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ON THE REPRESENTATION OF MAPPINGS OF 
TYCHONOV SPACES AS RESTRICTIONS OF 

LINEAR TRANSFORMATIONS 
BY 

KIM-PEU CHEW AND KOK-KEONG TAN1 

1. Introduction. Let (X, r) be a Tychonov space and £P(r) the collection of 
all families of pseudometrics on X generating the topology r on X. Let / :Z->X 
and c>0. Then fis said to be a topological c-homothety if there exists some B in 
SP(j) such that d(f(x),f(y))=cd(x,y) for all deB and all x, y in X (see [4]). 
We say that/can be linearized in L as a c-homothety if there exists a linear topolog
ical space L, and a topological embedding i:X-+L such that i(f(x))=ci(x) for 
all x in X (see [4])./is said to be squeezing if f\%=slf

n[X]={a} f ° r some a in X 
In [4] L. Janos proved the following 

THEOREM 1 (JANOS). Let X be a compact Hausdorff space and f.X->X. Then 
the following are equivalent: 

(1) fis a topological c-homothety for some c e (0, 1). 
(2) fis a squeezing homeomorphism. 
(3) / can be linearized in some linear topological space L as a c-homothety for 

some c G (0, 1). 

In [2], M. Edelstein and S. Swaminathan proved the following related results 
for normal Hausdorff spaces: 

THEOREM 2 (EDELSTEIN AND SWAMINATHAN). Let X be a normal Hausdorff 
space and fa homeomorphism of X onto a closed subset ofX. Suppose Ç\n=ifnVQ 
is a singleton and X a real number, 0 < X < 1. Then there exists a continuous one-to-one 
mapping ofX into QA, where Q= [0, 1] and A a suitable index set9 such that hfhr1 is 
the restriction to h[X] of the transformation which maps y G QA into Xy. 

THEOREM 3 (EDELSTEIN AND SWAMINATHAN). Let f be a homeomorphism of 
a normal space X onto a closed subset of Xsuch that Ç\n=ifn\X\={xi> xz> • • • > *&}• 
Let X be a real number with 0<A<1 and let p be the permutation of (1,2,... ,k) 
with the property that p(i)=j if and only iff(xi)=xj. Then a continuous one-to-one 
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mapping h of X into EkxQ , where Ek is the Euclidean k-dimensional space, exists 
such that hfhr1 is the restriction to h[X] of the transformation which assigns to 
((*!, x2, . . . , xk),y) the element ((xp{1), xp{2), . . . , xp{k)), Xy). 

In the present paper we shall prove related results for Tychonov spaces which 
generalize and strengthen those results in [2] and thus solve the problem raised in 
the remark of [2]. 

2. Linear representations. For a topological space X, let C*(X) denote the set 
of all continuous bounded real-valued functions on X. F o r / G C*(X), let Z(f) = 
{xeX:f(x)=0} and Z(X)={Z(f):fe C*(X)}. A subset B of X is said to be 
C*-embedded in Xif each/in C*(B) has an extension g in C*(X). We note that in 
a normal space, every closed set is C*-embedded. For a Tychonov space X, let 
{}X denote the Stone-Cech compactification of X. For construction of fiX and 
notations not defined here, we shall refer to Gillman and Jerison [3], If f.X->X 
is continuous then/^ will denote the unique continuous extension off from fiX 
into fix. 

LEMMA 4. Let f be a homeomorphism of a Tychonov space X into itself Then 
f[X] is C*-embedded in X if and only iffp is a homeomorphism. 

Proof. Assume that / [Z] is C*-embedded in X. Since /?Xis a compact Hausdorff 
space, to show tha t^ is a homeomorphism, we need only to show thaty^ is one-to-
one. Let x, y G px and x^y\ there exists a continuous function h:j3X->[0, 1] 
such that h(x)?£h(y). By assumption, the function /^ - 1 : /[Z]-*[0, 1] has a con-
tinuousextensioni/:/?X-^[0, l] . We shall show that Hfp(x)?£Hfp(y). Let (xa)a e r and 
OOaer b e n e t s *n % which converge to x and y respectively. Then Hfp(x)== 
lima Hfp(xa)=lima Hf(xa)=\ïmQL hf~1f(x2)=\imoL h(x2)=h(x). Similarly, we can show 
that Hfp(y)=h(y). Since h(x)^h(y), Hfp(x)*Hffi(y). Therefore fp(x)*fp(y). This 
shows that/^ is one-to-one. 

Conversely suppose that fp: f5X->px is a homeomorphism. Let g e C*(f[X]). 
Then the function gfe C*(X) has an extension G in C*(/?X). Consider the function 
Gf-x:f^X]->R. For eachxinZ, G / " 1 ^ ) ) = G(x)=g(/(x)). Hence G/"1 | / [ X ] = ^ . 
Sincefp[ftX]9 being compact, is C*-embedded in ftX ([3](c) p. 43), Gf^1 has an 
extension H in C*(/?X) and we have H\x G C*(X) and H\x is an extension of g. 
Therefore/[Z] is C*-embedded in X. 

LEMMA 5. Let B be a nonempty compact subset of a Tychonov space X and 

f:X-+X be continuous such that f l n - i / " [*]==#• Then fn[X]->B i.e., for each 

neighborhood U of B, there is an n such that fk[X]^ U for k>n, if and only if 

Proof. Assume that fn[X]->B and let &={Z eZ(X)\Z^fn[X] for some TI}. 
Then IF is a z-filter and we shall show that if Av contains J^ where Ap denotes the 
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z-ultrafilter on X with limit/? in /?X, then Ap is fixed and/? eB. Let Ap^«F. For 
each Z G Ap

9 we have Z n Bj£ 0. Otherwise, since B is compact, there exists 
zero-set neighborhood Z ' of B such that Z ' n Z = 0 . (By (a) 3.11 and theorem 
1.15 of [3]). Hence Z'$A» but Z'e^ since/w[Z]->5. This contradicts that 
Ap^^. Thus {Z n B\Ze Ap} is a collection of closed subsets of the compact 
set B with finite intersection property, hence 0¥^Ç\ {Z n B\ZGAP}^ Ç\AP. 
Therefore Ap is fixed and C\Ap={p}. Hence p eB. Now let /? G n £ . i / ? L * * ] = 
n " - i ^ i f f f l , then /> G c / ^ Z for every Z in «F. By (c) p. 87 of [3] 3F^.A* 

and hencep e B. Thus n ^ / j ? ! £ * ] £ * . Since 0 ^ / 7 ^ 2 0 ^ / ^ = ^ w e 

have n w
a L i / ^ ^ = 5 . 

The converse is clear. 

THEOREM 6. Let f:X-+X be continuous from a Tychonov space X into itself and 
x0 G X, Then the following conditions (i) and (ii) are equivalent; 

0) (a) / & « homeomorphism, (b)f[X] is C*-embedded in Xand (c)fn[X]-+{x0} 
(ii) fp : f}X->(iX is a homeomorphism and f l ^ i / ? IPX]=: {*<)}• 

Proof. By lemmas 4, 5 and note thatfn[X]-+{x0} implies nZ*ifn[X]={xo}> 

Combining Theorem 6, Lemma 5 with results of Janos (theorem 1) and of 
Edelstein and Swaminathan (theorems 2 and 3), we have the following theorems: 

THEOREM 7. Let f:X->X be a homeomorphism of a Tychonov space into itself 
such thatf[X] is C*-embedded andfn[X]->{x0}for some x0 e X. Then 

(a) fis a topological c-homothety for some ce(0, 1) 
(b) / can be linearized in some linear topological space L as a c-homothety for 

some c G (0, 1). 

THEOREM 8. Let f:X-*X be a homeomorphism of a Tychonov space X into itself 
such thatf[X] is C*-embedded in X andfn[X]-+{x0}for some x0 e X. Then for each 
X G (0, 1), there exists a homeomorphism h of X into QA, where Q=[0, 1] and A 
is a suitable index set, such that hfhr1 is the restriction to h[X] of the transformation 
which maps y e Q into Xy. 

THEOREM 9. Let f be a homeomorphism of a Tychonov space X into itself such 
that f)n=ifnW={^x29... 9xK}9 f[X] is C*-embedded in X and fn[X]-+ 
{xl5 x2,. . . , xK}. Let X G (0, 1) and let p be a permutation of (1, 2 , . . . , k) with 
the property that p(i)=j if and only iff(x?)=f(x3). Then there exists a homeomorphism 
h of X into EkxQA where Ek is the Euclidean k-dimensional space, such that hfh'1 

is the restriction to h[X] of the transformation which assigns to ((xl9 x2,... , xK), y) 
the element ((xp{1)9 xp{2),... , x9{K)), Xy). 

The above theorems generalize and strengthen those theorems in [2] and answer 
the question raised in [2]. 

Next, we shall represent selfmap on Tychonov space X in product of /2. In 
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case X is compact metrizable, M. Edelstein [1] proved that each squeezing selfmap 
can be linearly represented in l2 in the following way: 

THEOREM 10 (M. EDELSTEIN). Let f be a continuous mapping of a compact 
metrizable space X into itself with Ç[™=±fn[X) a singleton and P:l2->12 the linear 
transformation defined by P(y) = (y29 yi9 . . . , y2n9 . . .)fory=(yl9y29 . . . 9yn,. . .) G 
l2. Given X9 0 < A < 1 , there is a homeomorphism h of X into l2 such that hfhr1 is the 
restriction of XP to h[X]. 

We shall use the above theorem and the method in [4] to prove the following 
theorems. 

THEOREM 11. Let f be a continuous mapping on a compact Hausdorff space 
(X, T) into itself such that fn[X]->{x0} for some x0 in X and let P:l2-+l2 be the linear 
transformation defined by P(y) = (y29 y4, . . . 9y2n9 . . .)fory=(yl9y2,. . . 9yn9 . . . ) G 
l2. Given X9 0 < A < 1 , there is a homeomorphism h of X into Yla€A h where A is a 
suitable index set such that hfhr1 is the restriction of XY[aeA^ t0 1̂X1» where 

(* TTae^ P)(XJ = A U«eA Pfr*), M any (Xa) G JlaeA k-

Proof. Let &—{da | oc e A) be a family of pseudometrics on X generating the 
topology r of X such t ha t / i s nonexpansive with respect to Ql i.e. da(f(x)9f(y))< 
da(x9 y) for all oc G A and all x9 y in X. Such Q) exists according to Lemma 2.1 of 
[4]. For each a G A, let Xa={[x]a | x e X} be the family of all equivalent classes 
[x]a where [x]a={y eX\da(x9y)=0}. Then {Xa9 pa) is a compact metric space 
where px([x]x9 [y]J=da(x9 y). Since f:X-+X is nonexpansive with respect to 3i9 

the function/a:Xa->Xa defined by/ a([x] a)=[/(x)] a is well-defined and continuous 
and it can be easily shown that f | L i / « K ] = {Wa}' Thus by Theorem 10, there 
exists a homeomorphism h0C:Xa->l2 such that hafji~ is the restriction of XP to 
ha[Xa], Define h:X-+YÏ<*eA h by ^ W = (^(Ma))aei- Then h is a homeomorphism 
and furthermore if y=(ya)aeA £h[X] then y=h(x) = (ha[X]a)aeA for some x in X 
and 

hfh-\y) = hfh~\h(x)) = *(/(*)) = (K[f(x)l))aeA 

= (Kfz([x]o))xeA 

= (XPK([x]«))aeA 

Veil / 

Hence hfhr1 restricted to h[X] is X I J a e ^ P. 

THEOREM 12. Let f\X->X be a continuous function from a Tychonov space X 
into itself such that fn[X]->{xQ} for some xQ in X and let P:l2-*l2 be defined as in 
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Theorem 11. Then given X, 0<A<1 , there exists a homeomorphism h\X-*YlaeA 4 
such that hflf1 is the restriction of X IJae^ P to h[X\. 

Proof. Let/^:/ÎZ->/9Z be the unique continuous extension o f / t o (ÏX. Then 
fl [PX]-*{x0} from Lemma 5. By Theorem 11, there exists a homeomorphism 
g:pX-+TJaeAh s u c h that gfpg'1 is the restriction of XJJaeAP to g[(iX]. Let 
h=g | x then h is a homeomorphism from X into IJ a 6 j 4 /2 such that hfhr1 is the 
restriction of X YI^AP to h[X]. 

The authors would like to thank Professor M. Edelstein for his suggestion of 
this topic. 
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