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Motivated by understanding mass transport processes occurring in the vitreous
chamber of the eye, we consider the steady streaming component of the flow
generated in a viscoelastic fluid contained within a hollow, rigid sphere performing
small-amplitude, periodic, torsional oscillations about an axis passing through its
centre. The problem is solved semi-analytically, assuming that the amplitude of the
oscillations is small. The paper extends the work by Repetto et al. (J. Fluid Mech.,
vol. 608, 2008, pp. 71–80), in which the case of a purely viscous fluid was analysed.
However, in reality, in young and healthy subjects, the vitreous humour has complex
rheological properties, and so here we model it as a viscoelastic fluid. A similar
problem was studied by Nikolakis (Eine Theorie für stationäre Drifterscheinungen
viskoelastischer Flüssigkeiten, 1992, VDI). In the present model, the steady streaming
flow is governed by four dimensionless parameters. We show that, when we account
for the viscoelasticity of the fluid, there is a considerably more complex set of
possible flow regimes than was found in the purely viscous case, and the flows
can be classified into five qualitatively different types. Whereas there was only one
circulation cell in each hemisphere in the viscous case, accounting for viscoelasticity
it is possible have either one, two or three circulation cells, with different senses of
rotation, depending on the parameter values.

Key words: biomedical flows, pattern formation, viscoelasticity

1. Introduction
It is well known that a purely oscillatory boundary condition typically induces a

velocity field with a non-zero time average, due to nonlinear effects in the underlying
equations of motion. The time-average flow is referred to as the steady streaming, and
thorough reviews of this phenomenon for the case of Newtonian fluids are provided
by Riley (1967, 2001). A general methodology for studying the steady streaming in a
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viscoelastic fluid, which is of interest in the present paper, is described by Nikolakis
(1992). Steady streaming can often be important, because it can play a major role in
mass transport processes; indeed this is the main reason why steady streaming flows
have received so much attention in the literature.

The present investigation is motivated by the need to understand the dynamics of
the vitreous humour in the human eye induced by eye rotations. The vitreous chamber
is the largest chamber of the eye, delimited anteriorly by the lens and posteriorly by
the retina. It is filled with vitreous humour, which in young healthy subjects can be
modelled as a viscoelastic fluid (Lee, Litt & Buchsbaum 1992, 1994; Nickerson et al.
2008; Swindle, Hamilton & Ravi 2008; Sharif-Kashani et al. 2011). A recent review
of the state of the art in modelling the flow of vitreous humour is provided by Siggers
& Ethier (2012).

The dynamics of the vitreous humour induced by eye rotations have important
implications for two main reasons. Firstly, there are numerous indications that vitreous
stresses on the retina during eye rotations play a role in the mechanisms leading to
retinal detachment. Secondly, mass transport processes within the vitreous chamber
are significantly affected by the motion of the vitreous humour, with important
implications for drug delivery procedures.

There are few in vivo experimental studies on the motion of the vitreous body
induced by eye rotations. Piccirelli et al. (2012) used magnetic resonance imaging
(MRI) to measure vitreous velocity fields under controlled sinusoidal rotations of the
eye bulb. Rossi et al. (2012) employed the particle image velocimetry (PIV) technique
to measure the vitreous velocity field on planes orthogonal to the axis of rotation.

On the modelling side, Repetto, Siggers & Stocchino (2008) studied, using both
analytical and experimental methods, the steady streaming component of the flow
in a viscous fluid within a sphere that is performing small-amplitude, sinusoidal,
torsional oscillations, and they found excellent agreement between their theoretical
predictions and experimental measurements. The overall flow is axisymmetric, and its
steady streaming component consists of two circulation cells, one in each hemisphere.
Particles close to the axis of rotation move along the axis to the poles, then around
the wall to the equator of the sphere, finally moving radially across the equatorial
plane to the centre of the sphere before moving along the axis again.

Meskauskas, Repetto & Siggers (2011) studied the motion of a viscoelastic
fluid in the same scenario, considering small-amplitude oscillations and finding
the leading-order oscillatory flow. They showed that, using the rheological properties
derived by various experimental studies in the literature, it is possible for resonant
excitation of the motion of the vitreous humour to occur for frequencies typical
of real eye rotations. Under conditions of resonance, there may be especially large
velocities within the domain and therefore correspondingly large shear stresses on the
wall.

In reality the vitreous chamber is not perfectly spherical, and the details of its
geometry have a significant effect on the steady streaming component of the flow.
Various authors have accounted for the lack of sphericity, by considering a weak
departure from the spherical shape analytically (Repetto 2006; Repetto, Siggers &
Stocchino 2010; Meskauskas, Repetto & Siggers 2012), or by considering a realistic
geometry either numerically (Balachandran & Barocas 2011; Abouali et al. 2012;
Modareszadeh et al. 2012) or experimentally (Stocchino, Repetto & Cafferata 2007;
Stocchino, Repetto & Siggers 2010; Bonfiglio et al. 2013).

In this study, we extend the work of Repetto et al. (2008) to the case of a
viscoelastic fluid filling the chamber, closely following the approach of Böhme (1992),
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who derived in detail a method for studying the steady streaming in a viscoelastic
fluid. In spite of the likely importance of the shape of the vitreous chamber in the
dynamics of the vitreous humour, as a first step and for the sake of simplicity, in
this paper we will consider a domain with spherical shape and we will focus on the
effect of the viscoelastic properties of the fluid on the characteristics and intensity of
the steady streaming.

A similar problem has been considered by Nikolakis (1990, 1992) who studied the
motion of a viscoelastic liquid in a rigid spherical cavity attached to the end of a
pendulum. He showed that this flow is equivalent to the flow of the same liquid in
a torsionally oscillating sphere, and, assuming the amplitude of the oscillations to be
small, found the leading-order flow and the second-order correction. He found that
there were three qualitatively different flow patterns, including complete flow reversal,
due to the competition between normal stress and inertial effects, and he found the
regions in the parameter space wherein these three flow patterns exist.

Our paper extends the work of Nikolakis (1990, 1992) in that we find two
further qualitatively different types of flow, and we extend the parameter space
study accordingly. We also study the dependence of the streaming intensity on the
controlling parameters and evaluate the stresses on the sphere wall, which might have
some importance in the application that motivated the present work. We finally derive
analytically the solution for the steady streaming flow in the limit of small values of
the Womersley number.

Owing to the lack of reliable rheological data, it is hard to infer information
directly applicable to the realistic situation in the eye from the present model,
especially in ageing subjects who have inhomogeneous properties in their vitreous
humour. However, this work is intended as a useful conceptual step towards the
understanding of transport processes in young healthy eyes.

2. Mathematical formulation
We develop a mathematical model of the dynamics of vitreous humour in an eye

performing repeated saccadic movements. Following Astarita & Marrucci (1974), we
make the following assumptions about the material properties of the viscoelastic fluid
representing the vitreous humour: the stress at a given point is determined by the
history of deformation in the neighbourhood of that material point; the fluid has
no preferred configuration (that is all possible configurations of material points are
equivalent in the sense that differences in stress are due only to differences in the
history of deformation); and the fluid has a fading memory. In addition, we assume
that the history of deformation is entirely described by the deformation gradient, F ,
and that the fluid density is constant.

Under these conditions, and further assuming that the material deformations are
small (which will be true for the small oscillatory rotations that are considered herein),
it can be shown that the constitutive equation may be approximated at second-order
by

t(r, t)=−
∫ ∞

0
G(s)

∂C(r, s, t)
∂s

ds+
∫ ∞

0

∫ ∞
0

m(s, s′)
∂C(r, s, t)

∂s
∂C(r, s′, t)

∂s′
dsds′, (2.1)

where t is the extra-stress tensor (meaning that the total stress tensor equals −pI + t ,
where I is the identity matrix), r identifies a position in space, t is time, C is the right
Cauchy–Green tensor, G(s) is the linear relaxation function and m(s, s′) is the second-
order relaxation function (Astarita & Marrucci 1974; Böhme 1992). The functions
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G and m provide a Lagrangian measure of the memory of the fluid, and they both
need to tend to zero sufficiently rapidly when s, s′→∞ for the assumption of fading
memory to hold. The right Cauchy–Green tensor that appears in the above expression
can be computed from the deformation gradient tensor F as C=F TF , and F is defined
as F = ∂ r̂/r, where r̂(r, s, t) denotes the position of a material particle at time t − s,
which at time t is at r. The Eulerian velocity, which is the primitive kinematic variable
used in the following, is related to r̂ by

u(r̂, t− s)=−∂ r̂(r, s, t)
∂s

. (2.2)

Following Repetto et al. (2008), we model the vitreous chamber as a sphere of
radius R performing small-amplitude, sinusoidal, torsional oscillations of prescribed
angular displacement β(t), where

β(t)= ε cosωt. (2.3)

We expand the velocity field u and the pressure field p in terms of ε up to second
order:

u(r, t) = εu1(r, t)+ ε2u2(r, t)+O(ε3), (2.4a)
p(r, t) = εp1(r, t)+ ε2p2(r, t)+O(ε3). (2.4b)

Using this perturbation approach it can be shown (Böhme 1992) that the constitutive
equation (2.1) can be expressed only in terms of the history of Eulerian quantities.

The leading-order components u1, p1 were derived analytically by Meskauskas et al.
(2011), and, since they oscillate harmonically with frequency ω, we can write

u1(r, t) = Re{ũ1(r)eiωt}, (2.5a)
p1(r, t) = Re{p̃1(r)eiωt}, (2.5b)

where Re denotes the real part and the dimensionless expressions of the functions ũ1
and p̃1 are given in (3.1).

At second order, and, as in the viscous case (Repetto et al. 2008), the flow is
composed of steady streaming components and components whose frequency is double
that of the primary flow:

u2(r, t) = ust
2 (r)+Re{ũ2(r)e2iωt}, (2.6a)

p2(r, t) = pst
2 (r)+Re{p̃2(r)e2iωt}. (2.6b)

The aim of this paper is to calculate the steady streaming components ust
2 (r) and pst

2 (r).
Böhme (1992) derived the governing equations

η0∇2ust
2 −∇pst

2 =
ρ

2
Re
{

L̃1
¯̃u1

}
−Re

{
η∗(ω)− η0

2iω
∇ · B+ 4κ(ω)∇ ·

(
d̃1
¯̃d1

)}
, (2.7a)

∇ · ust
2 = 0 (2.7b)

(equations (40) and (41) in that paper), where overbars denote complex conjugates,
and the symbols appearing in (2.7a) are explained in the following. The complex
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viscosity is given by η∗(ω)= η′(ω)− iη′′(ω)= ∫∞0 G(s)e−iωsds, with η0 = η∗(0). The
velocity gradient is

L(r, t)= ∂

∂r
u(r, t)= εL1(r, t)+ ε2L2(r, t)+O(ε3), (2.8)

with
L1(r, t)=Re{L̃1(r)eiωt}, (2.9)

and

B(r)= ∂

∂r

(̃
L1
¯̃u1

)
+
[
∂

∂r
(L̃1
¯̃u1)

]T

+ ¯̃LT
1 L̃1 + L̃

T
1
¯̃L1. (2.10)

The rate-of-deformation tensor is

d(r, t)= 1
2

[
L(r, t)+ LT(r, t)

]= εd1(r, t)+ ε2d2(r, t)+O(ε3) (2.11)

and d1 is expanded as
d1(r, t)=Re

{
d̃1(r)eiωt

}
. (2.12)

Finally, the parameter κ is given by

κ(ω)= 1
2

∫ ∞
0

∫ ∞
0

m(s, s′) cosω(s− s′)dsds′. (2.13)

Note that κ is the only parameter that is required to be derived from the function
m(s, s′). As commented by Böhme, the parameters η′ and η′′ can be derived from
the amplitude and phase of the oscillating shear stress, whilst η0 can be found from
the mean second-order shear stress and κ from the normal stress. We note that the
right-hand side of (2.7a) can be found from the solutions u1 and p1, and the details
of the calculation are provided in appendix A.

We now make the problem dimensionless by setting

u∗ = u
ωR
, p∗ = p

η′ω
, r∗ = r

R
, t∗ = tω, (2.14a−d)

where ∗ denotes dimensionless variables, and (2.7a) and (2.7b) become

∇∗2ust∗
2 − Γ∇∗pst∗

2 =
1
2
α2ΓRe{L̃∗1 ¯̃u∗1}

−Re
{
Γ (1− iV)− 1

2i
∇
∗
· B∗ + 4KΓ V∇∗ · (d̃

∗
1
¯̃d∗1)
}
, (2.15a)

∇
∗
· ust∗

2 = 0, (2.15b)

subject to ust∗
2 = 0 at r∗ = 1. The problem is governed by four dimensionless

parameters:

α =
√
ρωR2

η′
, V = η

′′

η′
, Γ = η

′

η0
, K = κω

η′′
. (2.16a−d)

The parameter α is the Womersley number, which is the only dimensionless parameter
appearing in the analogous analysis in the case of a purely viscous fluid. The three
additional dimensionless parameters are V , the ratio between the elastic and viscous
components of the fluid, and can be interpreted as the inverse of the loss factor, Γ ,
the ratio between the viscosity at frequency ω and the viscosity at zero frequency, and
K, a parameter derived from the second-order relaxation function.
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3. Solution
Much of the work in this section has been derived in a previous work by Nikolakis

(1990), but we present the complete derivation here so that the reader can follow the
notation more easily. Hereinafter we work in terms of dimensionless variables but,
for the sake of readability, we drop the stars on the variables. We work in spherical
polar coordinates (r, θ, φ) in the radial, zenithal and azimuthal directions, respectively,
with corresponding unit vectors r̂, θ̂ and φ̂ and velocity components (ur, uθ , uφ). The
leading-order solution, found by Meskauskas et al. (2011), is purely azimuthal:

ũ1(r)= ũ1φ(θ, r)φ̂, ũ1φ = g(r) sin θ, g(r)=− iJ3/2(ar)√
rJ3/2(a)

, a= αe−iπ/4

√
1− iV

, (3.1)

and p̃1 is a constant.
We let the right-hand side of (2.15a) be denoted F = (Fr,Fθ ,Fφ

)T, and from (3.1)
and (A 3)–(A 10) we obtain

Fr = fr(r) sin2 θ, Fθ = fθ(r) sin θ cos θ, Fφ = 0, (3.2a−c)

where

fr = −α
2Γ gḡ
2r
+ Γ V

(
g′′
(

ḡ′ − ḡ
r

)
+ c.c.

)
−KΓ V

({
g′′
(

ḡ′ − ḡ
r

)
+ g′ḡ

r2
+ c.c.

}
− g′ḡ′

r
− gḡ

r3

)
, (3.3a)

fθ = −α
2Γ

2
gḡ
r
−KΓ V

({
g′ḡ
r2
+ c.c.

}
− g′ḡ′

r
− gḡ

r3

)
, (3.3b)

where c.c. denotes the complex conjugate.
Following Repetto et al. (2008), we expand the vector-valued functions F and ust

2
in terms of vector spherical harmonics (Pmn, Bmn, Cmn) and pst

2 in terms of spherical
harmonics Ymn, which are defined and explained in detail by Quartapelle & Verri
(1995), Arfken & Weber (2001) and Meskauskas et al. (2011). Since the solution is
axisymmetric, we only require the set of axisymmetric harmonics P0n, B0n, C0n and
Y0n:

F(r, θ)=
∞∑

n=0

FP0n(r)P0n(θ, φ)+
∞∑

n=1

FB0n(r)B0n(θ, φ)+
∞∑

n=1

FC0n(r)C0n(θ, φ), (3.4a)

ust
2 =

∞∑
n=0

ust
2,0n(r)P0n(θ, φ)+

∞∑
n=1

vst
2,0n(r)B0n(θ, φ)+

∞∑
n=1

wst
2,0n(r)C0n(θ, φ), (3.4b)

pst
2 =

∞∑
n=0

pst
2,0n(r)Y0n. (3.4c)

The functions P0n, B0n and C0n are everywhere unit vectors pointing in the radial,
zenithal and azimuthal directions, respectively (note that this property does not hold
for non-axisymmetric vector spherical harmonics).

We first expand the function F(r, θ) to find the functions FP0n(r) (n > 0),
FB0n(r) (n > 1) and FC0n(r) (n > 1), and, as in the case of a purely viscous fluid
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(Repetto et al. 2008), we find that all of these functions are zero, except for the
following three:

FP00(r)= 4
3
√

πfr(r), FP02(r)=−4
3

√
π

5
fr(r), FB02(r)=−4

√
π

30
fθ(r). (3.5a−c)

The irrational factors that appear in the above expressions are due to normalising
coefficients in the definitions of the vector spherical harmonics. Note that, in the case
of a purely viscous fluid (V = 0, Γ = 1 and K= 0), we recover the expressions found
by Repetto et al. (2008) ((2.11) in that paper).

Hence all the functions ust
2,0n, vst

2,0n, wst
2,0n and pst

2,0n are zero, except for possibly
ust

2,00, ust
2,02, vst

2,02, pst
2,00 and pst

2,02. We obtain the same governing equations that were
found by Repetto et al. (2008) (printed as (2.13a–e) in that paper, but replacing
the variables u20,0, u20,2, v20,2, p20,0 and p20,2 by ust

2,00, ust
2,02, vst

2,02, pst
2,00 and pst

2,02,
respectively, and replacing the right-hand sides by α2FP0, α2FP2, α2FB2 by FP00,
FP02, FB02, respectively).

Solving these equations, we obtain

ust
2,00(r)= 0, (3.6a)

ust
2,02(r)=

√
π

5
ũst

2,02 (3.6b)

where

ũst
2,02 = c1r+ c2r3 + rI1(r)− I2(r)

r2
− r3I3(r)+ I4(r)

r4
, (3.6c)

vst
2,02(r)=

√
π

30
ṽst

2,02 (3.6d)

where

ṽst
2,02 = 3c1r+ 5c2r3 + 3rI1(r)− 5r3I3(r)− 2I4(r)

r4
, (3.6e)

and

c1 =−I1(1)+ 5
2 I2(1)− 7

2 I4(1), c2 =− 3
2 I2(1)+ I3(1)+ 5

2 I4(1), (3.7a,b)

and

I1(r) = − 4
15

∫ r

0
fr(r̃)dr̃, (3.8a)

I2(r) = − 2
15

∫ r

0
r̃3 (2fr(r̃)+ 3fθ(r̃)) dr̃, (3.8b)

I3(r) = − 4
35

∫ r

0

1
r̃2
(fr(r̃)− fθ(r̃)) dr̃, (3.8c)

I4(r) = − 2
35

∫ r

0
r̃5 (2fr(r̃)+ 5fθ(r̃)) dr̃. (3.8d)

Thus the leading-order part of the steady streaming flow is given by

ust
2 = ( 1

4 ũst
2,02(3 cos2 θ − 1),− 1

4 ṽ
st
2,02 cos θ sin θ, 0), (3.9)
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with ũst
2,02 and ṽst

2,02 given by (3.6c) and (3.6e), respectively. We can also define an
associated streamfunction, ψ st

02, given by

ψ st
02 = 1

4 r2ũst
2,02(r) sin2 θ cos θ, (3.10)

with

ust
2 =

(
1

r2 sin θ
∂ψ st

02

∂θ
,− 1

r sin θ
∂ψ st

02

∂r
, 0
)
. (3.11)

Finally, we compute the leading-order contribution to the non-dimensional shear
(τ st

2‖) and normal (τ st
2⊥) stress at the wall induced by the steady streaming flow

(normalised with the same scale as the pressure, η′ω):

τ st
2‖ =

5
4Γ

(−3I2(1)+ 7I4(1)) cos θ sin θ, (3.12a)

τ st
2⊥ = p0 + 5

8
(−5I2(1)+ 7I4(1))(3 cos2 θ − 1)

+V
{

g′g′ −
(

gg
r

)′
−Kr2

(g
r

)′ (g
r

)′}∣∣∣∣
r=1

sin2 θ, (3.12b)

where p0 is an arbitrary constant. The maximum of the wall shear stress is thus
predicted to be located invariably at θ = π/4, whereas the normal stress attains
extreme values at θ = 0 and θ = π/2. Note that the fact that there is a factor Γ −1

in τ st
2‖ and not in τ st

2⊥ might appear odd, and so we comment upon it here. It results
from the fact that the shear stress is proportional to components of the steady part of
u2 and is therefore multiplied by the zero-shear viscosity η0 in the expression for the
shear stress (leading to the factor 1/Γ upon non-dimensionalisation). On the other
hand the contributions to the normal stress, apart from the pressure, derive firstly
from the elastic behaviour of the leading-order flow u1, leading to a term proportional
to η′′(ω) (which, after non-dimensionalisation, produces the first two terms of the
second line of (3.12b)) and secondly from a term proportional to the second-order
relaxation function m(s, s′) (which becomes the last term in (3.12b)).

4. Results
In this section we investigate the dependence of the streaming flow (3.4b) upon

the values of the governing parameters V , K, α and Γ . Since Γ acts only as a
multiplicative parameter, we set Γ = 1 throughout. Furthermore, we focus attention on
relatively small values of the Womersley number α. This is because the constitutive
equation is based on the assumption of small strains, meaning that the model is
unsuitable to describe the flow for large α, when a boundary layer develops at the
wall, with consequent high strains there. Since we also assume the flow is both
symmetric in the equatorial plane (θ =π/2) and axisymmetric (independent of φ), in
the plots we always show the flow in the quadrant φ= 0 and in the range 06 θ 6π/2.

The flow in this quadrant consists of one or more circulations. The centres of
circulation are given by maxima and minima of ψ st

02. Using (3.10), we have

∂ψ st
02

∂θ
= 1

4
r2ũst

2,02(r) sin θ(3 cos2 θ − 1), (4.1)

∂ψ st
02

∂r
= 1

4
rṽst

2,02(r) sin2 θ cos θ. (4.2)
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FIGURE 1. Curves in the plane α–V separating regions in which the steady streaming
structure has different characteristics. Region 1: one clockwise rotating cell. Regions 2
and 2′: two circulation cells with opposite sense of rotation (inner counter-clockwise
and outer clockwise). Region 3: one counter-clockwise rotating cell. Region 4: two
counter-clockwise rotating cells separated by a saddle point. Region 5: three circulation
cells. K = 1.

Thus centres of circulations are given by points (r∗, θ∗) where vst
2,02(r

∗)= 0 and θ∗ =
arccos( 1

3). The circulations occupy the ranges of r between the zeros of the function
ust

2,02; that is, there are n circulations if ust
2,02 has n zeros (counting r= 1 as a zero, but

not r=0). If ust
2,02 has a single maximum or minimum between two neighbouring zeros

then this corresponds to a simple circulation, whilst if there are multiple extrema, the
circulation has multiple centres with saddle points between them (an example of this
is shown in figure 5, which will be explained later).

We recall from Repetto et al. (2008) that, in the case of a viscous fluid, the steady
streaming consists of a single toroidal circulation cell in the upper hemisphere and
one in the lower hemisphere; their sense of rotation is clockwise (in φ = 0 and 0 6
θ 6 π/2), meaning that particles close to the axis of rotation drift towards the poles.
With the present model, and using parameter values representative of a viscous fluid,
which are V = 0, K = 0, we recover these results for the corresponding value of α.

In the case of a viscoelastic fluid the situation is much more complex. In fact, for
each of the values of K that we investigated, we found that the α–V plane is divided
into five regions, in each of which the steady streaming has qualitatively different
characteristics. We show the case K = 1 in figure 1.

With K = 1, and for sufficiently low values of the parameter V (the limit V→ 0
corresponds to a purely viscous fluid), viscous effects play a dominant role as
expected, and the steady streaming flow is qualitatively similar to that in a purely
viscous fluid (we denote the region of parameter space in which the flow behaves
qualitatively in this way as region 1). A typical example of the velocity field and
streamlines in region 1 are shown in figure 2.

For all values of α, as V increases, which corresponds to increasing the elastic
effects, a transition occurs from region 1 to a new region, region 2, in which there
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FIGURE 2. Example of the steady streaming flow in region 1 of parameter space (using
α = 5, V = 0.1, K = 1). (a) Velocity vectors and contour plot of the velocity magnitude;
(b) streamlines.
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FIGURE 3. Example of the steady streaming flow in region 2 (using α = 5, V = 0.25,
K = 1). (a) Velocity vectors and contour plot of the velocity magnitude, (b) streamlines.
Here and in the following figures, in (b) light shading indicates anticlockwise rotation and
dark shading indicates clockwise rotation.

is an additional anticlockwise circulation cell close to centre of the sphere, whilst the
original cell is squeezed towards the wall of the domain. An example of the flow in
region 2 is shown in figure 3.

Further increase of V leads to annihilation of the first circulation cell, leaving only
the second cell. We call this region 3, and an example of the flow here is shown in
figure 4. Thus the flow pattern in region 3 is, qualitatively, a reversal of the flow in
the viscous-dominated case, region 1.

If α is sufficiently large, a further increase of V leads to the appearance of other
complex structures in the steady streaming flow. We denote these regions 4, 5 and 2′,
and their arrangement in parameter space can be seen in figure 1. In region 4, there
are two anticlockwise circulation cells, which are separated by a saddle point, see
the example in figure 5. The steady streaming flow is dominated by the flow near
to the centre of the sphere and the axis of rotation, and the velocities in the outer
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FIGURE 4. Example of the steady streaming flow in region 3 (using α= 5, V = 1, K= 1).
(a) Velocity vectors and contour plot of the velocity magnitude, (b) streamlines.
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FIGURE 5. Example of the steady streaming flow in region 4 (using α = 12, V = 1.4,
K = 1). (a) Velocity vectors and contour plot of the velocity magnitude, (b) streamlines.

circulation cell are very small. Region 5 has a third circulation cell, and the flow is
shown in figure 6. As in region 4, the circulation cell closer to the axis of rotation is
characterised by much higher velocities than the other two. Finally, in region 2′, the
flow has two circulation cells, as in region 2; however, here the velocity in the inner
cell is much higher than that in the outer one, see figure 7. We note that, in the cases
we investigated, the maximum streaming velocity is always located along the axis of
rotation.

The boundaries of the regions in the α–V plane show a strong dependence on the
value of K. In figure 8 we show the cases K = 0.8 and K = 1.2 (previously we
considered K = 1), and it can be seen that the topological arrangement of the regions
in α–V space remains the same, but their boundaries are moved significantly.

The intensity of the steady streaming, as represented by its maximum velocity, also
varies significantly with the controlling parameters, as shown in figure 9. In this figure
we plot the streaming intensity versus the Womersley number for different values
of (a) V and (b) K. The most obvious feature appears to be a general increase of
this intensity with increasing values of α and V . We can also see some changes
corresponding to boundaries between neighbouring regions being crossed.
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FIGURE 6. Example of the steady streaming flow in region 5 (using α = 12, V = 1.6,
K = 1). (a) Velocity vectors and contour plot of the velocity magnitude, (b) streamlines.
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FIGURE 7. Example of the steady streaming flow in region 2′ (using α=12, V=2, K=1).
(a) Velocity vectors and contour plot of the velocity magnitude, (b) streamlines.

There are several indications in various biological contexts that cells are sensitive
to the temporally averaged shear stress, i.e. in this case, the stress associated with
the steady streaming flow, for which we have derived an expression in (3.12a). In
figure 10 we plot contour lines of the maximum wall shear stress in the plane α–V ,
for K = 1.

In the case of small values of α we may calculate the solution analytically. Using
(3.1), we note that, in the limit of small α,

g = −ir
(

1+ a2

10
(1− r2)+ a4

1400
(1− r2)(9− 5r2)

+ a6

378 000

(
133− 243r2 + 135r4 − 25r4

)+O(α8)

)
. (4.3)

Using (3.3a) and (3.3b), we can find corresponding series expansions of the forcing
terms f r and f θ . Hence we can find the coefficients of the vector spherical harmonics
from (3.5), perform the integrals (3.8), and find the components of the velocity or
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FIGURE 8. As for figure 1, but considering alternative values of K: K = 0.8 (labels
denoted with empty circles) and K = 1.2 (labels denoted with circles filled in grey).
Figure 1 considered K = 1.
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FIGURE 9. Maximum streaming velocity versus the Womersley number α for different
values of V (a) and K (b). (a) K = 1, (b) V = 0.5.

streamfunction from (3.6c)–(3.6e), (3.10). After some algebra, we obtain

ψ st
02 =

Γ

2 079 000(1+ V2)2
r3(1− r2)2

{
1155V(1+ V2)(1− 2K)α4

+ [5(2+ r2)+ V2(1− 2K)(131− 50r2)
]
α6 +O(α8)

}
sin2 θ cos θ. (4.4)

If the coefficient of α4 is not very small, then (since α is small) ψ st
02 is single-signed

in 0< θ <π/2. Small values of this coefficient occur if either V� 1 or |K − 1
2 |� 1.

If neither of these conditions hold then:

(i) if K< 1
2 there is only a clockwise rotation (along axis to poles, around the surface

to the equator and radially inward through the midplane);
(ii) if K > 1

2 there is only an anticlockwise rotation.
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FIGURE 10. Contour lines of the wall shear stress for different values of the parameters
α and V . The shear stress is in the meridional (θ ) direction, and it is plotted on θ =
π/4, because this is where its absolute value is maximised; positive values indicate it is
directed towards the equator and negative values that it is towards the poles. The thick
line corresponds to the value 0.

If the coefficient of α4 is small:
(iii) in the region |K − 1

2 | � 1, we have a zero of ψ st
02 at r∗2 = 231V(1 + V2)

(2K − 1)/α2 − 2, which is in the range [0, 1] if 1
2 <K < 1

2 + α2/(154V(1+ V2));
(iv) in the region V� 1, we have a zero of ψ st

02 at r∗2= 231V(2K− 1)/α2− 2, which
is in the range [0, 1] if 0< V <α2/(77(2K − 1)).

In the limit of small α, these results predict the boundary between region 1
and region 2 to be at K = 1

2 and that between region 2 and region 3 at K =
1
2 + α2/(154V(1 + V2)). We computed these boundaries numerically for the case
V = 1, which is shown in figure 11. Comparing the numerical and analytical results,
we found excellent agreement for the location of the boundary between regions 2
and 3; however, the agreement was less satisfactory for the boundary between
regions 1 and 2, because the velocities in the limit α→ 0 and K ≈ 1

2 are comparable
to the numerical errors.

5. Discussion and conclusions

We have studied the steady streaming flow of a viscoelastic fluid contained in a
rigid sphere performing periodic torsional oscillations about an axis passing through
its centre. The present work extends that by Repetto et al. (2008), in which the
same set-up was studied, but using a Newtonian fluid. A semi-analytical solution of
the problem has been found by expanding all variables in terms of powers of the
amplitude of oscillations ε, assumed small. Moreover, the velocity and pressure fields
have been expanded in terms of vector and scalar spherical harmonics, respectively.
A fully analytical solution of the problem was found in the limit of small values of
the Womersley number α.

We have shown that a steady streaming flow is generated, and that its structure
can be significantly more complicated than in the case of a purely viscous fluid.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

54
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.546


Steady streaming of a viscoelastic fluid within a rotating sphere 343

 0

0.2

0.4

0.6

0.8

 1.0

1.2

5 10 15 20

K

1

2

3

FIGURE 11. Curves in the α–K plane showing regions in which the steady streaming flow
has different characteristics, for V = 1. The labels correspond to the regions whose flow
characteristics are described in § 4. The analytical results for small α predict that these
curves lie at K = 1

2 and K = 1
2 + α2/(154V(1+ V2)).

In fact, we identified five different regions in parameter space in which the steady
streaming flow assumes qualitatively different patterns (the three regions identified by
Nikolakis 1990 and two additional ones). Large streaming velocities are found for
large values of V . Moreover, we showed analytically that, in the limit of small α,
the streaming intensity is proportional to α4, whereas it is proportional to α6 in the
case of a purely viscous fluid. Therefore, in viscoelastic fluids the steady streaming
intensity is expected to be larger than in purely viscous fluids for sufficiently small
frequencies.

The work was motivated by the need to understand mass transport processes in
the vitreous chamber of the eye induced by eye rotations. The clinical motivation
arises because drug delivery to the retina through direct injection into the vitreous
body is a frequently used treatment, which it is often more effective than topical, oral
or intravenous delivery. However, the effectiveness of the treatment depends on the
amount of drug reaching the retina and its spatial and temporal dependence, which in
turn depends on the convection induced by the steady streaming flow.

There are several studies of the rheology of the vitreous body in the literature;
however, we still do not have a reliable characterisation, due to difficulties inherent
in measuring the mechanical properties. In particular, as soon as the vitreous body
is extracted from the eye it rapidly degrades, leading to changes in the mechanical
properties. Moreover, standard rheological tests are complicated by the tendency of
the vitreous humour to form a lubrication layer on solid surfaces. As a result of the
above difficulties, the existing measurements of vitreous humour properties are very
sparse and highly dependent on the measurement technique adopted. At present, none
of the existing measurements in the literature allow us to estimate the second-order
relaxation function m appearing in the constitutive equation (2.1), and as we have
shown in this paper, this has a strong quantitative influence on the results through
the dimensionless parameter K. We note, however, that, as discussed in § 2, it would
be possible to design experiments to obtain an estimate of the parameter K.
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For these reasons, the present model cannot yet be used to predict the behaviour
of the vitreous humour in the vitreous chamber. However, the model is conceptually
important, since it allows us to identify all possible steady streaming patterns, and
predict the dependence of the flow on the values of the governing dimensionless
parameters.

Various authors have shown that, for a purely viscous fluid filling the vitreous
chamber of the eye, the Péclet number associated with diffusive and advective mass
transport is much greater than one, implying that mass transport is primarily driven by
advection rather than diffusion. The present results suggest that this is also the case
for a viscoelastic fluid, which is a better representation of the rheology of the healthy
vitreous humour. A comprehensive theoretical study of mass transport phenomena in
the vitreous cavity for the case of viscoelastic fluids has not been done, but will be
usefully informed by the results in the present paper. We note, however, that other
mechanisms which have not been considered here might play a very important role,
such as Taylor dispersion in particular, which is expected to produce a large effect
on the solute transport in this problem.

A limitation of our approach to understand the steady streaming in the vitreous
cavity is related to the assumption that the rotations of the sphere are modelled by
a single frequency. Several Fourier modes would be needed for describing real eye
movements, and, since the analysis in the present paper is nonlinear, interactions
between different modes would significantly complicate the picture. Nevertheless, this
work has a significant conceptual relevance, showing that large streaming velocities
can be generated, and represents a building block for future work that could address
the above important issue.

Finally, we note that one of the research frontiers in ophthalmology is the
development of artificial viscoelastic vitreous substitutes. The present results can
be used to inform the optimal rheology of such a fluid.

Appendix A. Mathematical expressions

In this section, we report the mathematical expressions in terms of spherical
coordinates (r, θ, φ) of the quantities appearing on the right-hand side of (2.15a).

The gradient of a vector u and divergence of a tensor T are given by

∇u=



∂ur

∂r
1
r
∂ur

∂θ
− 1

r
uθ

1
r sin θ

∂ur

∂ϕ
− 1

r
uϕ

∂uθ
∂r

1
r
∂uθ
∂θ
+ 1

r
ur

1
r sin θ

∂uθ
∂ϕ
− cot θ

r
uϕ

∂uϕ
∂r

1
r
∂uϕ
∂θ

1
r sin θ

∂uϕ
∂ϕ
+ 1

r
ur + cot θ

r
uθ

 , (A 1)

∇ · T =



1
r2

∂

∂r

(
r2Trr

)+ 1
r sin θ

∂

∂θ
(sin θTθr)+ 1

r sin θ
∂Tφr

∂φ
− Tθθ + Tφφ

r
1
r2

∂

∂r

(
r2Trθ

)+ 1
r sin θ

∂

∂θ
(sin θTθθ)+ 1

r sin θ
∂Tφθ
∂φ
+ Tθr

r
− cot θTφφ

r
1
r2

∂

∂r

(
r2Trφ

)+ 1
r sin θ

∂

∂θ

(
sin θTθφ

)+ 1
r sin θ

∂Tφφ
∂φ
+ Tφr

r
+ cot θTφθ

r

 .
(A 2)
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Hence the leading-order velocity gradient L̃1 is given by

L̃1(r, θ)=


0 0 −g sin θ

r

0 0 −g cos θ
r

g′ sin θ
g cos θ

r
0

 . (A 3)

Using these, we can find:

L̃1
¯̃u1 =


−gḡ sin2 θ

r

−gḡ sin θ cos θ
r

0

 , (A 4)

∇(L̃1
¯̃u1)=


−
(

gḡ
r

)′
sin2 θ −gḡ

r2
sin θ cos θ 0

−
(

gḡ
r

)′
sin θ cos θ −gḡ

r2
cos2 θ 0

0 0 −gḡ
r2

 , (A 5)

¯̃LT
1 L̃1 =


g′ḡ′ sin2 θ

gḡ′

r
sin θ cos θ 0

g′ḡ
r

sin θ cos θ
gḡ
r2

cos2 θ 0

0 0
gḡ
r2

 , (A 6)

L̃
T
1
¯̃L1 = ¯̃LT

1 L̃1, (A 7)

B=

2
(

g′ḡ′ −
(

gḡ
r

)′)
sin2 θ 0 0

0 0 0
0 0 0

 , (A 8)

d̃1 =


0 0

r
2

(g
r

)′
sin θ

0 0 0
r
2

(g
r

)′
sin θ 0 0

 , (A 9)

d̃1
¯̃d1 =


r2

4

(g
r

)′ ( ḡ
r

)′
sin2 θ 0 0

0 0 0

0 0
r2

4

(g
r

)′ ( ḡ
r

)′
sin2 θ

 . (A 10)

Hence we can use (A 2) to find ∇ · B and ∇ · (d̃1
¯̃d1).
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