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The increasing ability to perform high throughput electron microscopy has created a need for robust, 

automated analysis that appears addressable by machine learning (ML) tools. Indeed, approaches such 

as convolutional neural nets (CNNs) are finding increased application in scientific data analysis tasks, 

including analysis of electron microscopy imaging data [1-3]. While fast detectors and automated 

imaging protocols may create datasets of tens of thousands of images, only a small subset of the 

experimental data can be feasibly manually labelled to create training data for a CNN.  Therefore it is 

desirable to establish 1. what experimental variables should be included in a training dataset for robust 

performance and maximum accuracy across workflows, and 2. similarly, what are the best practices for 

establishing transfer learning workflows, where initial training is performed on large libraries of 

simulated data. 

 

Here, we take the example of pixelwise segmentation of high-resolution transmission electron 

microscopy (HRTEM) data to evaluate best practices for data curation and to test the performance of 

trained CNNs on data with characteristics not found in the training data. Pixelwise image segmentation 

is an important example of an image analysis task for electron microscopy data, where each pixel is 

classified according to the structures it contains. Segmentation effectively divides images into regions of 

interest that can be further analyzed or classified, and is therefore a critical first step to many image 

processing pipelines [4]. Convolutional neural nets have shown high performance in segmentation tasks, 

but their behavior is difficult to interpret owing to their complex and nonlinear behavior. Specifically, it 

is difficult to predict where CNNs will fail to generalize, that is, where they fail to segment properly 

when shown data types not included in their training data. In electron microscopy, this could mean 

varying experimental parameters, such as radiation dose, sample geometry, or nanomaterial structural 

features. In the case of transfer learning from simulated data, simulation parameters must also be 

considered. 

 

To understand how CNNs trained on experimental data generalize, we have performed a systematic 

study of CNN performance when trained and tested on data with varying experimental conditions and 

sample characteristics. We have explored the role of varying magnification, image dose, and defocus 

value, as well as sample characteristics such as nanomaterial size and substrate (Fig. 1). The results give 

insight into what types of features neural networks use to classify image pixels under different training 

strategies. Many trends, such as failure to generalize across magnifications, are not surprising, however 

other results illustrate the importance of specific types of dataset diversity and potential sources of bias 

in data analysis pipelines. 
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Curating experimental datasets of tens of thousands of labelled images is not possible for a typical 

researcher. However, fast and accurate electron microscopy image simulation protocols [5] enable 

generation of large simulated training datasets. These can be employed in a “transfer learning” strategy, 

that is, early training is performed on the simulated data and later training is performed on experimental 

data. Again taking the example of pixelwise segmentation of HRTEM images, we test generalizability 

and transfer learning strategies using simulated datasets (Fig. 2). We find that the segmentation accuracy 

of models trained on simulated datasets including variations in sample geometry also depends on the 

characteristics of the experimental test dataset. For example, it is intuitive that including smaller 

nanoparticles in the training data boosts performance on datasets containing small nanoparticles. 

However, while transfer learning can overcome poor initial performance, network training dynamics can 

vary significantly depending on the training and test data characteristics as well as the transfer learning 

strategy. By systematically investigating training dataset diversity and the success of various transfer 

learning approaches, we gain insight into reliable transfer learning strategies. We also monitor how 

initial learning is related to network generalizability. Taken together, our work has resulted in best 

practices to maximize CNN accuracy and generalizability in the limit of small experimental datasets, 

and has established how network performance dynamics during training relate to CNN accuracy and 

generalizability [6]. 
 

 

 
Figure 1: Generalizability of CNNs applied to experimental data. In these confusion matrices, the 

numerical Dice score is indicated for various combinations of training and test data. The colorbar 

indicates the deviation from the ideal training case (i.e., training and testing on the same dataset). (a) 

CNNs are not scale invariant, and it is therefore not surprising that they do not generalize across 

magnifications. (b) Training on images of differently sized nanoparticles indicates that CNNs trained on 

data from larger nanoparticles generalize the worst. 
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Figure 2: Generalizability and transfer learning performance of CNNs trained on synthetic data. 

Comparison of performance of CNNs trained purely on synthetic data then immediately tested on 

experimental data with varying nanoparticle size indicates that varying synthetic parameters such as 

nanoparticle and substrate geometry results in different training behavior and performance trends on 

different experimental datasets. Transfer learning results for Au nanoparticle data indicate performance 

suffers when experimental data contains particle size bias. 
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