ON TRACE BILINEAR FORMS ON LIE-ALGEBRAS

by HANS ZASSENHATUS
{Received 17th October, 1958)

To what extent is the structure of a Lie-algebra L over a field F determined by the
bilinear form
F@, D) = (@ B)a weveeeerereieee e 1)
on L that is derived from a matrix representation
a—>4(a) (ael)
of L with finite degree d (4} by forming the trace of the matrix products
f(@,B) = tr(Aa db) (@, 5 € L)? wevvveeeeeeeeeeeereeereeereeenns @)
Such a bilinear form is a function with two arguments in L, values in F and the properties :

f(a‘l + s, b) = f(a‘v b) +f(a’2, b)
fla, by +by) = fla, b)) +f(a, by) (bilinearity)

f(Aa, b) = fla, Ab) = Af(a,b) )] (4)
fla, b) = f(b, a) (Symmetry) ......coovenn. (5)
flab, ¢} = f(a. be) (tnvariance under L) ...(6)

(AeF; a,a.,b, b, celL).

It is clear from the definition that the trace bilinear form (1) depends only on the class
of equivalent representations to which 4 belongs.

For any subset K of L, the set K* of all elements = of L satisfying f(K,z) = 0 { is a
linear subspace of L, because of the bilinearity of f. This linear subspace is called the
orthogonal subspace of K. It coincides with the orthogonal subspace of the linear subspace
{FK} generated by K. If K, C K, then Ki 2 Ki. By the symmetry of f we have K C (K4).
If K is an ideal of L, then it follows from the invariance of f that the orthogonal subspace K*
is also an ideal. The ideal L* = L1(4) is called the radical of the representation 4. For any
ideal 4 of L contained in L*, a symmetric invariant bilinear form f4 is induced on the factor
algebra L/4 by setting

fAa/4,b]/4) = f(a,b) (@, beLl). .cvcririrrinniniiiiiriiininienn, (7)

We observe that the kernel of 4, i.e. the ideal L4 of L formed by the elements = that are mapped
onto 0 by 4, lies in the radical of 4. By the first isomorphism theorem, L/L, is isomorphic
to a Lie-subalgebra of the Lie-algebra formed by the matrices of degree d(4) over F. Hence
L|L4 and a fortiori L|L* are finite-dimensional Lie-algebras.

It will be the aim of the investigation to determine the structure of the factor algebra
L/t in terms of simple algebras.

THEOREM 1. If the characteristic of F is distinct from 2 and 3, then, for any solvable ideal
A of L, the ideal LA s contained in the radical of any matriz representation 4.

t For any two subsets K,, K, of L, denote by f(K,, K,) the set of all values f(x,. z). where x; denotes
any element of K, (¢ = 1,2). Hence f(K, K1) = f(K1, K) = 0.
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Before we enter into the proof of Theorem 1, let us prove

Levma 1. For any irreducible representation 4 of a Lie-algebra L over the field of reference
F all of the irreducible components of the representation AT obtained by restricting 4 to the sub-
invariant subalgebra T are equivalent,
and

LevMMaA 2. If the irreducible representation 4 of the Lie-algebra L over the field of reference
F induces by restriction fo the ideal A of L a nilrepresentation 44 of A, then A4 is a null
representation of 4.

Proof of Lemma 1. By assumption there is a chain L = Ly 2 L, 2 ...2 L, = T of
Lie-algebras over F from L to 7' such that L; is an ideal of L;_;(¢ = 1,2, ..., m). Let M be
a representation space of 4. Since it is of finite dimension over F, it must contain an
irreducible L,-F-subspace m. Also there is a maximal L,-F-subspace M, of M such that
m C M, and all irreducible components of the representation of L, with representation space
M, are equivalent to the representation I' of L, with representation space m. Let s be an
element of L, x an element of L;, % an element of M, ; then

z(su) = x(su) —s(zu) +s(xu) = (XS +8(TU). ooveviiiiiiiniininnne, (8)

Hence z(su) is contained in sM, + M, and thus sM, + M, is an L;-F-module such that the
mapping of % onto su is an operator homomorphism of M, onto (sM, +M,)/M,. It follows
that the irreducible components of the representation of L, with representation space
(sM,+ M,)/ M, are equivalent to I. By the Jordan-Holder Theorem, the same applies to the
irreducible components of the representation of I, with representation space sM,+ M,.
Because of the maximality of M, we have sM,+M, = M,,sM, € M,, LM, € M,. Since M
is an irreducible L-F-space, it follows that M, = M and thus every irreducible component
of 4% is equivalent to I,

The proof of Lemma 1 can now be completed by induction on m and by an application
of the Jordan-Holder Theorem.

Proof of Lemma 2. Without restricting the generality we can assume that 4 is a faithful
representation. Hence 44 is faithful. By [4, p. 34, Satz 11], the Lie-algebra A4 is nilpotent.
By [4, p. 29], every irreducible component of 44 is a null representation. Let M be a
representation space of 4. It contains a minimal A-F-subspace # 0, say m. Hence Am = 0.
Let M, be the linear subspace of M consisting of all elements u of M satisfying du = 0.
Applying (8) for s of L, z of A, w of M, we find that su belongs to M,. Hence M, is a non-
vanishing invariant subspace of the L-F-space M. Since M is irreducible, it follows that
M, =M, AM = 0 and this proves Lemma 2.

Proof of Theorem 1. (1) Let F be algebraically losed, Lt # L, 4 beirreducible and faithful
and 4(4AA4) = 0. By Lemma 1, the irreducible representation 4 induces on 4 a representation
44 all of whose irreducible constituents are equivalent. Since A is nilpotent, it follows from
[4, p. 29] that each irreducible representation of 4 maps each element of 4 onto a matrix
with only one characteristic root (of maximal multiplicity). Hence, for any element a of 4,
the matrix 4(a) has only one characteristic root, say «(a), of maximal multiplicity d(4).

If the characteristic of F is 0, then by the trace argument we have

(@ +b) = a{@) +a(b). covviriiiiiiiiiiiiiiiii 9)

If the characteristic of F does not vanish, then it is by assumption greater than 3 and,
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since 4 (AA) = 0, it follows that (9) again holds by [4, p. 95, formula (66)]. We observe
also that
Ad(aa) = M@) (AeF,aed), cooviviiriniiiiiiieiiiiiniininennn. (10)

so that « is a linear form on 4.
As a next step we want to show that, for any element z of L,

A(ZA) = 0. oo (11)
It suffices to show (11) under the additional assumption that

(2, )4 # 0. et aee (12)
Indeed, we know that there are elements y, z of L for which (y, z), # 0, and from the

identity '
(y +z, Y +Z)4 = (3/: y)d +2(?/, Z)A + (Z, 2)a
it follows, in view of the assumption that the characteristic of F' is not 2, that at least one of
the three elements (y +2, ¥ +2)4, (¥, ¥)a, (2, 2)a does not vanish. Hence there is an element 2,
of L satisfying (z,, 2,)a # 0. For any element x of L we have the identity
(@, )4 + (%, Zola = $( (T +Tg, T +Tg)a + (T —Zp, T —Ty)a),

so that at least one of the three elements (x, z)s, (% +%g, T +24)s, (X — 2y, x —2y)a does not
vanish. Therefore, if we have shown already that «(z,4) = 0 and that at least one of the
three conditions «(zd) = 0, a( (x +25)4) = 0, a( (x —x,)4) = 0 is satisfied, it follows from
the linearity of « that (11) is true without restrictions on the element z of L.

Now let us assume (12).

We want to show that for any subalgebra U of A satisfying 2aU C U we have «(xU) = 0.
We observe that V = Fz + U is a subalgebra of L containing U as an ideal. The representation
4 induces a representation 4V on V. Let I' be an irreducible constituent of 4V with represen-
tation space m. Since (z, z)4 is the trace of (4z)2, which can be formed by adding up the
traces of (I'r)? over all irreducible constituents of 4V, it follows from (12) that I' may be chosen
in such a way that

(%, Z)r # 0. i (13)
{(a) If V is nilpotent then, by [4, p. 29], the matrix I'(z) has only one characteristic root £,
so that (z, x)r = d(I")€% and thus, by (13), we have d(I") # 0in F, £2 # 0. From [4, p. 97,
Satz 12] it follows that d(I") = 1, I'(aU) = 0, a(zU) = 0.
() IfU = Fu and

ZU =M (A % 0), i (14)
then there is a characteristic root £ of I'(z) and an element » # 0 of m such that
TV = V. i (15)
Set vy = vand v;; = wy;fori =0,1,2, .... It follows by induction that
av; = (E+iAw; (0 =0,1,2..). i, (16)

]

Indeed (15) is (16) for ¢
(14) that

2 = T(uv;) = (U +u(zy,) = wv, +u(€+iA)v; = v+ (E+1Aw, = (E+ @+ 1)A)v,.

0. Let (16) be proved for some subscript 7 ; then it follows from

Since m is finite-dimensional, it follows that there is a first element among the elements
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Vg Yy, ... that is linearly dependent on the preceding elements, say »,. Hence the linearly
independent elements vy, vy, ..., ¥,_; span a linear subspace of m which is invariant under V.
Since m is irreducible, it follows that the g elements v, ..., v,_, form a basis of m. Hence

(@, @) = tr( (T2)) = TI_ ) (£ +id)?

= g&+g(g-1)é) +_9(L1)6<ﬁﬂ 2

-1 _
- o(er+ @-per+ LD D),
since the characteristic of F is different from 2 and 3.
From (13) it follows that ¢ = 0 in F'. Hence

tr(M(au) ) = ga(zu) = tr(lxlu~Tulz) = 0, afew) =0, o(xU) =0.

(¢) If UU = 0 and if there is a basis u,, u,, ..., u, of U over F such that zu, = du, +u;,,
A=0,2=12 .., p; u, =0),and if we have shown already that «(zu,) = 0 for i = k,
k+1,...,p+1, then we find that the linear form « vanishes on theideal Fu, + Fu, ; +... + Fu,,
of V, so that I" induces on this ideal a nil representation. By Lemma 2 this nil represen-
tation is a null representation. If %> 1, then we can apply (b) to the Lie-algebra
I'(Fz) + I'(Fu,_,), substituting I'(z) for  and I'(u,_;) for », and obtain «(u,_,) = 0. Hence,

by induction, « (1) = a(uy) = ... = a(u,) = a(u,,,) = 0, «(zU) = 0.
(d) If UU = 0, then let us consider a decomposition
U = Z;———-l Uj

of U into the direct sum of linear subspaces U;, invariant under the linear transformation
(;:) of U, that cannot be further decomposed into invariant subspaces. To each of the

subalgebras Fx + Uj, either (@) or (¢) is applicable and thus we have a(2U,) = 0; moreover
a(zU) = 0 because of the linearity of o.

We may set U = 44 and in this event we find that a(x(44)) = 0. As had been shown
before, it follows that «(L(A4A4)) = 0. Hence the irreducible representation 4 induces on

the ideal L(AA) of L a nil representation and this nil representation is a null representation
by Lemma 2. Since it is faithful by assumption, it follows that

L{AA) = 0. eoveeeeeereeeeeeeeeeere e, 1

(¢) Denoting by a* the linear transformation (:Zz) of A and by S the set of the charac-

teristic roots of z*, it follows that there is a decomposition 4 = 3),.5 A4, of 4 into the direct
sum of the characteristic subspaces A4, of z* consisting of all elements @ of 4 satisfying an
equation (z* —k)*a = 0 for some exponent u. Moreover, by [4, p. 32], we have 4,4, C 4, ;,
where we set 4, = 0 if & is not a characteristic root of *. From (17) it follows that A4 is
contained in A4, Since the characteristic of F is distinet from 2, it follows that
Apd, S AARA,, S Agn Ay = 0if kb # 0; hence A4, is an abelian subalgebra of 4. In
this event 4, admits a decomposition into the direct sum of abelian subalgebras of 4 to which
(c) is applicable, so that a(x4,) = 0if k » 0. If & = 0, then (a) is applicable and we find
again that a(z4,) = 0. Hence a(xU,) = 0 for all k of S and hence «(x4) = 0 because of the
E
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linearity of «.

It now follows that «(LA4) = 0, as has been shown above. The irreducible representation
4 induces a nil representation on the ideal LA. By Lemma 2, this nil representation is a null
representation and, since 4 is faithful, it follows that L4 = 0.

Let B be any solvable ideal of L so that D*B = 0 for some exponent k. There is the
chain of ideals

B2DB=BB2DBD..2DB =0.

If k> 0, then D*'B is an abelian ideal of L and then it follows that LD*-1B = 0, as
was shown above. If k> 1, then the ideal 4 = D*-%B satisfies the condition 4 (44) = 0,
sothat L4 = 0, as was shown above. Since D*1B = A4 C LA = 0, it follows that D*-'B = 0.
Hence LB = 0. LB C L.

(2) Let F be algebraically closed and 4 be irreducible. If Lt = L, then it is obvious
that L4 C ILt. Let I+ # L. The representation 4 induces a faithful irreducible represen-
tation of the Lie-algebra AL. We denote the Lie-multiplicationin ALby X 0 Y = XY - YX.
Since 4 is a solvable ideal of L, it follows that 44 is a solvable ideal of 4L and hence it
follows, as was shown at the close of (1), that AL 0 44 € (4L). But AL o 44 = A(LA)
and (ALYt = A(LY); hence 4(LA) € A(L*), LA C Ly +L* = L4

(3) Let F be algebraically closed. Let

4 ~ Al g v 0k N crrereerecrriersestinerarneennrenneenes (18)
4,
*
4,
be a complete reduction of the representation 4 with irreducible constitutents 4,, ..., 4,.
We have
tr(dadb) = 37 _ | tr(d,a4.b),
(@0 = T7_ (8, b)ag; oveeeerererieens (19)
hence
LHA) SN L) et (20)
i=1

Since it was shown in (2) that L4 C L1(4,), it follows from (20) that L4 C L*(4).

(4) Let E be an algebraically closed extension of the field of reference. The product
algebra Ly = L x E over F is a Lie algebra over E such that any F-basis B of L is an E-basis
of Lg. The representation 4 can be uniquely extended to a representation 4% of Lg by setting
AE(bEB/\ (b)b) =bEB)\ (b)b with coefficients A(b) in E. The product algebra A = 4 x E over F

is a solvable ideal of Lg; hence it follows from (3) that Lgdgz C L} and thus
LAC Ly~ L =1L
From the proof of Theorem 1 and another application of Lemma 2 we derive the

CororLARY OF THEOREM 1. Under the same assumptions, for an trreductble representation
4 of L either the radical of 4 coincides with L or the radical of 4 does not coincide with L and LA
lies in the kernel of 4.
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The example of the solvable linear Lie-algebras formed by all 2 x 2-matrices over any
field of characteristic 2 shows that Theorem 1 does not hold for fields of characteristic 2.
The example of the solvable linear Lie-algebras formed by the linear combinations of the

matrices
0 0 0 0 0 O 0 -1 0 1 00
01 0], 1 0 0]}, 0O o0 1}, 010
0 0 -1 01090 0O 0 o 0 01

over any field of reference of characteristic 3 shows that the corollary of Theorem 1 does not
hold any longer.

The following theorem states that, as far as the structure of L/L* and the non-degenerate
symmetric invariant bilinear form induced on L/L* is concerned, it suffices to assume that 4
is fully reducible and faithful, that Lt lies in the centre of L and that every solvable ideal of
L lies in the centre.

THEOREM 2. If the characteristic of the field of reference is distinct from 2 and 3, then for
any Lie-algebra L with a matriz representation A there is a subalgebra U with a fully reducible
representation ¥ and kernel Uy such that

U+LL = Ly v (21)

(@, b)y = (a,b)a fora,belU, ..cocvveriiinieiiiiuniiininninnn. (22)

UULPYC Up S UHWPF), e eere e, {23)

UA C Uy for any ideal A of U for which WA is solvable. ............... (24)

For the proof of Theorem 2 we need the following

Lemma 3. For any ideal A of a finite-dimensional Lie-algebra L over the field of reference
F, there is a subalgebra U of L such that U + A = L and U~A s nilpotent. If L[A is nilpotent,
then U can be chosen as a nilpotent subalgebra (cf. [3, Theorem 4]).

Proof of Lemma 3. If L = 0, then Lemma 3 is clear. Let L » 0 and the theorem be

proved already for Lie-algebras of dimension less than dimp L. For any element a of 4 we
. . 4
form the adjoint linear transformation ad(a) = ( ) of L. The set of all elements x of L

that are annihilated by some power of ad (@) forms a subalgebm Ly, by [4, D 31] ; moreover,
L is the direct sum of L, and another linear subspace L such that ad (a) (Lo) L Now let
a be an element of L for which ad(a) induces a nilpotent linear transformation of L/4 (e.g.
an element of A). Then it follows that Lo = [ad (aL)]'L0 C [ad(a)]"L = A, if r is large enough ;
hence Ly+4 = L. If dimp L, < dimp L, then, by the induction assumption, it follows that
there is a subalgebra U of Ly such that U + Ly~A4 = Lyand U~ (Ly~A4) = U~ A is nilpotent.
But U+A4 = U+ (LynA)+A = Ly+A = L. Moreover, if L/4 is nilpotent, then, since by
the second isomorphism theorem L/ (L,~A4) is isomorphic to LA, it follows that Ly/(L,~A)
is nilpotent, so that it can be assumed that U is nilpotent.

If the subalgebra L, always coincides with L, then the adjoint representation of L induces a
nil representation of 4. The adjoint representation of 4 is a constituent of a nil represen-
tation ; hence it is itself a nil representation and hence 4 is nilpotent, by Engel’s Theorem.
In this case we may set U = L, if L/A4 is not nilpotent. If L/A is nilpotent, then for every
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element a of L the adjoint linear transformation induces a nilpotent linear transformation of
LJ/A. Thus by assumption the adjoint representation of L is a nil representation and by
Engel’s Theorem it follows that L is nilpotent. In this case we set U = L.

Proof of Theorem 2. By Lemma 3 there is a subalgebra U of L satisfying (21) such that
UAI7 is nilpotent. The representation 47 induced by 4 by restriction to U has a complete

reduction
47 ~ 4, + . . &
4, .
*
Y|

r

with irreducible constituents 4,, 4,, ..., 4,. For the fully reducible representation ¥ that is
obtained by adding only those irreducible constitutents 4; for which the 4;-radical does not
coincide with L, we clearly obtain (22). Since UL(¥) = U~ L* is a nilpotent ideal and there-
fore Ut = UL (W) is a solvable ideal of U, (23) follows by an application of the corollary of
Theorem 1 ; (24) is proved similarly.

After these preparations we have the following

STrUCTURE THEOREM (THEOREM 3). (a) For any Lie-algebra L over a field F of
characteristic distinct from 2 and 3 and for any matriz representation 4 of L, the factor algebra L
of L over the A-radical of L permits a decomposition

L=3_ L e (25)

into the direct sum of mutually orthogonal and indecomposable ideals L,, L, ..., L, distinct from 0.

(b) The ideals L,L; are perfect ideals and uniquely determined up to the order. The centre
2(L;) of L, is of the same dimension over the field of reference as the factor algebra L,jL? of L;
over L2.

(¢} If the ideal L, is abelian, then it is one-dimensional.

d) If the centre of L, vanishes, then L, = L, is simple non-abelian.

(¢) Only if the characteristic of F' does not vanish can there be non-abelian components L,
with non-vanishing centre 2(L; ). In this event the ideal L? is the sum of the minimal non-vanishing
perfect ideals Ly, ..., Ly, of L contained in L,. The algebm L2 is directly indecomposable but
there is the decomposition

(L) = B Ly +2(L) Y=L

of the factor algebra L2[2(L;) into the direct sum of its minimal mom-vanishing ideals, each of
which is simple non- abelum

(f) Every minimal mon-vanishing perfect ideal of L coincides with one of the ideals Ly,
If and only if its centre vanishes, we have L, = L;,. The minimal non-vanishing perfect ideals
are mutually orthogonal.

Proof of Theorem 3. From the definition of L it follows that the trace bilinear form of 4
induces on L a symmetric invariant bilinear form such that the orthogonal space of L vanishes,
i.e. & non-degenerate bilinear form. Hence, for every linear subspace X of L, the dimension
of X plus the dimension of the orthogonal subspace X! is equal to the dimension of L. Hence
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(X4t = X. If X is non- degenerate, i.e. if XA~ X! = 0, then we have in any event the direct
decomposition L = X { X!. Thus there is a decomposition (25) of the finite-dimensional
Lie-algebra L into the direct sum of » mutually orthogonal non-vanishing ideals L,, L, ...,
L,, such that there is no further decomposition of I, into the direct sum of mutually ortho-
gonal non-vanishing ideals (¢ = 1, 2, ..., r}. Note that every ideal of L, is also an ideal of L
and that the trace bilinear form of 4 induces on L, a non-degenerate symmetric invariant
bilinear form.

If Z,. is abelian, then, since the characteristic of F is distinct from 2, it follows that there
is an element & of L, for which (&, &), # 0, so that L, is orthogonally decomposable into the
direct sum of the ideal Fz and the orthogonal complement (Fz)t~L;, and this implies that
L, = FZ. Note that L? = 0 implies that L? is a perfect ideal.

Let L # 0. For the Lie-algebra M = L with non-degenerate bilinear form f satisfying
(2)-(5), we find that

M2 2(M)) = f(M, Mz(M) ) = f(M,0) = 0.

Conversely, if f(M2 x) = 0 for the element 2 of M, then f(M? z) = f(M, Mz) = 0, Mz = 0,
x lies in z(M); hence z(M) = (M2, z(M)* = M2 If for an element & of the centre of L; we
have (%, £)4 # 0, then there is the orthogonal decomposition of L, into the ideal FZ and its
orthogonal complement. Since this is impossible and since the characteristic of the field of
reference is distinct from 2, it follows that z(L ) is contained in (z(L;)) = L?. The dimensions
of z (L ) and of L? add up to the dimension of L, so that z(L;) is isomorphic to the factor algebra
of L; over L.

By Theorem 1 every solvable ideal of L lies in z(li) For every solvable ideal 4 of L, it
follows from Theorem 1 that L AC (Lt ~L; = 2(L,) ; hence 4 lies in the second centre of
L2, a solvable ideal of L, and hence 4 lies in z(L ). It follows that the factor algebra L2/z(L,)
contains no abelian ideal # 0. Moreover L2/2(L;) # 0. The trace bilinear form of 4 induces a
non-degenerate symmetric invariant bilinear form f* on L* = L2/2(L,)

There is a decomposition

29.__ 1 Lu

of L;* into the direct sum of mutually orthogonal ideals L;* which permit no further proper

orthogonal decomposition. For anideal 4* of L;*,set B* = A*L~ L, *, so that
SH{A*~B*PR,Ly*) = f*(A*~B*, (A*~B*)L;*) C f*(4*, B¥) =0, (4*~B*)*> = 0.

Thus A*~B* is an abelian ideal of L;* and therefore of L;*. Hence A¥*~B* = 0, L,*=

A* 4+ B*, so that, by assumption, 4* = L;*, and therefore L,* is simple non-abelian. If X*
is any minimal non-vanishing ideal of L;* then, as shown above X*2 = 0; hence X*L*

0, X*L;* # 0 for some index j, X*L[;* C X*~L;*, X*~L;* # 0, X*~L;* = X* = L,*
It follows that the components L;* are simple non-abelian ideals characterized as the minimal
non-vanishing ideals of L*t.

_ The ideal L,* of L formed by the cosets in L;;* contains a minimal perfect ideal Ly;#0
of L}. Ttis clem- that L;;* 2 (L;; +2(L;) )/z(L;) and hence

(Lf+z i) )z ( L) = L;*, i;'* = Li:i+z(Li): (En*)2 = (Eij)ﬂ = jji:"

1 Compare [1], [2].
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Thus L, is uniquely determined by L;* as the derived algebra of the algebra L;* formed by
the cosets modulo z(L;) belonging to L,*.

Conversely, if 4 is a minimal perfect ideal # 0 of L then, because 44 = 4, we find that
the i-th component ideal A; = (4 + X;2; L;)~ L, lies in L? and is homomorphic to 4. Hence,
if 4; # 0, then A; is a minimal perfect ideal = 0 of L, Thus 4, = L;; for some j,
A A = A CA A C At, A A A,, A C 4. Since 4 is itself & minimal perfect ideal = O
of L it follows that 4 = 4; = L,,.

Since the trace blhnear form of 4 induces on Ef/z (L;) a non-degenerate bilinear form, it
follows by an argument similar to an earlier one that

0 = (DL, L~ (D*L)Y = (DL, DL(L;~(D*Ly)Y) ),
DL (L~ (DLy)*) € Li~ (DL)* = z(Ly),
L~ (DL is solvable, L;~ (D2L,)* C z(L),

L~ (DLt = o(L,) = L~ (DL,
DL} = DL}, D?L; = DL, TFor the perfect ideal DL; we find that
DL; = 2(L) + X% Ly = D°L; = X7% | L

By Theorem 2, for the purpose of the structural investigation of I we can assume that every
solvable ideal of L and also ! are contained in the centre of L. Let L, be the ideal of L
consisting of the cosets of L; modulo L*. The elements of the cosets of z(L,) modulo L* form
the centre z(L,) of L,. Since DL, = L? is perfect, it follows that D*L; +2(L;) = DL; +z(L;) ;
hence D3L; = (D2L,)® = (2(L;) + D*L,)® = (2(L;) + DL,)* = (DL;)* = D*L,;, so that DL, is
a perfect ideal.

Let £ be an algebraically closed extension of F, let Lg, 4% be the extensions of I, 4
respectively over E. If 0 C z(L;) C L;, then there is an element z of z(D2L;) that is not
contained in I* and an irreducible constituent I' of 4% for which I'(z) # 0. Hence, by
Schur’s Lemma, I'(z) = {I,0 = { ¢ E. If the degree d(I") of I' is not divisible by the charac-
teristic of F, then (z, 2z)r = tr(I'(z)I"(2)) = d(I"){® = 0. Hence DL, is the direct sum of the
ideal Fz and the ideal (Fz)(I')~D*L,, and therefore D3L; C (Fz)X(I')~D3L;, c D*L;, a
contradiction. It follows that 0 c z(L;) c L, implies that the characteristic of the field of
reference is not zero.

If DL, is not decomposable and if there is a decomposition L; = 4 + B of L, into the direct
sum of the two ideals 4, B, then there is the direct decomposition L = A%3 B? of L. It
follows that either 4 or B is abelian, say A is abelian. Hence A € z(L;) € L? = (4 +B)? =
B:*C B, A = 0. Hence L, is indecomposable.

It remains to show that L} is indecomposable. For this purpose we need

Lemma 4. Let L be a fully reducible linear Lie-algebra over o field of reference F that is
not of characteristic 2, such that the radical L* of L with respect to its natural representation 4
is contained in the centre z(L) of L, and for every irreducible constituent 4; of 4 the 4,-radical of
L does not coincide with L. Then every Cartan subalgebra of L is abelian.

Proof of Lemma 4. Let H be a nilpotent subalgebra of L that is its own normalizer.
It follows that L* C z(L) € H. Let 4% be the representation of H obtained by restriction
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of 4. Thent
HY(AB) = HALY (). oviiiiiiiiiiiiiiiieicenc (26)

Let I" be an absolutely irreducible constituent of 42, Then for any element z of z(H)~H*? we
have, by Schur’s Lemma, I'z = {I for some element { of an extension of F. By [4, p. 29],
for any element & of H the matrix I'(k) has only one characteristic root, say A{h), of maximal
multiplicity d(I"), so that

(z, h)r = te(I2lh)y = {te(I'(R)) = (A (R).

Here either the degree of I' is divisible by the characteristic of F or d(I') = 1, I'(H?) = 0,
I'(z) =0, = 0. Atany rate (2, h)r = 0. Hence (2, h)s = 0,z S HL(4H),z C LL(4) S z(L).
By assumption, for each irreducible constituent 4; of 4 we have L1(4;) € L; hence
H-{4%) ¢ H. Since the characteristic of F is not 2, it follows that there is an element A of H
such that (h, )y, # 0. There is an absolutely irreducible constituent I" of 4T for which
(k, k)r # 0. On the other hand we know that the matrix I'(k} has only one characteristic
root A (k) of multiplicity d(I"), so that 0 = (k, A)r = tr( (I'R)?%) = d(D)A(R)E, d(I") is not divisible
by the characteristic of F, d(I") = 1, by [4, p. 97, Satz 12]. Hence I'(z) = 0, 4,(z) is a singular
matrix. Hence, by Schur’s Lemma, 4,(z) is a nilpotent matrix, 4, induces a nil representation
of the ideal Fz of L, 4,z = 0, by Lemma 2. Since L is fully reducible, it follows that 4z = 0,
z2=0, H:~z(H) = 0, H® = 0, q.ed.

Proof of the remainder of Theorem 3. By Theorem 2 and its proof we can assure that L
satisfies the assumption of Lemma 4. Moreover we can assume that 0 c z(L) c L2 c L = L,.
If there is a Cartan subalgebra H of L then, by Lemma 4, it is abelian. Since H is
mlpotent and its own normalizer, it follows from [4, pp. 28-29] that there is a decomposmon
L = H i H of L into the direct sum of H and another linear subspace H such that HA = 1.
Hence H+L* = L. Let H = H/L* sothat H +L* = L and H is abelian. If there is a decom-
position L2 = 4 i B of L? into the direct sum of the two ideals 4, B of L2, then it follows from
DI? = L2 that DA = 4, DB = B hence 4, B are ideals of L. Moreover it follows from the
relations A~B =0, A+B = L* that 4+ + B = L, AL~ Bt = (I3* = ¢(L), so that A* =
B YAL~L2 Bt = 4, i BLAL®, where 4,, B, are linear subspaces of H. Hence 4,~B, = 0,
A, 4 Bl +L® = L, and since H is abelian, it follows that L is the direct sum of the orthogonal
ideals 4 +4,, B+B,. Since L is orthogonally indecomposable, it follows that either 4 or
B vanishes. Hence Ez is indecomposable.

If there is no Cartan subalgebra of L then, by [4, pp. 32-33], it follows that the field of
reference is finite. Let & (L%) be the associative algebra over F' that is generated by the
adjoint linear transformations of L2 Let % (L2) be the linear associative algebra consisting of
all linear transformations of L? that are elementwise permutable with & (LY. Since L? is
perfect, it follows that there is, up to the order of the components, only one decomposition
[ = Zi -1 A, of L*into the direct sum of indecomposable ideals + 0. Hence the factor algebra

of ¥(L?) over its radical is isomorphic to a ring sum of finitely many division algebras &,,
E,, ..., E, of finite dimension over F. By a theorem of Maclagan-Wedderburn, all the E;’s

t From [4, pp. 28-29] it follows that there is 8 decomposition L = H+H of L into the direct sum of H
and another linear subspace A such that HA = H. For every invariant bilinear form f we find that

J(H,B) = f(H,HR) = f(2, A) = f(H2, HA) = f(B H) = ... = j(H+, B) = 0
and hence (26) is satisfied.
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are finite extensions of F. Since the numbers prime to the product P of the degrees of the
extensions E; over F are unbounded, it follows from [4, pp. 32-34] that there is an extension
E of F of degree prime to P, such that the extended Lie-algebra Lz over E contains a Cartan
subalgebra. By the method of the construction of E, there is, up to the order of the com-
ponents, only one decomposition of L2 into the direct sum of indecomposable ideals = 0,
viz., the decomposition (L2 = 3 §= L (A))E. As we have seen before, there is a decomposition
Ly = Zi -1 B, of Lyinto the direct sum of the mutually orthogonal ideals B; such that (4,)g is
contained in By, fori = 1,2, ...,s. Wehave (3 _,(d)g)* = B, +2(Lg) = ((Z!_, 4,)")z and
there is a linear subspace X of (X_, A,)* such that B, +z(Lg) = (4))g+2(Lg) ) + X,
(4,)g + X is an ideal of Lg and ( (4)z + Xl ((A)g +Xg) = (@D~ (Xpn ((A)g + Xp)
= 0; hence B = 4, +X is an ideal of L such that B'!~B = 0 and therefore there is the
orthogonal decomposition L = B3 Bt of L. Tt follows that ¢ = 1, L?is indecomposable, q.e.d.
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