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Abstract

We show that mono-unary algebras have rank at most two and are thus strongly dualizable. We provide an
example of a strong duality for a mono-unary algebra using an alter ego with (partial) operations of arity
at most two. This mono-unary algebra has rank two and generates the same quasivariety as an injective,
hence rank one, mono-unary algebra.
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0. Introduction

Given a finite algebra M, an alter ego of M is a topological structure M with the
discrete topology on M, finitary operations, finitary partial operations and relations
each of which is a subalgebra of an appropriate power of M.

For each A in the quasivariety ISP(M), the dual of A is D(A) = Hom(A, M),
viewed as a non-empty topologically closed substructure of MA. Given X a topolog-
ically closed substructure of a power of M, the dual of X is E(X) = Hom(X, M),
the collection of continuous operation preserving maps from X into Ml, viewed as a
subalgebra of Mx.

For each A in the quasivariety ISP(M) there is a natural embedding eA from A to
the double dual E(D(A)) that assigns to a 6 A the evaluation map eA(a) given by

eA(a)(a) —a(a).

An algebra M is dualized by M if this embedding is an isomorphism for all A e
ISP(M). An algebra M is dualizable if there is an alter ego M that dualizes M. A
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subset X of Ms is term-closed (in Ms) if for all y € Ms \ X there exist 5-ary term
functions a, r : Ms —> M on M that agree on X but not at y. When M dualizes M
and every closed substructure of a power of M is term-closed, we say that M strongly
dualizes M. These concepts are elaborated on in [1] and [2].

In [8], Willard shows that a finite algebra with finite rank is strongly dualizable
whenever it is dualizable. The definition of rank provided in Section 1 is equivalent to
that used in [8]. By definition projections have rank 0. In Section 2 we define a type
of homomorphism called a wrap that always has rank 1. Using projections and wraps
we show that all relevant mono-unary homomorphisms have rank at most 2. It follows
that mono-unary algebras have rank at most 2 and are thus strongly dualizable. In the
last section we give an example of two mono-unary algebras, one with rank 2 and the
other with rank 1, that generate the same quasivariety. We provide an alter ego that
gives a strong duality for the rank 2 algebra. The construction of the alter ego would
work for any rooted mono-unary algebra.

1. Definition of rank

Let M be a fixed finite algebra, n a positive integer, and let B be a subalgebra of
M". Let h € Hom(B, M), the homomorphisms from B to M. The notation B ^a B'
denotes that: B' is a subalgebra of Mn+k for some finite k; a embeds B in B' by
repetition of some coordinates; and B = B'. Let hi = a"1 o h be the natural extension
of h to B'. Let B' < C < D < Mn+*. Moreover, assume there exists h+ : D -> M
such that h' lifts to h+. Throughout this paper when we refer to the commuting
diagram in Figure 1 we assume the above setup holds.

FIGURE 1. B ^ a B' and B' < C < D < Mn+t.

Let Y c Hom(D, M), then D/ Y is defined to be the algebra D/ fj{ker g \ g € Y]
and C/ Y is defined to be the algebra C/ HlkerCglc) \ g £ Y}. The set Y separates
B' if p|{ker(^|B) \ g e Y] = ()„•. The homomorphism h' lifts to C/ Y if Y separates
B' and there exists a homomorphism /x such that the following diagram commutes.

C/Y
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Given a homomorphism h : B ->• M, define rank(/i) as follows: rank(ft) < 0 if
and only if h is a projection. Moreover rank(/i) < a if and only if there exists a finite
N such that for all nonnegative integers k, for all subalgebras D of Mn+t, and for all
commuting diagrams like Figure 1, where h' lifts to D, there exists Y C Hom(D, M)
such that

• \Y\<N;
• h' lifts to C/ Y; and
• rank(g|c) < or for all g € Y.

Further, rank(/i) = a if rank(/i) < a and it is not true that rank(/i) < a. Finally
rank(M) = a if for all homomorphisms h from a subalgebra of a finite power of M
into M, rank(/i) < a but they do not all have rank strictly less than a.

2. Ranks of finite mono-unary algebras are finite

Let M = (M,/) be a finite mono-unary algebra. A connected component of a
mono-unary algebra is a subalgebra B that is maximal with respect to the property
that for all a, b € B, /m(a) = fs(b) for some m, s > 0. For complete details on the
structure of mono-unary algebras see [6, Section 3.2]. The example that we use in
Section 3 is illustrated in Figure 2.

ace Occ bec

aOa aaa
*\ /* Oaa

O Q 000

FIGURE 2. An algebra M and a subalgebra of M3.

Let C be a subalgebra of a finite power of M and let A be a connected component
of C. The essential components of A are the minimum set of connected components of
M that contain 7r, (A) for all projections nt. A core of a connected mono-unary algebra
is a nonempty subalgebra on which / is a one-to-one function. In a finite, connected
mono-unary algebra the unique core will be of the form {a, / (a), / 2 (a), . . . , / *"' (a)}
where /*(a) = a. An arbitrary finite mono-unary algebra may have several cores.
The circumference of the connected component A is circ(A), the least k such that for
some a € A, / *(a) = a. That is, the circumference of a finite, connected mono-unary
algebra is the size of the core. Pick x e C such that x is not in a core but / (x) is in
a core. The set {v € C | fm(y) = x for some m > 0} is a branch. For x e C, x is a
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branch element if x is an element of a branch. For x a branch element, the coheight
of x is the greatest k such that there exists a v with/*(y) = x. For JC a core element,
coheight(jc) = oo.

The following lemma and the definition of wrap provide the motivation for the
concept of essential component.

LEMMA 2.1. Let A be a connected component of C and Ma an essential component
of A. Then the circumference of A is a (positive) integral multiple of the circumference
ofMa.

For A a connected component in C and Ma an essential component of A, to wrap
A around Ma means to define an operation q from A to the core of Ma recursively as
follows. Pick a € A and din the core, L, of Ma. Let^(a) = dand q(fm(a)) = / m ( d ) .
If q is defined on / (x) but not defined on x, then let q(x) e f "'(<?(/ (x))) Pi L. Note
/ "' (<?(/ (•*))) n L has exactly one element in it. By Lemma 2.1, q is well-defined so
by construction, q is a homomorphism whose image is L. The map q is called a wrap.
An example of a wrap is any homomorphism from a core to an essential component
of the core.

LEMMA 2.2. Given B ^a B' < C < M", at most |B| — 1 projections from C t o M
are required to separate B'.

PROOF. Let Yo = 0. Yo separates no elements so there is one equivalence class of
C/Yo containing elements from B'. Given a set of projections, Y>, and two distinct
elements x, y e B' that are not separated by Yh let ni+i be a projection that separates
x and v. Let Yi+l = Yt• U {7r,+1}. The set {[a]K/+l 6 C/Yw | a e B'} has at least one
more equivalence class than {[a]^ € C/Y,; | a e B'}. So to obtain |B'| equivalence
classes for B' in C/ Y we need at most |B'| — 1 = |B| — 1 projections. •

LEMMA 2.3. Let B be a connected subalgebra of a finite power ofM. Let Ma be
an essential component o/B. Any wrap o/B into Ma is a homomorphism of rank < 1.

PROOF. Let B < M" and h : B -» Ma be a homomorphism that wraps B into Ma.
Let N = |B| - 1. Assume B ^a B' < C < D < Mn+* and h' lifts to D < M"+* as
in the commuting diagram in Figure 1. Let Y be enough projections on D so that Y
separates B'. At most N are required, and they are still projections when restricted
to C. Let Ai be the connected component of C/ Y containing the connected set
{[b]Y\beB'}.

Let b e B' and set /x([b]K) = h'(b). This is well-defined as Y separates B'. Since
/i'(B') is contained in the core we may extend this to /x : Ai -> M by wrapping. Fix
TtiQ e K and consider [a]K in C / F but not in A,. Extend JX by /z([a]y) = jrk(a). By the
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choice of n^ from Y this extension is well-defined, /x is a homomorphism that lifts ft'
toC/Kand Kisasetofprojectionsofsizelessthanorequalto N sorank(ft) < 1. •

LEMMA 2.4. Let Bi , . . . , B, be the disjoint connected components of an algebra
B. Let hi : B, —»• M be homomorphisms. Then h — [J ft, is a homomorphism from B

LEMMA 2.5. Lef Bi , . . . , B, be the disjoint connected components of an algebra B
that is a subalgebra of a finite product ofM. Let ft, : B, -> M be homomorphisms of
rank < a. Then ft = (J ht is a homomorphism of rank < a from B to M.

PROOF. Let Nt be the maximum number of homomorphisms of rank less than a
required to show rank(ft;) < a. Let N = t(t — 1) + |B| - 1 + £ ) = 1 Nt. Assume
B < M" and B ^a B' < C < D < M"+* as in the commuting diagram in Figure 1,
where ft' lifts by ft+ to D < M"+*. Since ft, = ft|B, and h\ = ft'|B; we let a, = a|B,
and we have the commuting diagram

B, =»„, B' < C < D

where h\ lifts by the same ft+ to D. As rank(ft,) < a, we may choose a set of
homomorphisms of rank less than a, Y> with \Yt\ < Nt where h\ lifts to C/Yi by,
say, Yi. There is a set Y' of at most |B| - 1 projections which separates B'. Let
Y = r U ULi Y<- W e construct Y a lift of ft to C/ Y using /,.

Let C, be the connected component in C that contains B̂  and let A = C \ [j'i=l C,.
Let i be the natural map from B' to C/ Y where i(x) = [x]y. Define Y '• C/ Y -*• M by

_ { YifoW if 3JC3I Z = [x]Y and x e C(;

| ( U ] ) otherwise.

We need to show that y is a well-defined homomorphism and y o ( = ft'.
From the inclusion of Y' in Y it is easy to show that, for all z e C/ Y, we have

{x € C | z = [x]Y) c Q; U A for some 1 < i < /. Since [JC]K c [JC]̂ . and
[w]Y C [ui]^, if [x]Y = [w]Y then [JC]^ f~l [if]^ 5̂  0. This implies [x]Yi = [w]Yi so Y
is well defined. If z = [x]Y with/*(x) € C, then/*+1(^) € C, and

f(Y(z)) =f(Y([x]Y))=f(Yi([x]Yl)) =

= YdfWh) = Y(f([x]Y)) = Y(f(z))-
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A similar argument holds in the other case. Hence y is a homomorphism. For x e B',
x e B; for some i, so

y o I(JC) = y([x]Y) = yi([x]Yi) = h\{x) = h'(x).

Thus rank(/i) < a. D

The following lemma contains the technical details that make the major arguments
in this paper work.

LEMMA 2.6. Let B be a connected subalgebra of M" and let h : B -» M be a
homomorphism. Assume B ^a B' < C < D < M"+* and h' — h o a~x lifts to D.
Assume also that Y c Hom(D, M) separates B', and, for all branch elements b e B',
coheightc/K([b]1') < coheightM(ft'(b)), then h' lifts to C/ Y.

PROOF. We construct the homomorphism from C/ Y to M that lifts h' as follows.
Define Xo = {[b]Y € C/ Y : b e B'} and ^o : ̂ o -^ M by /iO([b]y) = A'(b)- Note
that Xo is a connected subalgebra of C/ K. /io is well defined because Y separates
B'; and, by construction, /i,0 is a homomorphism. By hypothesis, for all z € Xo,
coheightc/y.(z) < coheightM(^i0(z))- We now construct a chain of subsets Xo c
X\ c . . . c X, = C/ Y and homomorphisms /x, : X, -> M such that /x,|x0 = Mo and
for all z e X,, coheightc/y(z) < coheightM(/i,(z)). Given the connected subalgebra
Xi of C/ y containing Xo and a homomorphism /ii, : X,•. -*• M such that iij\x0 = Mo.
and such that, for all z 6 Xh coheightc/K(z) < coheightM(^i,(z)), construct Xi+l and
/Lii+i : X,+1 ->• M as follows. Let

Xi+l=Xiu[zeC/Y\f(z)eXi}.

Define /i,+i(z) by considering the following three mutually exclusive and exhaustive
cases.

Case I. If z e Xh then /i,+1(z) = M,(Z)-

Case II. If z g X, but M . ( / ( Z ) ) is in a core L, then / " ' (Mi( / (z ) ) ) H L =
}- Let/x,+1(z) =/drc(L)-1(M(C/"(z)))- Since/(z) e X,,

/(/*.-+! (Z)) = / d r c ( L ) (

Case III. z f£ X, and /*,-(/" (z)) is a branch element such that

1 < coheightc/y(/ (z)) < coheightM(/i,(/ (z))).

Pickve Msuchthat/(v) = fii(f (z)) and coheightM(v) is maximal. Let/x,+i(z) = v.
Then

coheightc/K(z) < coheightc/K(/(z)) - 1 < coheightM(/u,(/(z))) - 1

= coheightM(v) = coheightM(/z,+i(z)).
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Wehave/(/*,-+i(z)) = / ( v ) = M/(/(z)) = Hi+i(f (z)). Thus fii+l : Xi+l -* M is a
homomorphism satisfying the same properties as /n,. For some 5, Xs is maximal and
hence a connected component of C/ Y. It is easy to check that C/Ye ISP(M). By
Lemma 2.4 we may extend /J,S to a homomorphism on all of C/ y by wrapping each
component Ca, disjoint from Xs, onto an essential component of Ca. By construction
li, lifts h' to C/ y. D

Figure 3 shows an example where factoring over any set Y of two or fewer pro-
jections would result in the coheight of the equivalence class of the element aaa
being 1 while the coheight of aaa itself is 0, invalidating one of the hypotheses of
Lemma 2.6. Adding to the set Y a homomorphism that forces the equivalence class
of aaa to be a singleton would prevent this situation from occurring. We now define
such homomorphisms.

FIGURE 3. Example illustrating the need for singleton equivalence classes to maintain coheight.

Let B < M". For a branch element b = (bi . . . , bn) G B, we now wish to construct
a homomorphism, gb : B -» M, which has rank less than or equal to 1. Let Aj be the
connected component of B containing b. Pick u in an essential component, Ma, of Ai
such that coheightM(u) is finite and maximal over all elements in essential components
of Ai. Let t = coheightB(b). Note/(u) is in the core of Ma and

t = coheightB(b) < min{coheightM(b,) | 1 < i < n]

< max{coheightM(a) | a is a branch element in any
essential component of Ai}

= coheightM(u).

The first inequality holds because any element of B has a pre-image only if each
coordinate has a pre-image. So we may choose v e Ma with / ' (v) = u. Define
gb(b) = u. For any x in B and any s with 1 < s < t, where fs(x) = b, define
gb(x) = f'~s(v). Wrap the remaining elements of A! around the core of Ma specifying
gbif (b)) = / (u). By Lemma 2.4, we may extend gb by wrapping each connected
component A2, distinct from A lt around an essential component of A2. By construction
gb is a homomorphism whose image contains one component with a single branch
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and, possibly, some cores. In addition, for b e B, we have gb
l(gb(b)) = {b} so the

equivalence class of b in B/ {gb} is a singleton. Thus the coheight of b does not increase
when we factor B over a set of homomorphisms including gb. The significance of this
is found in the next two lemmas.

LEMMA 2.7. For b a branch element of B, rank(gb) < 1-

PROOF. Since gb is a wrapping on all but one component, by Lemma 2.3 and
Lemma 2.5, we may assume without loss of generality that B is a connected com-
ponent. Assume D < Mn+k, g'b = gb o a~l lifts to D, and the following diagram
commutes.

B E>a B' < C < D

Let Y = [yij \ j € 7} be a set of projections that separates B'. By Lemma 2.2 we may
assume \Y\ < |B'| — 1. The natural map embeds B' in C/ Y as Y separates B'. We
will use Lemma 2.6 show g'b lifts to C/ Y.

Recall g'b{cf(b)) = gb(b) lies in an essential component of B and was chosen
such that coheightM(gb(b)) is maximal over all essential components of B, which
are exactly the essential components of B'. For all branch elements a € B', either
coheightM(gb(a)) = oo or for some finite s > 0, fs(a~l(a)) = b. We only need to
consider the latter case.

coheightc/K([a]y) < min{coheightM(^ (a)) \j € J] < coheightM(gb(b))

= coheightM(g;(o-(b))) = coheightM(gb(a)) + 5.

The first inequality holds as an element has a pre-image only if each coordinate has a
pre-image. The second inequality holds because for all i, the projection nj(a) is in an
essential component of B'. Finally, since /s(CT~'(a)) = b, the last equality holds by
the definition of gb. Thus, by Lemma 2.6, g'b lifts to C/ Y. D

LEMMA 2.8. Let B < M" and h:B^-Mbea homomorphism; then rank(/i) < 2.

PROOF. By Lemma 2.5, we may assume that B is connected. Assume B ^a B' <
C < D < M"+* and h' = h o a'1 lifts to D < M"+* as in the commuting diagram
in Figure 1. By Lemma 2.2 we may choose a set of projections Y\ from D to M that
separates B' such that Y\ has size at most |B| — 1. Let

Y2 = [gb : D —> M | b is a branch element of B '} .
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Define Y = Yx U Y2 and let N = (|B| - 1) + |B|. Then \Y\ < N. For a e Y,
rank(a|c) < 1 as either a|c is a projection or is gb\c : C ->• M for some b e B' < C.
Since Y separates points of B', the latter embeds naturally in C/ Y.

For every branch element b e B', the inclusion of gb in Y forces [b]Y — [b].
This means coheightc/),([b]j-) = coheightc(b). Since h' lifts to C, coheightc(b) <
coheightM(/i'(b)). Thus coheightc/K([b]K) < coheightM(/i'(b)). By Lemma 2.6, h!
lifts to C/ Y. D

THEOREM 2.9. Finite mono-unary algebras are strongly dualizable.

PROOF. In [7], Pitkethly shows that finite mono-unary algebras are dualizable. In
[8], Willard shows that dualizable algebras with finite rank are strongly dualizable. •

3. Examples

Consider the mono-unary algebra, M, with four elements {0, a, b, c], where/ (c) =
a, f (a) = f (b) = / (0) = 0. This algebra, found by R. Willard, was previously the
only known algebra with rank 2. In fact, there are still no known algebras with finite
rank larger than 2. Here we illustrate that M has rank 2 and construct an alter ego
that provides a strong duality. This can, in fact, be done for any finite, mono-unary
algebra with core a single element.

Let B = {0, a}. Consider the homomorphism h : B -> M given by h(a) = b
and h(0) = 0. Let N > 1. Let D = MN+l \ {c), where c is the element (c , . . . , c)
and let B ^a B' < D. Then h\ the natural extension of h to B', lifts to D. Neither
a = (a,... , a) has a pre-image in D nor does h'(a) have a pre-image in M. Let Y
be a collection of N or fewer projections, then [a]Y has a pre-image in D/ Y. Thus h!
does not lift to D/ Y. (See the example illustrated in Figure 3.) In order for h! to lift to
D/ Y, Y must have either k + 1 projections or a non-projection. So rank(/i) ^ 1. By
Lemma 2.8 rank(/i) = 2. A similar argument works for any connected mono-unary
algebra that has two branches of different heights. Thus there are many mono-unary
algebras of rank 2.

A relation on M is algebraic if it is a subalgebra of a finite power of M viewed as
a relation. A (partial) operation h is algebraic if it is a homomorphism h : B —> M,
where B is a (subalgebra of a) finite power of M. Let & be a set of algebraic
operations and algebraic partial operations on M. The set of algebraic operations
and partial operations on M generated by & using projections, composition, and
restriction of domain is called the closure of {?'. If the closure of & is all finitary
algebraic and partial algebraic operations on M then we say & generates thefinitary
algebraic operations on M. In order to show that the alter ego, M = (M; ^ , T),
where r is the discrete topology, strongly dualizes M it is sufficient to know that
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M is strongly dualizable and to then show that & generates the finitary algebraic
operations on M (see [1], page 282). By Theorem 2.9, M is strongly dualizable. We
now explicitly construct a set £? of algebraic operations and partial operations of arity
at most 2 that generates the finitary algebraic operations on M. That is, we construct
an alter ego for M that strongly dualizes M.

The partial order defined by 0 < a < c and 0 < b induces a semilattice meet
operation, A, which is a homomorphism from M2 to M. The join operation, V,
defined by the linear ordering 0 < b < a < c is also a homomorphism from M2 to
M. Let B < M". Every homomorphism h : B —• M is defined by its behaviour on
the branches of M" so it will be sufficient to have in & homomorphisms that behave
in a fixed way on a particular branch and are 0 elsewhere. We then may use the join
operation to build h. We now define these branch homomorphisms on M2.

For v e M2 \ {(0, 0)}, define g? : M2 -+ M by

c ifxef-'iv);

a if x = v;

0 otherwise.

Let 0 be the constant valued homomorphism from M to M with value 0 and define
the homomorphism </> : ({0, a, b},f) -+ M by <j>(a) = b and <j>(0) = <j>{b) = 0. We
now show that the set of homomorphisms

& = (A, v, 0, </>} U [g! | 5 6 M2 \ {(0, 0)}}

generates the algebraic operations of M. It will follow that the alter ego Ml =
(M; ^ , r ) , where r is the discrete topology, strongly dualizes M.

For a branch element u e M" we construct, in the closure of ^ , all of the algebraic
operations and maximal algebraic partial operations that are nonzero on the branch of
u and are zero elsewhere. For each s e M, define

Since IaL) IbU lc is nonempty, we can define G? : M" - • M in the closure of & by

Gl(x) = / \ { g'M(7r,(x), Ttj (*)) | i € /„ j € /, and (s, t) e M2 \ {(0, 0)}},

and we have

c ifx € / - ' («) ;

a if x = u\

0 otherwise,
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for all x e M". If Ic is nonempty, define Gc- : M" - • M by Gc- = G"niy Then, for all
x e M \

GUx) =
c ifx 6/" ' ( /(«));
a if * = / («) ;
0 otherwise.

We now define B-u = M" \ / " ' ( M ) and G£ : Bs -» M by G\ = 0 o G£|Bi, so for all

<**)=(* ** = *
10 otherwise.

Finally, for all u e M" define G? : M" - • M by G°- = 0.

LEMMA 3.1. Let h : B -*• M be a homomorphism, where B < M". Then h =
VieB ^ ' " ' I B . and therefore h is in the closure of '<?.

PROOF. Since G\ = Gj(i), for all u, w £ 6 in B either Gfu) = G^ or u and ii) are
in different branches. In the latter case, for all JC , at least one of Ghfa) (x) and G^ (x)
is 0. Thus for x € B, we have {Gh^\x) | ii e B} = {0, h(x)} and Vi 6 B ^ ^ i s

well-defined and equals h(x). D

Thus every algebraic operation and partial operation on M is in the closure of &
so M strongly dualizes M.

Define the algebra L to have universe {0, a, b, c, d] with a unary operation /
defined as follows / (c) = a,f (a) = 0, / (d) = b,f (b) = 0, and / (0) = 0.

d • • c

b • • a

Vo
a

FIGURE 4. The algebra L.

Since the height of every maximal branch of L is 2, L is injective in the quasivariety
it generates. That is, for every pair of algebras B < C in ISP(L), every homomorphism
h : B —>• L can be lifted to C. As injective algebras have rank 1, we have rank(L) = 1.

Note that L e SP(M) and M e SP(L) so they generate the same quasivariety. Thus
a quasivariety can have generators with different ranks. This contrasts with duality
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and strong duality, as two algebras that generate the same quasivariety are either both
(strongly) dualizable or both not (strongly) dualizable. See [4] and [3].

In [5] we give an example of a bi-unary algebra with infinite rank that is dualizable
but not fully dualizable. Hence one remaining open problem is to determine if an
algebra with finite rank greater than 2 exists.

The author wishes to thank the anonymous referee, in particular for the simplifica-
tion of the presentation of the 4-element example, and David Casperson and Hilary
Priestley for their helpful comments.
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