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ON A QUESTION OF GROSS CONCERNING UNIQUENESS
OF ENTIRE FUNCTIONS

HONG-XUN Yl

In this paper, we prove that there exist two finite sets Si (with 1 element) and 52
(with 3 elements) such that any two entire functions / and g satisfying E/(Sj) —
Eg(Sj) for j = 1,2 must be identical. This answers a question posed by Gross.
Examples are provided to show that this result is sharp.

1. INTRODUCTION

Let h be a nonconstant entire function, and let 5 be a subset of distinct elements
in C. Define (see [10])

Eh{S) = ( J {z | h(z) — a, counting multiplicities},
aes

Eh(S) = \^J {z | h(z) — a, ignoring multiplicities}.

Let / and g be two nonconstant entire functions, and let S be a subset of distinct
elements in C. If Ef(S) — Eg(S), we say / and g share the set 5 CM (counting
multiplicity). If Ef(S) = Eg(S), we say / and g share the set S IM (ignoring
multiplicity). As a special case, let S — {a}, where a e C. If Ef({a}) = Eg[{a}) , we
say / and g share the value a CM. If Ef({a}) = Eg({a}), we say / and g share the
value a IM (see [2]).

In 1976, Gross asked the following question:

QUESTION 1. (See [1, Question 6].) Can one find two finite sets Sj (j = 1,2) such
that any two entire functions / and g satisfying Ef(Sj) = Eg(Sj) for j = 1,2 must
be identical?

In 1994, the present author [6] proved the following theorem, which answered the
above Question 1 in the affirmative.
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THEOREM A. Let Si = {w | wn-l = 0} and 5 2 = {a}, where n ^ 5, a / 0 and

a2 n 7̂  1. I f / and 5 are entire functions such that E/(Sj) — Eg(Sj) for j = 1,2, then

/ = <?•

In [1] Gross wrote: "If the answer to Question 6 is affirmative, it would be inter-
esting to know how large both sets would have to be."

Now it is natural to ask the following question:

QUESTION 2. What are the smallest cardinalities of Si and 62 respectively, where
Si and 52 are two finite sets such that any two entire functions / and g satisfying
Ef(Sj) = Eg(Sj) for j = 1,2 must be identical?

In this paper, we prove the following theorems, which answer Question 2.

THEOREM 1 . Let 5X = {0} and 5 2 = | w I W2(UJ + a) - b = 0 J , where a and

b are two nonzero constants such that the algebraic equation u2(ui + a) - b = 0 has
no multiple roots. If f and g are two entire functions satisfying Ef(Sj) = E9(Sj) for

j = 1,2, then f = g.

R E M A R K . Let Si = {0} and 5 2 = { 2 , - 3 , - 6 } . It is easy to see that S2 = {w |
uj2(uj + 7) — 36 = 0 } . From Theorem 1 we immediately obtain that if / and g are
entire functions satisfying Ef(Sj) = Eg(Sj) for j — 1,2, then / = g.

THEOREM 2 . If Si and S2 are two finite sets such that any two entire func-

tions f and g satisfying Ef(Sj) — Eg(Sj) for j = 1,2 must be identical, then

max{#(S i ) , # (52 )} > 3, where # ( 5 ) denotes the cardinality of the set S.

R E M A R K . From Theorem 2 we immediately obtain that the smallest cardinalities of Si

and 52 are 1 and 3 respectively, where Si and 52 are two finite sets such that any two
entire functions / and g satisfying Ef(Sj) = Eg(Sj) for j = 1,2 must be identical.
This shows that Theorem 1 is sharp.

2. SOME LEMMAS

In this paper, we use the usual notations of Nevanlinna theory of meromorphic

functions as explained in [3].

LEMMA 1 . (See [9, Lemma 5].) Let f and g be two nonconstant meromorphic

functions, and let ci, c2 and c$ be three nonzero constants. If

c2g = c3,

then

T(r,f) < N(r, j^j +Jf(r, ^ +N(r,f) + S(r,f).
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Let / i b e a nonconstant meromorphic function. We denote by N2(r, h) the counting

function of poles of h, where a simple pole is counted once and a multiple pole is counted

two times (see [7]).

LEMMA 2 . (See [7, Theorem 1].) Let F and G be two nonconstant meromorphic

functions such that F and G share the value 1 CM. If

N2(r,l/F) + N2(r,F) + N2(r,l/G) + N2(r,G)
(2.1) lmmip ^ < 1,

where T(r) = max{T(r, F),T(r, G)}, I denotes any set of infinite linear measure of

0 < r < oo, then F = G or FG=\.

LEMMA 3 . Let

(2* F / 2 ( / + a ) C - g 2 ( g + a )

(2.2) F- , G- ,
where f and g are two nonconstant entire functions, a and b are two nonzero constants.

Then FGjkl.

P R O O F : If F • G = 1, from (2.2) we have

From this we know that 0 and —a are Picard exceptional values of / , which is impos-

sible. Thus F-G^l. D

LEMMA 4 . Let f and g be two nonconstant entire functions which share the

value 0 IM. If F = G, where F and G are given by (2.2), then f = g.

PROOF: Since F = G, we have from (2.2)

(2.3) f2(f + a) = g2(g + a).

Noting / and g share the value 0 IM, from (2.3) we know that / and g share 0 CM.

From (2.3) we have

(2.4) f3-g3 = -a(f2-g2).

If f3 £g3, from (2.4) we obtain

q(/t + l)
( 2 5 ) 9~ (h-u)(h-u*)'

where h = f/g and u — exp((2?ri)/3). From (2.5) we know that h is a nonconstant
meromorphic function. Noting / and g share the value 0 CM, from h — f/g we know
that 0 and oo are Picard exceptional values of h. Since g is a nonconstant entire
function, from (2.5) we know that u and u2 are Picard exceptional values of h, which
is impossible. Thus f3 = g3 and f2 = g2. From this, we get / = g. •
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3. P R O O F OF THEOREM 1

Let F and G be given by (2.2). Thus,

(3.1) T(r,F) = 3T(r,f) + S(rJ), T(r,G) = 3T(r,g) + S(r,g).

Set

F' G'( 3 2 > "=p^-<h
We discuss the following two cases.

CASE 1. Suppose that H = 0. By integration we have from (3.2)

(3.3) F - 1 = A(G - 1),

where A is a nonzero constant. We discuss the following two subcases.

CASE 1.1. Assume that A = 1. From (3.3) we have F = G. By Lemma 4 we get

f = 9-

CASE 1.2. Assume that A ^ 1. Suppose 0 is not a Picard exceptional value of / and g.

Since / and g share the value 0 CM, then there exists z0 such that f(zo) = g(zo) = 0.
From (2.2) we obtain F(z0) = G{ZQ) — 0. From this and (3.3) we get A = 1, which is
a contradiction. Thus, 0 is a Picard exceptional value of / and g. From (3.3) we have

(3.4) F-AG = 1-A.

From this we have

(3.5) T(r,G)=T(r,F) + O(l).

By Lemma 1, we obtain from (2.2), (3.1), (3.4) and (3.5)

which is impossible.

CASE 2. Suppose that H ^ 0. Then F£G. By Ef(S2) = Eg(S2), we know that F
and G share the value 1 CM. From (3.2) we have

(3.6) T(r, H) = m(r, H) + N(r, H) = S(r, F) + S(r, G).
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Since / and g share the value 0 CM, / and g have the same zeros. Let z0 be a zero
of / and g. From (2.2) and (3.2) we know that ZQ is a zero of H. Prom this and (3.6)
we get

From this, (2.2) and (3.1) we obtain

^ - T(r, F) + ± T(r, G) + S(r, F) + S(r, G).

Thus,

N2 (r, j ) + N2(r, F) + N2 (r, ^) + N2(r, G) 2

limsup ^ -—- '- ^ - < 1,
r-+oo T(r) 3

where T(r) = max{T(r, F),T(r, G)}, I denotes any set of infinite linear measure of
0 < r < oo. By Lemma 2, we obtain F • G = 1. Again by Lemma 3, we get a
contradiction.

This completes the proof of Theorem 1. D

4. PROOF OF THEOREM 2

4.1. SOME EXAMPLES.

EXAMPLE 1. Let Si = {a} and S2 = {6}, where a and 6 are any two finite distinct
complex numbers. Let

f(z) =a+(b- a)eh{z\ g(z) = a+(b- a ) e - " ( z ) ,

where h(z) is a nonconstant entire function. It is easy to show that Ef(Sj) = Eg(Sj)
(j = 1,2), but f £g.

EXAMPLE 2. (See [8].) Let Si = {a} and S2 = {6i,62}, where o, 6X and 62 are any
three finite distinct complex numbers. Let

f(z) =a+(h- a)e"W, g(z) = a + (62 - a)e-"(z\

where h(z) is a nonconstant entire function. It is easy to show that Ef(Sj) = Eg(Sj)
(j = 1,2), but / £ g.
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E X A M P L E 3. (See [4].) Let Si = {ai ,a2} and 52 = {61,62}, where a i , a2 , 61 and b2

are any four finite distinct complex numbers satisfying a\ + 02 ^ 61 + b2 • Let

f(z) = d+(d- ai)eV'\ g(z) =d+(d- a2)e~h^\

where h(z) is a nonconstant entire function, d = (aia2 — bib2)/(ai + a2 - bi — b2). It
is easy to show that Ef(Sj) = Eg(Sj) (j = 1,2), but / ^ g.

EXAMPLE 4. (See [5].) Let S\ — {ai,a2} and S2 = {bi,b2}, where ai, a2, bx and
b2 axe any four finite distinct complex numbers satisfying ai + a2 — bi 4- b2. Let
f(z) be a nonconstant entire function, g(z) = ai + a2 - f(z). It is easy to show that

= Eg(Sj) (j = 1,2), but / ft g.

4.2. PROOF OF THEOREM 2.

Suppose that max{#(Si), #(S2)} < 3. We proceed to get a contradiction. If
#(Si) = #(52) = 1, from Example 1 we have a contradiction. If #(5X) = 1 and
#(S2) = 2 or #(Si) = 2 and #(S2) = 1, from Example 2 we have again a contradiction.
If #(5i) = #(S2) = 2, from Example 3 and Example 4 we can get a contradiction.
This completes the proof of Theorem 2. D

5. CONCLUDING REMARK

In fact, in Section 3 of this paper we proved the following theorem, which is an
improvement of Theorem 1.

THEOREM 3 . Let Si = {0} and S2 = {w I LJ2{W + a) - b = 0 } , where a and b

are two nonzero constants such that the algebraic equation V2(LJ + a) — b — 0 has no

multiple roots. If f and g are two entire functions satisfying Ef(Si) = Eg(Si) and

Ef{S2) = Eg{S2), then f = g.

Proceeding as in the proof of Theorem 1, we can prove the following result, which

is an extension of Theorem 3.

THEOREM 4 . Let Si = {0} and S2 — {w \ w"(w + o) - 6 = 0 } , where n ( ^ 2)
is an integer, a and b are two nonzero constants such that the algebraic equation

u>n (u> + a) —b = 0 has no multiple roots. If f and g are two entire functions satisfying

Ef(Si) - Eg(Si) and Ef(S2) = Eg(S2), then f = g.

Let n ( ^ 2) be an integer, and let a and b be two nonzero constants. It is easy to
show that if b ^ (nnan+1)/(n + l ) n + 1 , the algebraic equation wn(w + a) - b = 0 has
no multiple roots. Specially, if b ̂  4a3/27, the algebraic equation w2(w + a) — b = 0
has no multiple roots.
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