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COLLOCATION WITH CHEBYSHEV POLYNOMIALS
FOR SYMM'S INTEGRAL EQUATION ON AN INTERVAL
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Abstract

A collocation method for Symm's integral equation on an interval (a first-kind inte-
gral equation with logarithmic kernel), in which the basis functions are Chebyshev
polynomials multiplied by an appropriate singular function and the collocation
points are Chebyshev points, is analysed. The novel feature lies in the analysis,
which introduces Sobolev norms that respect the singularity structure of the exact
solution at the ends of the interval. The rate of convergence is shown to be faster
than any negative power of n , the degree of the polynomial space, if the driving
term is smooth.

1. Introduction

Symm's integral equation [14] on an interval

~ J \og\x-y\v(y)dy = g(x), xe[a,b] (1.1)

for b — a ^ 4 and g suitably smooth, has a unique solution with endpoint
singularities of the form (x - a)~l/2(b - x)~i/2 (see [6]).

The collocation method for Symm's equation to be considered here, based
on Chebyshev polynomials, is probably the easiest method of obtaining a
numerical solution. It correctly represents the endpoint singularities of the
exact solution, and yields faster-than-polynomial convergence if g is smooth.

We do not claim that the method is new. The new element lies in the

'School of Mathematics, University of New South Wales, Sydney, N.S.W. 2033, Australia.
2School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA.
3 Present address: Institut fiir Angewandte Mathematik, Universitat Hannover, Hannover 1,
Germany.
© Copyright Australian Mathematical Society 1992, Serial-fee code 0334-2700/92

199

https://doi.org/10.1017/S0334270000008729 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008729


200 I. H. Sloan and E. P. Stephan [2]

analysis: in the present work we establish rates of convergence in suitable
Sobolev spaces, by means of an analysis similar to that used by Saranen,
Arnold and Wendland [9, 1] for spline collocation on smooth closed curves.
One point of interest lies in the definition of the Sobolev norms, here defined
in such a way as to respect the singularity structure of the exact solution.

Recently Costabel, Ervin and Stephan [4] proved in weighted Sobolev
spaces the convergence of the collocation method for Symm's integral equa-
tion for open curves with piecewise linear trial functions which are constant
near the endpoints.

The Galerkin method with piecewise polynomial test and trial functions
for Symm's integral equation on an interval has been analysed by Stephan
and Wendland in [13]. There higher convergence rates, compared with the
traditional Galerkin method, have been obtained by augmenting the test and
trial spaces by special singular elements which imitate the behaviour of the
exact solution at the endpoints of the interval. The effect of graded meshes
on the convergence rate of the standard Galerkin error has been analysed by
several authors, including Bourlard, Nicaise, and Paquet [3], von Petersdorff
[7], Yan and Sloan [15]. All the above mentioned papers deal with the di-
version of the Galerkin method where the degree p of the elements is fixed,
usually at a low value, typically p = 0, 1, 2, and the accuracy is achieved
by refining the mesh. The p-version, which fixes the mesh and achieves
the accuracy by increasing the degree p of the elements, has been analysed
by Stephan and Suri in [12] for Symm's integral equation on an open curve.
There they show that the p-version of the Galerkin boundary element method
has twice the rate of convergence of the usual A-version with uniform mesh.
Meanwhile, convergence results have also been derived for the h—p version
of the boundary element method, which is a combination of the standard
A-version and the p-version (see Stephan [11], and Guo, von Petersdorff,
Stephan [5]). If a geometric mesh refinement towards the endpoints of the
interval is used together with suitably chosen piecewise polynomial test and
trial functions, then the convergence of the Galerkin error of the A-version
is exponential (see [11]). For numerical experiments, see [5].

A method similar to the present method is obtained as a special case of one
recently proposed by Atkinson and Sloan [2] for Symm's integral equation
on a smooth open curve. The latter is a fully discrete method based on first
making the variable transformation of Yan and Sloan [16] (see below), and
then applying a discrete Galerkin method. If the curve becomes straight then
the method is close to the present method. The analysis, however, is quite
different.

Initially we consider the special case a = -I, b = + 1 , deferring to the last
section the almost trivial modifications that are needed for general intervals.
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Thus the equation we consider is

Vv(x):=-^J_log\x-y\v(y)dy = g(x), x e [ - l , l ] . (1.2)

The method and the analysis that follows are based on the following special
property of the operator V (see [8]):

where
(o(x) = (I - x2yi/2, J t e ( - l , l ) , (1.4)

and Tj is the Chebyshev polynomial of the first kind of degree j , defined
by

Tj(cosd) = cos(jO), j>0. (1.5)

One way of presenting the material of this paper would be to make the explicit
change of variable

x = cos0 (1.6)

in (1.2), as in [16], and to replace the Cheybshev polynomials throughout by
cosine polynomials. We choose to work in terms of the original variable x,
but the alternative view will often emerge.

2. The collocation method

In the light of the property (1.3), it is natural to approximate the solution
v of (1.2) by co times a polynomial of degree < n - 1. As collocation points
we use

f ^ = U j = \ , . . . , « , (2.1)
the n zeros of Tn(x). Thus the method, in principle, is: find vh e coFn_i

such that
Vvh(Xj) = g(Xj), j = \ , . . . , n . (2.2)

Here Pn_, denotes the space of polynomials of degree < n - 1 restricted to
[ - 1 , 1]. In practice one writes

so that, with the aid of (1.3),

k=\
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Then (2.2) represents a set of linear equations for a0, ax,... , an_l, with
easily computed matrix elements.

In fact, however, one may even obtain explicit expressions for aQ,...,an_l

by exploiting the discrete orthogonality property of the Chebyshev polyno-
mials: define

(u,w)= f u(x)w(x)co(x)dx, (2.5)
J-i

an inner product incorporating the weight co, and

(u,w)n^-^2 u{xk)w{xk), (2.6)
fc=l

a corresponding discrete inner product obtained by using the Gauss-
Chebyshev quadrature rule, with xk as in (2.1). Then because the n-point
Gauss-Chebyshev quadrature rule is exact for all polynomials of degree <
2« - 1, we have, for j + k < In - 1 (and therefore in particular for
j,k=0,l,...,n - 1), the discrete orthogonality property

Tto, <27»
with dkj = 0 for k ^ j and 5kj — 1 for k = j . It then follows from (2.2),
(2.4) and (2.7) that the coefficients in (2.3) are given explicitly by

b (2-8)
k (g,k)n, , , - l . (2.9)

In particular, if g e Pn_j then the method yields the exact answer, i.e.,
vh=v.

3. The convergence result

It is useful to begin by defining some norms by which the error may be
described. We start by writing the solution of (1.2) as v = cou. It is well
known from the theory of orthogonal polynomials that if

/ , i 2 y / 2
L2 ' ' \J-l J

then M has a Chebyshev polynomial expansion

k=l
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where
u(k) = l(u,Tk), k = 0,\,..., (3.1)

and the expansion converges in the sense that

1/2 f i 1 ^ 2

L k=i J

Guided by the latter expression, we may define Sobolev-type norms for arbi-
trary s e l by

1/2 I" 1 1 ' ^

and define n to be the closure of the set of all polynomials with respect
to this norm. Roughly speaking, u e Hs if U(6) := M(COS 6) has s square-
integrable derivatives. More precisely, we may write U as a Fourier cosine
series,

where

U(0) = i U(0) + ]T U(k) cos kd,
k=l

U(k) = - [ coskdU(6)dd = - f cosk9u(cos6)de
n Jo it Jo

= nf\ = ^{u, Tk) = u(k).

Then the usual Sobolev norm of U is

\\U\\2
H, := | [i|&(0)|2 + ]

L k=\ J

The definition (3.3) is actually a very convenient way to define the norm
of u, if we think about the application: the potential at a point (x , , x2) off
the slit ( - 1 , 1) x {0} is, by definition,

1 f1

,x2) = --J log |(x,, x2) - (x, 0)\v(x) dx

1 /"'
= - - j logK^i. x2) - (x, 0)\u(x)co(x) dx

1 /"
= — / log|(x,, x,)- (cos0,O)|M(COS6)d6

n Jo

= -- T l o g K x , , x2) - (cos6,0)\U(6)dB.
it Jo
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With z{6) := - £ log !(;<:,, x2) - (cos0, 0) | , a smooth function, we see that
<f> is just the L2 inner product of U and z on the interval (0, n). Hence,
by the standard duality property of the Hs and H~s norms,

\<Kxx, x2)\ <

Similarly, if an approximate potential <j)h is denned by

1 /"'

<t>h(
xi > xi) :=~nJ_ l o g K*i' xi) ~ (x' °)\v

where vh = couh is the solution of (2.2), then we have

\<t>h(Xl, x2) - <t>{xx, x2)\ < \\uh - « | | 5 - , | | z

dx

(3.4)

Thus the error in the potential inherits all the negative norm convergence of
uh-u in the sense of the norm (3.3).

Denning analogous norms directly in terms of v , where v = COM , we may
say, correspondingly, that if

\f\. , , , 2 , , 2.1/2 ,
\v(x)\ ( 1 - J f ) dx\

I 1/2

<oo,

then v has an expansion of the form

V = CO

where

and

v(k) := -(v ,Tk):=- I v(x)Tk(x)dx = u(k),

1 1/2

k=\

Similarly, a Sobolev-type norm for arbitrary s e R is denned by

(3.5)

(3.6)

(3.7)
fc=l

Hence

Armed with these definitions, the existence and regularity properties of
solutions of (1.2) are easily stated:

https://doi.org/10.1017/S0334270000008729 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008729


[7] Symm's integral equation 205

THEOREM 1. For arbitrary t e R, the operator V defined by (1.2) is an
isomorphism from H' to Hl+i.

PROOF. This property, established in Yan and Sloan [16] by using the change
of variable x = cos0, follows readily from (1.3), (3.1), (3.3), (3.5) and (3.7).

There holds the following convergence result for the solution of the collo-
cation scheme (2.2).

THEOREM 2. Let V be as in (1.2) and assume g e Ht+X. Then for any
n e Z+ there exists a solution vh e (ofn_x of (2.2). Moreover, if t > - \
and t >s then for the solution t i e F of (1.2) there holds

Hr sn, 0.9)
where the constant c is independent of n.

The above estimates lead to fast convergence of the approximate potential
4>h towards the exact potential c/> at points x away from the slit: since

where v = cou solves (1.2) and vh = couh solves (2.2), it follows from (3.4)
and (3.9) that

\<t>h{x) - 4>{x)\ <

4. Proof of Theorem 2

The approximation scheme (2.2) is equivalent to

(Vvh> Tj)n = (Vv> Tj)n> ; = 0 , . . . , H - 1. (4.1)

Now, from 91.3) and (3.1), we have, with v = cou,

u(k),
j ^ , Tk-

Thus with the aid of (2.7)

/ 1/n» T \\ V U , 1 •) -» ' /» ft

(4.2)

https://doi.org/10.1017/S0334270000008729 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008729


206 I. H. Sloan and E. P. Stephan [8]

A similar result can be written for (Vvh, Tj)n—with the difference that,
because uh = vh/co is a polynomial of degree < n — 1, uh{k) = 0 for k > n.
Thus

-Iog2uh(0), j = 0,
(4.3)

On solving the defining equation (4.1), we obtain

. . . . ffi(0) +
- _

Next we estimate the error uh-u in the if* norm. Since uh(k) = 0 for
k > n we obtain

ll«*-«ll^ = flfl*(0)-fi(°)|2 + ? \uh{k) - u{k)\2

k=\
n-\

With the aid of (4.4) we can estimate the first term as follows.
„ . ... 2

|fiA(0)-fi(0)f =

= c

T)
k=2n

oo

E {Ij^klu{
k=2n

\l=2n k=2n

,2t+2

(4.5)

We want to show that the first factor of this is < c/n2t+2. Note that it is
not enough to use 1(7}, 7^1 < c, since that would lead to a bound that
is only of order O(n~2'~l). Here we need the property that for j , k e
{0, 1 , . . . , n- 1} and a e Z + ,

(T2na+k . Tj)H = {T2na_k , Tj)n = (-lf(Tk , Tj)H = (-l)aSkJ{Tj , Tj)n ,

which is obvious from the corresponding expressions in terms of cosine func-
tions.
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Using these results one finds

{T,, T0)n = 0 unless / is a multiple of 2n,

\(T2na,T0)n\ = n, aeZ+.

Hence

provided t > -j . Thus

K(0)-«(0) | 2<ar2 ' - 2 | |M| | ! , (4.6)

Next, we estimate the third term in (4.5),

. 2s-2t

k=n

provided t > s. Finally, we consider the second term in (4.5). From (4.4)
we have

k=2n-j

Now we set k = 2an ± I, with a e Z+ and 0 < / < n. Then the discrete
orthogonality property (2.7) yields, for 1 < ; < n - 1,

Thus for 1 < j < n - 1,

u(k) _ 7 r v - , lxarfi(2a/i-j) , u(2an+j)
~i<~{ k j)n~2f^ i ^an-j + 2an + j

The inequality (a + b) <2(a + b ) then gives

^ u{k).T r A * J
U=2n-i" / L
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Now

But for 1 < j < n - 1,
OO 1 , OO

j)2t+2 ( 2 « ) 2 ( + 2 £ " ^2t+2
L

\
•,-21-2 oo ,

-2t-2

Thus

E ) 2 \u(2an*j)\
\a=l J / a=l

Working back, we have

t
< cn"2/~2 ^ \(2an - j)2'\u(2an - j)\2 + (2an + j)2l\u(2an

a=l

and therefore
7 1 - 1

7=1

7=1 a=l

If s > - 1 , we use 7-2j+2 < «2i+2 . If s < - 1 , we use j 2 s + 2 < 1. Thus we get
7 1 - 1

J \uhU)-u{j)\ <cn

7 1 - 1 OO (4 g\

x^2^(2an-JT\H2an-j)\2 + (2an + jf\u(2an "l2'
7=1 a=l
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Putting the three terms (4.6), (4.7), (4.8) together, we get from 94.5), for
u£Hl,

| |M/,-«||~,<ar™('-*-'+I)||M|l5., (4.9)
provided t > - j and t > s. To complete the argument, from Theorem 1
there exists a c> 0 such that

(4.10)

On combining (3.8), (4.9) and (4.10) we obtain the required estimate (3.9). D

5. Modification for general intervals [a, b]

With the change of variables

_b+a b-a _b+a b-a

(1.1), the equation for the general interval [a, b], can be written as

1 /•' 1 b-a /•'
— / log\t-s\w(s)ds = f(t) + - log^r— / w(s)ds, f e [ - l , l ] ,

n J-i 7i 2 J_i
(5.1)

where
w{t) = v{x)—— and f(t) = g{x).

Thus the solution for the general interval [a, b] may be found by superpo-
sition of the solution of (1.2) with right-hand side / and the solution of the
same equation with a constant right-hand side. Explicitly, we write

w = wl + wQ,

where wl satisfies

1 /"'

- - / log\t-s\wl(s)ds = f{t), f € [ - l , l ] , (5.2)
7t y_i

which can be solved approximately by the method of this paper, and w0

satisfies
1 /"' , i i , w 1 , b-a f1 . . .— / log\t-s\wJs)ds = — log —=— / w(s)dsn J-\ n 2 J_i

where we have used again w = wl + w0 and the inner product defined in
(3.5). Because the right-hand side is constant, the latter equation has the
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solution (from the j = 0 case of (1.3))

loeM
WQ(S) = cois)^^^, , 1) + {WO, 1)], S€ [-1 , 1].

On integrating from -1 to 1 and solving for (w0, 1), we obtain

(5.3)

Note that this fails if b — a = 4; as it should, because the logarithmic capacity
of an interval of length 4 is 1, making (1.2) not uniquely solvable. (For a
discussion see [10].)

Finally, the collocation method applied to (5.2) approximates wx by an
expression of the form

which leads to (iu, h , 1) = |a0 . Thus w0 is naturally approximated by

and in turn v is approximated by

The error estimate in Theorem 2 then holds without alteration if the defini-
tions of the norms are extended in the obvious way.
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