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1. Let T be a linear operator acting in a Banach space X. It has been shown by Smart
[5] and Ringrose [3] that, if X is reflexive, then T is well-bounded if and only if it may be
expressed in the form

T=JAdE(A),

where {£(A)} is a suitable family of projections in X and the integral exists as the strong
limit of Riemann sums.

In [4], Ringrose considered the extension of this, and related results, to the non-
reflexive case. The theory obtained is less staisfactory, in that it is necessary to work with
projections acting in the dual space X* rather than in X itself, and those projections are
no longer (in general) uniquely determined.

Turner [6] considered the case where the projections JE(A) are acting in L(X) and
obtained a class of operators each of which is called a scalar-type decomposable operator
of class F.

In this paper we define the class of well-bounded operators of class F and we show
that this is equivalent to the class of operators defined by Turner.

This paper is a part of a dissertation presented for the degree of Doctor of Philosophy
in Glasgow University. The author wishes to express his gratitude to Dr. H. R. Dowson
for his guidance and encouragement.

2. Notation. Throughout X is a complex Banach space with dual space X*. We
write (x, y) for the value of the functional y in X* at the point x of X. The Banach
algebra of bounded linear operators on X is denoted by L(X). The spectrum of T, in
L(X), is denoted by <r(T). We use [a, b] to denote a compact interval of the real line R.
The symbol F is used to denote a total subset of X*; that is if x e X, and (x, y) = 0, for all
y 6 F, then x = 0. As usual the symbol C{K) is used to denote the algebra of all
continuous, complex-valued functions on K, and / is used to denote the identity operator
in L(X).

3. Scalar-type decomposable operators of class F.

DEFINITIONS 3.1. Let {£(():(€R} be a family of projections in L(X) with the
following properties:

(1) E
(2) E
(3) there is a real constant k such that

||<fc (seR);
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(4) the function s-»(E(s)x, y) is Lebesgue measurable (xeX, y eF);
(5) if x e X, y e T, a s s < b, and if the function

\'(E(u)x,y)
•a

du

is right differentiate at s, then the right derivative at s is (E(s)x, y);
(6) for each xeX, the map

from F into L°°{a, b) is continuous when F is given the F-topology and L"{a, b) is given its
weak *-topology (as the dual of Lx(a, b));

(7) if x, y in X and zeY are such that

(y,z)=\\E(t)x,z)dt;
la

then for almost all u in [a, b] we have

(E(u)y,z)= (E(t)E{u)x, z) dt.
"a

Then {E(t) :teR} is called a decomposition of the identity for X of class F.
It is a consequence of (6) and ([2, Theorem 3.9, p. 421]) that there exists a unique

operator T in L(X) such that

(Tx,z) = {x,z)-\ (E(t)x,z)dt (xsX,zeT).
la

{E(t):teR} is called an S-decomposition of the identity of class F for T, and T is
called a scalar-type decomposable operator of class T.

The above definition is due to Turner ([6, Definition 3.4, p. 524]). We call an
operator T, in L(X), which satisfies conditions (l)-(6) above a well-bounded operator of
class F.

PROPOSITION 3.2. For a well-bounded operator of class F, the following two conditions
are equivalent.

(i) // x, y in X and z in F are such that
fb

<y,z> = J (E(t)x,z)dt,

then for almost all u in [a, b] we have

(E(u)y,z) = ^(E(t)E(u)x,z)dt.

(ii) For each x in X and z in F,

(E(u)Tx,z) = (TE(u)x,z)

for almost all u in [a, b].
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Proof. Let x, y in X and let z in F. Then, by Definition 3.1, we have

(Tx,z) = (x,z)-\b(E(t)x,z)dt,
la

which implies that

(x-Tx,z)=\ (E(t)x,z)dt. (3.2.1)
la

Putting y = x - Tx, we get

(y,z)=\b(E(t)x,z)dt.
la

Hence, supposing that condition (i) above is true, we get

(E(u)y,z)=\ (E(t)E(u)x, z) dt (3.2.2)
la

for almost all u in [a, b]. Now by replacing x by E(u)x in (3.2.1), we obtain

<£(u)x - TE(u)x, z) = f b(E(t)E(u)x, z) dt.
la

Hence,

<E(u)y, z) = (E(u)x - TE(u)x, z). (3.2.3)

Now, substituting in (3.2.3) y = x-Tx, we get

(E(u)x-E(u)Tx,z)= \b(E(t)E(u)x,z)dt (3.2.4)
la

Comparing (3.2.3) and (3.2.4) and using (3.2.2) we conclude that

{E(u)x - E(u)Tx, z) = (E(u)x - TE(u)x, z),

which implies that

(E(u)Tx,z) = (TE(u)x,z)

for almost all u in [a, b]. Hence (i) implies (ii). Now we prove that (ii) implies (i). Suppose
that (ii) holds; then TE(u) = E(u)T for almost all u in [a, b]. Thus

(E(u)x - TE(u)x, z) = <E(H)X - E(u)Tx, z) (3.2.5)

Now replacing x by E(u)x in (3.2.1) we get

(E(u)x - TE(u)x, z)=\ "(E(t)E(u)x, z) dt (3.2.6)
la
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Putting x - Tx = y we get

(x-Tx,z) = (y,z),
which implies that

{E(u)x-E(u)Tx, z> = <E(u)y, z). (3.2.7)

Since the left hand side of (3.2.6) equals the left hand side of (3.2.7), we have

(E(u)y,z)=\b(E(t)E(u)x,z)dt,

for almost all u in [a, b]. Hence (ii) implies (i), which completes the proof.
THEOREM 3.3. Let Te L(X) be a well-bounded operator of class F and let {E(t) : ieR}

be a decomposition of the identity of class F for T. Then f(T) commutes with {E(t): t e R}.
Proof. The proof is similar to the proof of Theorem 3.6 (v) of [6, p. 526].

It follows from 3.2 and 3.3 that the class of all well-bounded operators of class F is
equivalent to the class of scalar type decomposable operator of class F.

THEOREM 3.4. Let TeL(X) be a well-bounded operator of class F and let {E(t) : f e R}
be a decomposition of the identity of class F for T. Then T is well-bounded.

Proof. The proof is similar to the proof of Theorem 3.6 (i) of [6, p. 526].

DEFINITION 3.5. Let SeL(X). We say that S possesses a C-operational calculus V if
there is a bicontinuous algebra isomorphism ^ from C(o~(S)) into a subalgebra of L(X)
such that ¥(/o) = / and ¥(/,) = S, where

/O(A) = 1, /,(A) = A (Aeo-(S)).

EXAMPLE 3.6. Let X= C[0,1]. Define S, in L(X), by

(Sf)(t) = tf(t) ( / e X , 0 < t < l ) . .

Then S is a well-bounded operator (see [1, p. 173]) which possesses a C-operational
calculus * given by

Clearly <r(S) = [0,1]. Suppose that P2 = PeL(X) and SP = PS. Let /o(0 =
( 0 < r < l ) . By the Stone-Weierstrass theorem, Pf = (Pfo)f, for all / in X, so that

Thus P=O or P = I. It follows from Definition 3.1 (5) that S is a well-bounded
operator but there is no total subspace F such that S is well-bounded of class F.
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