
1
Introduction

A compiler was originally a program that “compiled”
subroutines [a link-loader]. When in 1954 the combina-
tion “algebraic compiler” came into use, or rather into
misuse, the meaning of the term had already shifted into
the present one.

Bauer and Eickel [1975]

This book describes techniques, data structures, and algorithms for translating
programming languages into executable code. A modern compiler is often or-
ganized into many phases, each operating on a different abstract “language.”
The chapters of this book follow the organization of a compiler, each covering
a successive phase.

To illustrate the issues in compiling real programming languages, we show
how to compile MiniJava, a simple but nontrivial subset of Java. Program-
ming exercises in each chapter call for the implementation of the correspond-
ing phase; a student who implements all the phases described in Part I of the
book will have a working compiler. MiniJava is easily extended to support
class extension or higher-order functions, and exercises in Part II show how
to do this. Other chapters in Part II cover advanced techniques in program
optimization. Appendix A describes the MiniJava language.

The interfaces between modules of the compiler are almost as important
as the algorithms inside the modules. To describe the interfaces concretely,
it is useful to write them down in a real programming language. This book
uses Java – a simple object-oriented language. Java is safe, in that programs
cannot circumvent the type system to violate abstractions; and it has garbage
collection, which greatly simplifies the management of dynamic storage al-
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FIGURE 1.1. Phases of a compiler, and interfaces between them.

location. Both of these properties are useful in writing compilers (and almost
any kind of software).

This is not a textbook on Java programming. Students using this book who
do not know Java already should pick it up as they go along, using a Java
programming book as a reference. Java is a small enough language, with
simple enough concepts, that this should not be difficult for students with
good programming skills in other languages.

1.1 MODULES AND INTERFACES

Any large software system is much easier to understand and implement if
the designer takes care with the fundamental abstractions and interfaces. Fig-
ure 1.1 shows the phases in a typical compiler. Each phase is implemented as
one or more software modules.

Breaking the compiler into this many pieces allows for reuse of the compo-
nents. For example, to change the target machine for which the compiler pro-
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duces machine language, it suffices to replace just the Frame Layout and In-
struction Selection modules. To change the source language being compiled,
only the modules up through Translate need to be changed. The compiler
can be attached to a language-oriented syntax editor at the Abstract Syntax
interface.

The learning experience of coming to the right abstraction by several itera-
tions of think–implement–redesign is one that should not be missed. However,
the student trying to finish a compiler project in one semester does not have
this luxury. Therefore, we present in this book the outline of a project where
the abstractions and interfaces are carefully thought out, and are as elegant
and general as we are able to make them.

Some of the interfaces, such as Abstract Syntax, IR Trees, and Assem, take
the form of data structures: For example, the Parsing Actions phase builds an
Abstract Syntax data structure and passes it to the Semantic Analysis phase.
Other interfaces are abstract data types; the Translate interface is a set of
functions that the Semantic Analysis phase can call, and the Tokens interface
takes the form of a function that the Parser calls to get the next token of the
input program.

DESCRIPTION OF THE PHASES
Each chapter of Part I of this book describes one compiler phase, as shown in
Table 1.2

This modularization is typical of many real compilers. But some compil-
ers combine Parse, Semantic Analysis, Translate, and Canonicalize into one
phase; others put Instruction Selection much later than we have done, and
combine it with Code Emission. Simple compilers omit the Control Flow
Analysis, Data Flow Analysis, and Register Allocation phases.

We have designed the compiler in this book to be as simple as possible, but
no simpler. In particular, in those places where corners are cut to simplify the
implementation, the structure of the compiler allows for the addition of more
optimization or fancier semantics without violence to the existing interfaces.

1.2 TOOLS AND SOFTWARE

Two of the most useful abstractions used in modern compilers are context-
free grammars, for parsing, and regular expressions, for lexical analysis. To
make the best use of these abstractions it is helpful to have special tools,
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Chapter Phase Description
2 Lex Break the source file into individual words, or tokens.
3 Parse Analyze the phrase structure of the program.
4 Semantic

Actions
Build a piece of abstract syntax tree corresponding to each
phrase.

5 Semantic
Analysis

Determine what each phrase means, relate uses of variables to
their definitions, check types of expressions, request translation
of each phrase.

6 Frame
Layout

Place variables, function-parameters, etc. into activation records
(stack frames) in a machine-dependent way.

7 Translate Produce intermediate representation trees (IR trees), a nota-
tion that is not tied to any particular source language or target-
machine architecture.

8 Canonicalize Hoist side effects out of expressions, and clean up conditional
branches, for the convenience of the next phases.

9 Instruction
Selection

Group the IR-tree nodes into clumps that correspond to the ac-
tions of target-machine instructions.

10 Control
Flow
Analysis

Analyze the sequence of instructions into a control flow graph
that shows all the possible flows of control the program might
follow when it executes.

10 Dataflow
Analysis

Gather information about the flow of information through vari-
ables of the program; for example, liveness analysis calculates
the places where each program variable holds a still-needed value
(is live).

11 Register
Allocation

Choose a register to hold each of the variables and temporary
values used by the program; variables not live at the same time
can share the same register.

12 Code
Emission

Replace the temporary names in each machine instruction with
machine registers.

TABLE 1.2. Description of compiler phases.

such as Yacc (which converts a grammar into a parsing program) and Lex
(which converts a declarative specification into a lexical-analysis program).
Fortunately, such tools are available for Java, and the project described in this
book makes use of them.

The programming projects in this book can be compiled using any Java
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1.3. DATA STRUCTURES FOR TREE LANGUAGES

Stm → Stm ; Stm (CompoundStm)

Stm → id := Exp (AssignStm)

Stm → print ( ExpList ) (PrintStm)

Exp → id (IdExp)

Exp → num (NumExp)

Exp → Exp Binop Exp (OpExp)

Exp → ( Stm , Exp ) (EseqExp)

ExpList → Exp , ExpList (PairExpList)
ExpList → Exp (LastExpList)
Binop →+ (Plus)
Binop →− (Minus)
Binop →× (Times)
Binop → / (Div)

GRAMMAR 1.3. A straight-line programming language.

compiler. The parser generators JavaCC and SableCC are freely available on
the Internet; for information see the World Wide Web page

http://uk.cambridge.org/resources/052182060X (outside North America);
http://us.cambridge.org/titles/052182060X.html (within North America).

Source code for some modules of the MiniJava compiler, skeleton source
code and support code for some of the programming exercises, example Mini-
Java programs, and other useful files are also available from the same Web
address. The programming exercises in this book refer to this directory as
$MINIJAVA/ when referring to specific subdirectories and files contained
therein.

1.3 DATA STRUCTURES FOR TREE LANGUAGES

Many of the important data structures used in a compiler are intermediate
representations of the program being compiled. Often these representations
take the form of trees, with several node types, each of which has different
attributes. Such trees can occur at many of the phase-interfaces shown in
Figure 1.1.

Tree representations can be described with grammars, just like program-
ming languages. To introduce the concepts, we will show a simple program-
ming language with statements and expressions, but no loops or if-statements
(this is called a language of straight-line programs).

The syntax for this language is given in Grammar 1.3.
The informal semantics of the language is as follows. Each Stm is a state-

ment, each Exp is an expression. s1; s2 executes statement s1, then statement
s2. i:=e evaluates the expression e, then “stores” the result in variable i .
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CHAPTER ONE. INTRODUCTION

print(e1, e2, . . . , en) displays the values of all the expressions, evaluated
left to right, separated by spaces, terminated by a newline.

An identifier expression, such as i , yields the current contents of the vari-
able i . A number evaluates to the named integer. An operator expression
e1 op e2 evaluates e1, then e2, then applies the given binary operator. And
an expression sequence (s, e) behaves like the C-language “comma” opera-
tor, evaluating the statement s for side effects before evaluating (and returning
the result of) the expression e.

For example, executing this program

a := 5+3; b := (print(a, a-1), 10*a); print(b)

prints

8 7
80

How should this program be represented inside a compiler? One represen-
tation is source code, the characters that the programmer writes. But that is
not so easy to manipulate. More convenient is a tree data structure, with one
node for each statement (Stm) and expression (Exp). Figure 1.4 shows a tree
representation of the program; the nodes are labeled by the production labels
of Grammar 1.3, and each node has as many children as the corresponding
grammar production has right-hand-side symbols.

We can translate the grammar directly into data structure definitions, as
shown in Program 1.5. Each grammar symbol corresponds to an abstract
class in the data structures:

Grammar class
Stm Stm
Exp Exp
ExpList ExpList
id String
num int

For each grammar rule, there is one constructor that belongs to the class
for its left-hand-side symbol. We simply extend the abstract class with a “con-
crete” class for each grammar rule. The constructor (class) names are indi-
cated on the right-hand side of Grammar 1.3.

Each grammar rule has right-hand-side components that must be repre-
sented in the data structures. The CompoundStm has two Stm’s on the right-
hand side; the AssignStm has an identifier and an expression; and so on.
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.
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AssignStm

a OpExp

NumExp

5

Plus NumExp

3

CompoundStm

AssignStm

b EseqExp

PrintStm

PairExpList

IdExp

a

LastExpList

OpExp
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a

Minus NumExp

1
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a := 5 + 3 ; b := ( print ( a , a - 1 ) , 10 * a ) ; print ( b )

FIGURE 1.4. Tree representation of a straight-line program.

These become fields of the subclasses in the Java data structure. Thus, Com-
poundStm has two fields (also called instance variables) called stm1 and
stm2; AssignStm has fields id and exp.

For Binop we do something simpler. Although we could make a Binop
class – with subclasses for Plus, Minus, Times, Div – this is overkill because
none of the subclasses would need any fields. Instead we make an “enumer-
ation” type (in Java, actually an integer) of constants (final int variables)
local to the OpExp class.

Programming style. We will follow several conventions for representing tree
data structures in Java:

1. Trees are described by a grammar.
2. A tree is described by one or more abstract classes, each corresponding to a

symbol in the grammar.
3. Each abstract class is extended by one or more subclasses, one for each gram-

mar rule.
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public abstract class Stm {}

public class CompoundStm extends Stm {
public Stm stm1, stm2;
public CompoundStm(Stm s1, Stm s2) {stm1=s1; stm2=s2;}}

public class AssignStm extends Stm {
public String id; public Exp exp;
public AssignStm(String i, Exp e) {id=i; exp=e;}}

public class PrintStm extends Stm {
public ExpList exps;
public PrintStm(ExpList e) {exps=e;}}

public abstract class Exp {}

public class IdExp extends Exp {
public String id;
public IdExp(String i) {id=i;}}

public class NumExp extends Exp {
public int num;
public NumExp(int n) {num=n;}}

public class OpExp extends Exp {
public Exp left, right; public int oper;
final public static int Plus=1,Minus=2,Times=3,Div=4;
public OpExp(Exp l, int o, Exp r) {left=l; oper=o; right=r;}}

public class EseqExp extends Exp {
public Stm stm; public Exp exp;
public EseqExp(Stm s, Exp e) {stm=s; exp=e;}}

public abstract class ExpList {}

public class PairExpList extends ExpList {
public Exp head; public ExpList tail;
public PairExpList(Exp h, ExpList t) {head=h; tail=t;}}

public class LastExpList extends ExpList {
public Exp head;
public LastExpList(Exp h) {head=h;}}

PROGRAM 1.5. Representation of straight-line programs.
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PROGRAMMING EXERCISE

4. For each nontrivial symbol in the right-hand side of a rule, there will be one
field in the corresponding class. (A trivial symbol is a punctuation symbol
such as the semicolon in CompoundStm.)

5. Every class will have a constructor function that initializes all the fields.
6. Data structures are initialized when they are created (by the constructor func-

tions), and are never modified after that (until they are eventually discarded).

Modularity principles for Java programs. A compiler can be a big program;
careful attention to modules and interfaces prevents chaos. We will use these
principles in writing a compiler in Java:

1. Each phase or module of the compiler belongs in its own package.
2. “Import on demand” declarations will not be used. If a Java file begins with

import A.F.*; import A.G.*; import B.*; import C.*;

then the human reader will have to look outside this file to tell which package
defines the X that is used in the expression X.put().

3. “Single-type import” declarations are a better solution. If the module begins
import A.F.W; import A.G.X; import B.Y; import C.Z;

then you can tell without looking outside this file that X comes from A.G.
4. Java is naturally a multithreaded system. We would like to support multiple

simultaneous compiler threads and compile two different programs simultane-
ously, one in each compiler thread. Therefore, static variables must be avoided
unless they are final (constant). We never want two compiler threads to be
updating the same (static) instance of a variable.

P R O G R A M STRAIGHT-LINE PROGRAM INTERPRETER
Implement a simple program analyzer and interpreter for the straight-line
programming language. This exercise serves as an introduction to environ-
ments (symbol tables mapping variable names to information about the vari-
ables); to abstract syntax (data structures representing the phrase structure of
programs); to recursion over tree data structures, useful in many parts of a
compiler; and to a functional style of programming without assignment state-
ments.

It also serves as a “warm-up” exercise in Java programming. Programmers
experienced in other languages but new to Java should be able to do this
exercise, but will need supplementary material (such as textbooks) on Java.

Programs to be interpreted are already parsed into abstract syntax, as de-
scribed by the data types in Program 1.5.

However, we do not wish to worry about parsing the language, so we write
this program by applying data constructors:
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Stm prog =
new CompoundStm(new AssignStm("a",

new OpExp(new NumExp(5),
OpExp.Plus, new NumExp(3))),

new CompoundStm(new AssignStm("b",
new EseqExp(new PrintStm(new PairExpList(new IdExp("a"),

new LastExpList(new OpExp(new IdExp("a"),
OpExp.Minus,new NumExp(1))))),

new OpExp(new NumExp(10), OpExp.Times,
new IdExp("a")))),

new PrintStm(new LastExpList(new IdExp("b")))));

Files with the data type declarations for the trees, and this sample program,
are available in the directory $MINIJAVA/chap1.

Writing interpreters without side effects (that is, assignment statements
that update variables and data structures) is a good introduction to denota-
tional semantics and attribute grammars, which are methods for describing
what programming languages do. It’s often a useful technique in writing com-
pilers, too; compilers are also in the business of saying what programming
languages do.

Therefore, in implementing these programs, never assign a new value to
any variable or object field except when it is initialized. For local variables,
use the initializing form of declaration (for example, int i=j+3;) and for
each class, make a constructor function (like the CompoundStm constructor
in Program 1.5).

1. Write a Java function int maxargs(Stm s) that tells the maximum num-
ber of arguments of any print statement within any subexpression of a given
statement. For example, maxargs(prog) is 2.

2. Write a Java function void interp(Stm s) that “interprets” a program
in this language. To write in a “functional programming” style – in which
you never use an assignment statement – initialize each local variable as you
declare it.

Your functions that examine each Expwill have to use instanceof to de-
termine which subclass the expression belongs to and then cast to the proper
subclass. Or you can add methods to the Exp and Stm classes to avoid the use
of instanceof.

For part 1, remember that print statements can contain expressions that
contain other print statements.
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For part 2, make two mutually recursive functions interpStm and
interpExp. Represent a “table,” mapping identifiers to the integer values
assigned to them, as a list of id× int pairs.

class Table {
String id; int value; Table tail;
Table(String i, int v, Table t) {id=i; value=v; tail=t;}

}

Then interpStm is declared as

Table interpStm(Stm s, Table t)

taking a table t1 as argument and producing the new table t2 that’s just like
t1 except that some identifiers map to different integers as a result of the
statement.

For example, the table t1 that maps a to 3 and maps c to 4, which we write
{a 
→ 3, c 
→ 4} in mathematical notation, could be represented as the linked
list a 3 c 4 .

Now, let the table t2 be just like t1, except that it maps c to 7 instead of 4.
Mathematically, we could write,

t2 = update(t1, c, 7),

where the update function returns a new table {a 
→ 3, c 
→ 7}.
On the computer, we could implement t2 by putting a new cell at the head

of the linked list: a 3 c 4c 7 , as long as we assume
that the first occurrence of c in the list takes precedence over any later occur-
rence.

Therefore, the update function is easy to implement; and the correspond-
ing lookup function

int lookup(Table t, String key)

just searches down the linked list. Of course, in an object-oriented style,
int lookup(String key) should be a method of the Table class.

Interpreting expressions is more complicated than interpreting statements,
because expressions return integer values and have side effects. We wish
to simulate the straight-line programming language’s assignment statements
without doing any side effects in the interpreter itself. (The print statements
will be accomplished by interpreter side effects, however.) The solution is to
declare interpExp as
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class IntAndTable {int i; Table t;
IntAndTable(int ii, Table tt) {i=ii; t=tt;}

}
IntAndTable interpExp(Exp e, Table t) · · ·

The result of interpreting an expression e1 with table t1 is an integer value i
and a new table t2. When interpreting an expression with two subexpressions
(such as an OpExp), the table t2 resulting from the first subexpression can be
used in processing the second subexpression.

E X E R C I S E S

1.1 This simple program implements persistent functional binary search trees, so
that if tree2=insert(x,tree1), then tree1 is still available for lookups
even while tree2 can be used.

class Tree {Tree left; String key; Tree right;
Tree(Tree l, String k, Tree r) {left=l; key=k; right=r;}

Tree insert(String key, Tree t) {
if (t==null) return new Tree(null, key, null)
else if (key.compareTo(t.key) < 0)

return new Tree(insert(key,t.left),t.key,t.right);
else if (key.compareTo(t.key) > 0)

return new Tree(t.left,t.key,insert(key,t.right));
else return new Tree(t.left,key,t.right);

}

a. Implement a member function that returns true if the item is found, else
false.

b. Extend the program to include not just membership, but the mapping of
keys to bindings:

Tree insert(String key, Object binding, Tree t);
Object lookup(String key, Tree t);

c. These trees are not balanced; demonstrate the behavior on the following
two sequences of insertions:
(a) t s p i p f b s t
(b) a b c d e f g h i

*d. Research balanced search trees in Sedgewick [1997] and recommend
a balanced-tree data structure for functional symbol tables. Hint: To
preserve a functional style, the algorithm should be one that rebalances
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on insertion but not on lookup, so a data structure such as splay trees is
not appropriate.

e. Rewrite in an object-oriented (but still “functional”) style, so that insertion
is now t.insert(key) instead of insert(key,t). Hint: You’ll need an
EmptyTree subclass.
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