) = \frac{1}{2}(z^{n}+z^{n+1})$$

maps D into itself, T maps π^+ into π^+ . Also the point at infinity is a pole of T. Hence by Theorem 2.1, $C_{\tau} \in B(H^2(\pi^+))$.

(3) Let T(w) = (aw+b)/(cw+d), where $a, b, c, d \in R$, ad - bc > 0and $c \neq 0$. Then T maps π^+ onto itself, and by Theorem 2.1 it does not define a composition operator.

In [9] it is proved that if t is an inner function from D into itself, then $C_T \in B(H^2(\pi^+))$ implies that $t_*(1) = 1$, where $T = L \circ t \circ L^{-1}$ and t_* denotes the non-tangential limit of t. We prove this result in the following theorem for any analytic t, not necessarily an inner function.

THEOREM 2.3. Let t be an analytic function from D into itself and let $T = L \circ t \circ L^{-1}$. Then $C_T \in B(H^2(\pi^+))$ implies that $t_*(1) = 1$.

Proof. Since T is analytic and C_T is a bounded operator on $H^2(\pi^+)$, $|T(w)| \to \infty$ as $|w| \to \infty$ within each half-plane im $w \ge \delta > 0$, as is established in the proof of the necessary part of Theorem 2.1. Hence $t_*(1) = 1$.

The converse of this theorem is not true as is obvious from the following example.

EXAMPLE. Let $t(z) = 1 - (1-z)^{\frac{1}{2}}$. Then t induces a Hilbert-Schmidt composition operator on $H^2(D)$ [7]. Clearly $t_*(1) = 1$ and

$$T(w) = (L \circ t \circ L^{-1}) = (2(iw-1))^{\frac{1}{2}} - i .$$

https://doi.org/10.1017/S0004972700011084 Published online by Cambridge University Press

But C_T is not bounded. This is because the function f(w) = 1/(w+i) is a member of $H^2(\pi^+)$, but the function

$$(f \circ T)(\omega) = 1/\sqrt{2(i\omega-1)}$$

is not in $H^2(\pi^+)$.

Let $\mathbb N$ denote the set of all non-negative integers. For $n\in\mathbb N$, define S_n on π^+ as

$$S_{n}(\omega) = \left(\left(\omega - i \right)^{n} \right) / \left(\sqrt{\pi} \left(\omega + i \right)^{n+1} \right)$$

Then it is well known that the family $\{S_n : n \in \mathbb{N}\}$ is an orthonormal basis for $H^2(\pi^+)$ [4].

If $\alpha \in \pi^+$, then the reproducing kernel k_α for $\operatorname{H}^2(\pi^+)$ is defined by the equation

$$\langle f, k_{\alpha} \rangle = f(\alpha)$$

for all $f \in \operatorname{H}^2(\pi^+)$. Using the above orthonormal basis it can be shown that

$$k_{\alpha}(\omega) = \sum_{n=0}^{\infty} \left(\left((\omega - i)^n \right) / \left(\sqrt{\pi} (\omega + i)^{n+1} \right) \right) \left(\overline{\left((\alpha - i)^n \right) / \left(\sqrt{\pi} (\alpha + i)^{n+1} \right)} \right)$$

[3, Problem 30].

A simple computation gives

$$k_{\alpha}(\omega) = i/2\pi(\omega-\overline{\alpha})$$

for every $\omega \in \pi^+$. Furthermore, the norm of k_{α} is given by

$$\|k_{\alpha}\|^{2} = \langle k_{\alpha}, k_{\alpha} \rangle$$
$$= k_{\alpha}(\alpha)$$
$$= 1/(4\pi \text{ im } \alpha)$$

If C_T is a composition operator, then the set of kernel functions is invariant under C_T^* , and in fact $C_T^* k_{\alpha} = k_{T(\alpha)}$ [5]. This result is used in the following theorem to find a lower estimate for the norm of C_T . THEOREM 2.4. If C_m is a composition operator on $H^2(\pi^+)$, then

$$\sup_{\omega \in \mathbb{R}} \left\{ (\operatorname{im} \omega) / (\operatorname{im} T(\omega)) \right\} \leq \left\| C_m \right\|^2.$$

Proof. For every $\omega \in \pi^+$, we have

$$((\operatorname{im} \omega)/(\operatorname{im} T(\omega))) = ||k_{T(\omega)}||^{2}/||k_{\omega}||^{2}$$

$$= ||C_{T}^{*}k_{\omega}||^{2}/||k_{\omega}||^{2}$$

$$\leq ||C_{T}^{*}||^{2}$$

$$= ||C_{T}||^{2} .$$

Since $\omega \in \pi^+$ is arbitrary, it follows that

$$\sup_{\omega \in \pi} \left\{ (\operatorname{im} \omega) / (\operatorname{im} T(\omega)) \right\} \leq \left\| \mathcal{C}_T \right\|^2.$$

3. Invertibility of composition operators

The invertibility of composition operators on $H^2(D)$ was studied by Schwartz [6]. He has shown that a composition operator is invertible if and only if it is induced by a conformal automorphism of the unit disc. We shall prove an analogous theorem on the invertibility of composition operators on $H^2(\pi^+)$ by using an argument similar to that of Schwartz.

THEOREM 3.1. Suppose $T \in A(\pi^+)$ and $C_T \in B(H^2(\pi^+))$. Then C_T is invertible if and only if T is invertible.

Proof. Suppose T is invertible. Since by Theorem 2.1 the point at infinity is a pole of T and T is invertible, it follows that the point at infinity is also a pole of T^{-1} , which shows that $C_{T^{-1}} \in B(H^{2}(\pi^{+}))$. Clearly

$$C_T C_{T^{-1}} = C_{T^{-1}} C_T = I$$

Therefore,

382

$$(C_T)^{-1} = C_{T^{-1}}$$

Conversely, suppose C_{p} is invertible. From Theorem 1 of [8] we have

$$M_{\beta}C_{t} = PQ^{-1}\tilde{P}^{-1}C_{T}\tilde{P}QP^{-1}$$

where $t = L^{-1} \circ T \circ L$, C_t is the composition operator on $H^2(D)$ induced by t, and M_β is the multiplication operator on $H^2(D)$ induced by $\beta(z) = (1-t(z))/(1-z)$. Hence we can conclude that $M_\beta C_t$ is invertible. Since M_β is subnormal and surjective, it is an invertible operator on $H^2(D)$. This is enough to conclude that C_t is invertible on $H^2(D)$. From a theorem of [6] we get that t is invertible, and consequently T is invertible. This completes the proof of the theorem.

References

- [1] James G. Caughran and Howard J. Schwartz, "Spectra of compact composition operators", *Proc. Amer. Math. Soc.* 51 (1975), 127-130.
- [2] Peter L. Duren, Theory of H^p spaces (Pure and Applied Mathematics, 38. Academic Press, New York and London, 1970).
- [3] Paul R. Halmos, A Hilbert space problem book (Van Nostrand, Princeton, New Jersey; Toronto; London; 1967. Reprinted: Graduate Texts in Mathematics, 19. Springer-Verlag, New York, Heidelberg, Berlin, 1974).
- [4] Kenneth Hoffman, Banach spaces of analytic functions (Prentice-Hall, Englewood Cliffs, New Jersey, 1962).
- [5] Eric A. Nordgren, "Composition operators on Hilbert spaces", *Hilbert space operators*, 37-63 (Proc. Conf. Hilbert Space Operators, California State University, Long Beach, 1977. Lecture Notes in Mathematics, 693. Springer-Verlag, Berlin, Heidelberg, New York, 1978).

- [6] Howard J. Schwartz, "Composition operators on H^p" (PhD thesis, University of Toledo, Ohio, 1969).
- [7] J.H. Shapiro & P.D. Taylor, "Compact, nuclear, and Hilbert-Schmidt composition operators on H²", Indiana Univ. Math. J. 23 (1973), 471-496.
- [8] R.K. Singh, "A relation between composition operators on $H^2(D)$ and $H^2(\Pi^+)$ ", *Pure and Appl. Math. Sci.*] (1974/75), no. 2, 1-5.
- [9] R.K. Singh, "Inner functions and composition operators on a Hardy space", preprint.

Department of Mathematics, University of Jammu, Jammu, Tawi, India.