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Three-dimensional
viscoelastic instabilities in
microchannels
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Whereas the flow of simple single-phase Newtonian fluids tends to become more
complex as the characteristic length scale in the problem (and hence the Reynolds
number) increases, for complex elastic fluids such as dilute polymer solutions the
opposite holds true. Thus small-scale, so-called ‘microfluidic’ flows of complex fluids
can exhibit rich dynamics in situations where the ‘equivalent’ flow of Newtonian
fluids remains linear and predictable. In the recent study of Qin et al. (J. Fluid Mech.,
vol. 864, 2019, R2) of the flow of a dilute polymeric fluid past a 50 µm cylinder (in a
100× 60 µm channel), a novel 3-D holographic particle velocimetry technique reveals
the underlying complexity of the flow, including inherent three-dimensionality and
symmetry breaking as well as strong upstream propagation effects via elastic waves.
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1. Introduction

Purely elastic instabilities (Shaqfeh 1996) driven by elastic normal stresses have
been widely observed in the absence of significant inertial effects, in both viscometric
flows, that imparts steady shearing motion on each fluid particle (Larson, Shaqfeh
& Muller 1990), and more general non-viscometric flow geometries (Pakdel &
McKinley 1996). In addition to the usual material properties of density ρ and dynamic
viscosity η which characterise single-phase Newtonian flows, dilute polymeric
solutions, like those used by Qin et al. (2019) and most other studies in this
area, are also characterised by a ‘relaxation’ time (Bird, Armstrong & Hassager
1987). The Deborah number De, which is a measure of this relaxation time relative
to a characteristic residence time of the flow, must become unimportant in fully
developed, steady viscometric flows as the characteristic residence time tends to
infinity. The second parameter governing the flow of single-phase viscoelastic fluids
in the inertialess limit is the Weissenberg number Wi, the ratio of elastic to viscous
stresses. These two parameters are often thought of as essentially interchangeable
although, in general, they represent subtly different properties of the flow: one
quantifying inherently Lagrangian unsteady effects (De) and the other the ‘strength’
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of the flow (Wi). In the problem studied by Qin et al. (2019) of flow past a cylinder
of diameter d in an approximately square channel of height H, the characteristic
time scale of the flow can be estimated as the time taken for a fluid particle to
circumvent half the cylinder (i.e. πd/2U ∼ d/U ∼ H/U as d ∼ H). The Deborah
number is then De ∼ λU/H. The Weissenberg number in Qin et al. (2019) is
Wi = N1/2τ = N1/(2γ̇ η), where N1 is the first-normal stress difference (the ‘elastic’
stress), τ the shear stress and γ̇ the shear rate. Only for an upper-convected Maxwell
model (Bird et al. 1987), where N1= 2ληγ̇ 2 and τ = ηγ̇ in steady simple shear, does
this yield Wi = λγ̇ ∼ λU/H and hence Wi = De. However, De and Wi both increase
with decreasing characteristic length scale(s). Hence, the microfluidic environment,
which typically minimises inertial effects due to its small length scales, also enhances
elastic effects. As a result, microfluidic experiments have been widely exploited to
probe purely elastic instabilities in viscoelastic fluids, which usually arise from the
combination of elastic stresses and streamline curvature. This mechanism is captured
in the phenomenological criterion due to Pakdel & McKinley (1996), which states
that instability may arise when the product of a ‘local’ De based on a length scale
involving the local streamline curvature (R) and a ‘local’ Wi based on local shear
rate and local tensile (normal) stress along the streamline exceeds a critical parameter
(M2

CR) (i.e. (N1/τ)(λU/R) >M2
CR).

Purely elastic instabilities and, at higher flow rates, even highly disordered flows
termed ‘elastic turbulence’ have been observed in a wide range of different geometries.
One way of categorising these flows is via a schematic representation – a ‘map’ –
demarcating these flows into: viscometric, shear-dominated, extension-dominated and
those of mixed kinematics, as shown in figure 1. The map highlights the interrelation
between flows of apparently differing character – between the ‘cross-slot’ and the
‘mixing-separating’ geometry, for example, or the similarity between flow past a
cylinder and into a contraction. The flow past a cylinder in a channel studied by Qin
et al. (2019), shown schematically as an inset in figure 1, falls into the island of
‘mixed kinematics’.

2. Overview

Following on from earlier seminal work in the same group by Pan et al. (2013),
where an array of cylinders in a microfluidic channel was used to show that a
sustained elastic instability leading to elastic turbulence could also be achieved in the
absence of streamline curvature far downstream of the array, the recent study of Qin
et al. (2019) looks in detail at the instability around a single cylinder. It is precisely
these ‘finite amplitude’ perturbations (Morozov & van Saarloos 2007) which – when
combined in an array of cylinders – were able to drive a self-sustaining turbulent
motion far downstream (∼400 channel widths) in the straight channel. Hence an
understanding of the underlying instability mechanisms around an isolated cylinder
is potentially of broad interest. The significant advance of Qin et al. (2019) on most
previous studies of purely elastic instabilities (with limited exceptions such as the
study by Afik & Steinberg 2017) is in the use of a novel in-line three-dimensional
(3-D) holographic particle tracking technique. The technique, detailed in Salipante,
Little & Hudson (2017), involves recording using a high-speed camera of the flow
seeded with tracer particles and illuminated by a laser mounted on an inverted
microscope. In this manner, the positions of the particles are determined using
back-scattering reconstruction and a fully 3-D velocity field can be reconstructed by
differentiating Lagrangian particle trajectories. These 3-D velocity fields reveal much
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FIGURE 1. Purely elastic flow instability map (‘PEFIM’): a taxonomy for purely
elastic instabilities based on flow type, including potential relationships between different
prototype geometries. Inset in bottom right-hand corner defines axes for the situation
studied by Qin et al. (2019).

more complex flow transitions as the flow rate (and hence Wi) is increased than
could previously be inferred from two-dimensional measurements. In particular, the
findings of Qin et al. (2019) of strong three-dimensionality at higher flow rates are
significant in that they are likely to be systemic to most microfluidic flows studied
to date because most microfluidic channels have finite depth, with an approximately
square cross-section (as in Qin et al. 2019).

Two-dimensional measurements in the xy-centreplane (see inset of figure 1 for axis
definition) of Qin et al. (2019) reveal that an upstream vortex develops immediately
in front of the cylinder as Wi is increased. Beyond a critical Wi∼ 4, the vortex begins
to fluctuate weakly in time although it retains its symmetry about the midline of the
xy-centreplane. This symmetry is lost beyond Wi∼ 8, and for Wi> 9 the flow enters
a stronger time-dependent regime where the length of the upstream vortex frequently
collapses to ∼2d and then regenerates (up to 6d).

The novel 3-D measurements reveal that the ‘top’ and ‘bottom’ walls play a
fundamental role in the dynamics as the flow at high Wi is revealed to be made
up of a pair of separate recirculation zones, each originating between the ‘corner’
of the cylinder and the top/bottom walls. These zones are anticorrelated in that as
one grows the other decays – and vice versa. Thus symmetry breaking first noted
across the midline of the xy-centreplane is followed by symmetry breaking across
the midline of the xz-centreplane, and the flow is strongly 3-D, something which is
only fully revealed by these new measurements. Finally, the results also suggest the
presence of apparently different instability mechanisms upstream and downstream of
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the cylinder. The upstream propagation of disturbances suggests that perturbations
may be transmitted against the primary flow direction via an ‘elastic wave’, but with
a wave speed which does not simply scale with λ. For a viscoelastic shear wave,
based on a Maxwell type model with constant polymeric viscosity ηp and relaxation
time λ, the wave speed is constant cs =

√
(ηp/ρλ) and this leaves open precisely

what is the physical interpretation of the wave (see also Varshney & Steinberg 2019).

3. Future

Given that the results of Qin et al. (2019) reveal the potentially strong influence
of the walls on the time-dependent flow which develops, an obvious next step
would be to investigate the effect of varying the depth aspect ratio of the channel
to determine if this instability always arises at the same preferential location or
if new mechanisms arise when the channel is deeper. Novel fabrication methods
which allow much higher aspect ratios (for example, Haward, Toda-Peters & Shen
2018) than conventional PDMS microchannels may prove fruitful in this regard.
Studies which can probe systematically the effect of varying the viscoelastic shear
wave speed, perhaps by changing the polymeric viscosity contribution whilst holding
the density and relaxation time approximately constant, may shed more light on
the upstream propagation mechanisms. In this vein, and given the rich dynamics
observed, fully resolved 3-D time-dependent numerical simulations using viscoelastic
constitutive equations would also seem like an interesting avenue to pursue. In this
latter case, the simulations have the ability to fully ‘turn off’ inertia, something that
a real experiment can never truly do. However, the very complicated flow patterns
and dynamics observed experimentally present a significant challenge for numerical
simulations and a stringent test of existing viscoelastic constitutive equations.
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