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MODEL-COMPLETENESS AND ELEMENTARY 
PROPERTIES OF TORSION FREE ABELIAN 

GROUPS 

ELIAS ZAKON 

Introduction. The decidability of the elementary theory of abelian groups, 
and their complete classification by elementary properties (i.e. those formaliz-
able in the lower predicate calculus (LPC) of formal logic), were established 
by W. Szmielew [13]. More general results were proved by Eklof and Fischer 
[2], and G. Sabbagh [12]. The rather formidable "high-power" techniques used 
in obtaining these remarkable results, and the length of the proofs (W. 
Szmielew's proof takes about 70 pages) triggered off several attempts at 
simplification. M. I. Kargapolov's proof [3] unfortunately turned out to be 
erroneous (cf. J. Mennicke's review in the Journal of Symbolic Logic, vol. 32, 
p. 535). At the meeting of the Canadian Mathematical Congress at Kingston, 
June, 1966, the present author outlined a very simple proof for the special 
case of torsion free groups. A detailed abstract was published in [15]. In this 
proof, we only use A. Robinson's model-completeness test [8] and a few rather 
elementary lemmas of algebraic nature, as well as some facts already proved 
in two previous papers [10; 14] dealing with ordered groups. The technique 
used to ensure model-completeness is that of adjoining certain one-place 
atomic predicates Dn(x), n = 1, 2, . . . , each distinguishing a subgroup 
(namely that of all elements which are divisible by n). 

In [4], G. T. Kozlov and A. I. Kokorin generalized this method by taking 
up the "elementary theory of torsion-free groups, with a predicate that 
distinguishes a subgroup". In this manner they obtain W. Szmielew's result 
and seem to avoid Kargapolov's error. However, their proof is far more 
complicated than that of [15]. (It combines Robinson's model-completeness 
test with the Feferman-Vaught theorem and several rather difficult algebraic 
lemmas.) 

In view of this, we consider it useful to publish our original proof [15] in 
full, thus providing a thorough, yet brief and elementary, analysis of torsion-
free groups from the viewpoint of the lower predicate calculus (LPC) of 
formal logic. Though simple, it is strong enough to furnish all elementary 
theories for torsion free groups, which are both complete and model-complete 
(in this we supplement W. Szmielew's work which does not deal with model-
completeness). Thus we obtain a complete elementary classification of torsion-
free abelian groups. 
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As a by-product, we obtain some algebraic results supplementing Prufer's 
[5, 6, 7] and generalizing a theorem proved in [14]. We also extend to all 
torsion-free abelian groups A. Robinson's theorem [8, 3.1.5] in which model-
completeness was proved for divisible torsion-free groups only. 

The general case of all abelian groups will be left for a separate paper. 

1. Terminology and notation. We recall some definitions from [10] and 
[11], with only minor adjustments. 

1.1. Given an abelian group A and a positive integer p, we define the p-th 
congruence invariant of A, denoted [p]A or briefly [p], to be the maximum 
(possibly infinite) number of elements that can be selected from A in such a 
manner that they are mutually incongruent modulo p. (As usual, we write 
a == b (mod p) in A ("a is p-congruent with 6") if and only if there is an element 
x 6 A such that a = px + b. If b = 0, i.e. a = px, we say that a is divisible by 
p (or p-divisible) in A.) Equivalently, [p]A is the order of the quotient group 
A/pA where pA is the subgroup of all elements divisible by p in A. In the 
infinite case, we set [p] = oo , without distinguishing between infinities of 
different cardinalities, and with the usual conventions as to inequalities and 
operations. If p is a prime, [p] is called a prime invariant of A. 

1.2. A linear system is any finite system of equations, inequalities ( ^ ) , 
congruences and (or) incongruences of the form 

n n 

X) QijXj = du X) Qk/xj = ak' (mod r*'), i, k = 1, 2, . . . 

(with = and = possibly replaced by ^ and ^ , respectively) where qijy qk-
are given integers; the Xj are unknowns; rk' are positive integers; and au ak 

are given elements of an abelian group A. The au ak are called the constants 
of the system. Given two linear systems L and L', with constants in A, we 
say that Z/ is stronger than L (and L is weaker than Lf) if every solution of 
1/ is also a solution of L. If L' is both weaker and stronger than L, the two 
systems are said to be equivalent. 

1.3. As usual, a subgroup A§ oî A is said to be pure or serving in 4̂ if, for 
any positive integer r and any a Ç i o , the congruence a = 0 (mod r) holds 
in yl0 whenever it holds in ^4. 

2. Some algebraic lemmas. We shall need a few purely algebraic lemmas. 
In all of them A is a torsion-free abelian group ^ {0}. 

2.1. LEMMA. For any prime p, [pn]A = ( M ^ ) w , w = 1, 2, . . . . 

Proof. Let 4̂W = pnA (= subgroup of all elements divisible by pn), 
n = 0, 1, 2, . . . . We shall first of all show that 

(2.1.1) [pn^]An = [p]A, n = 0 , 1 , 2 , . . . . 
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(Here (in this proof only) [pn+1]An is the maximum number of elements t h a t 
can be selected from An in such a manner t ha t they are mutual ly pn+l-mcon-
gruent in A. T h e term "^ + 1 - i ncong ruen t e lements" means u ^ + 1 - i n c o n g r u e n t 
in A".) 

In fact, the map x —> pnx carries A onto Anj and is bijective since A is 
torsion-free. Also x £ A is divisible by p if and only if pnx is divisible by 
pn+l. T h u s x ^ y (mod p) if and only if pnx ^ pny (mod pn+l). Hence one 
can select exactly as many mutual ly ^>-incongruent elements from A as there 
are pn+l- incongruent elements in An. This proves (2.1.1). 

We now prove 2.1 by induction. The lemma clearly holds for n = 1. Suppose 
it holds for some n. By definition, [pn]A equals the order of A/An, i.e. the 
number of dist inct cosets of the form a + An (a Ç A). Clearly, the m a p 
x —» a + x is a bijection of An onto a + An; moreover, it carries any two 
^ + 1 - i n c o n g r u e n t elements of An into such elements of a + An, and vice versa. 
T h u s the maximum number of mutual ly ^ + 1 - i ncongruen t elements in a + An 

is the same as in An\ i.e. it equals [pn+1]An = [p]A, by (2.1.1). But , as we noted, 
A splits into exactly [pn]A cosets a + An and, clearly, no two elements selected 
from distinct cosets can be ^ -congruen t , let alone £w + 1-congruent. T h u s the 
total maximum number of ^ + 1 - i ncongruen t elements in A equals the number 
of cosets, [pn]A, t imes [p]A. By our inductive hypothesis, then, [pn+1]A = 
[pn]A • [p]A = ([p]A)n • [p]A = ([p]A)n+\ and the induction is complete. 

Our remaining lemmas deal with linear systems, as defined above. While 
the theory of linear equations and congruences in abelian groups is well 
established (cf. [5; 6; 7]), little has been done about systems in which also 
incongruences occur along with congruences (to be satisfied simultaneously) . 
I t is, however, this kind of system which is impor tan t for our purposes. The 
somewhat arduous lemmas proved below fill this gap, for torsion-free groups. 
T h e basic idea in these lemmas is to replace incongruences by stronger con
gruences in such a manner t ha t the arising stronger linear system (containing 
no incongruences) is still solvable. I t then follows tha t the original weaker 
system is solvable a fortiori. 

2.2. L E M M A . Let a, au a2, . . . , an £ A. Let k, k1} k2, . . . , kn be integers, with 

kt > k ^ 0, i = 1, . . . , n. Let p be a prime, with [p]A > n. Then the following 
linear system in one unknown x is solvable in A : 

(2.2.1) x = a (mod pk), x ^ at (mod pki), i = 1, 2, . . . , n. 

Proof. As k < kt, the congruence x = at (mod pki) (if t rue) would imply 
x = at (mod pk). Hence the incongruence x ^ at (mod pk) implies x ?£ at 

(mod pki). 
Now suppose t ha t at ?£ a (mod pk) for some of the given a*. For such af, 

the congruence x = a (mod pk) in (2.2.1) implies x ^ at (mod pk) and 
hence, as noted above, x ^ at (mod pki). Thus the lat ter incongruence is 
redundant in (2.2.1) whenever a ^ at (mod pk), and may be dropped wi thout 
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affecting the solutions of the system (if any). We assume that all such redundant 
incongruences have already been dropped, and so we have a system (2.2.1) in 
which at = a (mod pk), i = 1, 2, . . . , n. This means that there are elements 
zt G A such that at = a + pkzu i = 1, 2, . . . , n. To fix ideas, let &i be the 
least of all kt. Since k < ki and [p]A > n, Lemma 2.1 yields [pkl~k]A = 
([p]A )*1-fc > n. Thus, by the definition of [pkl~k], one can find in A more than n 
elements that are mutually incongruent modulo pkl~k. Hence there is z0 G A 
such that So ^ %t (mod pkl~k), i = 1, 2, . . . , n, with the zt as above. As 4̂ is 
torsion-free, we obtain at = a + pkzt ^ a + ^JS 0 (mod £*4*)- Thus x = a + 
pkz0 is a solution of (2.2.1) in A. 

2.3. LEMMA. Let L be a linear system in one unknown x, of the form: 

(2.3.1) x = di (mod pki), i = 1, 2, . . . , m, 
(a, e A) 

(2.3.2) x ^ at (mod £,*»'), i = m + 1, m + 2, . . . , w' 
where the kt are integers > 0 and the pt are primes. Then the following conditions 
(combined) suffice for L to have a solution in A : 

(a) The primes pt in the congruences (2.3.1) are distinct; 
(b) If some pt occurs in both (2.3.1) and (2.3.2), then its exponent kt in 

(2.3.1) is less than all its exponents in (2.3.2); and 
(c) [pi]A = oo , i = m + 1, m + 2, . . . , m' (it suffices that [pt] > mf —m). 

Proof. Suppose that some pt = p occurs in one or several incongruences 
(2.3.2); say, in the first n of them: 

(2.3.3) x ^ at (mod pki), i = m + l,m + 2, . . . , n (n ^ m'). 

Let k = min kt (i > m). Then, by assumption (c), we have [pk] = ([p])k è 
[p] = c o > m' — m\ so, by the definition of [pk], there is a0 £ A such that 
a0 ^ at (mod pk), hence ao ^ at (mod pki), i = m + 1, . . . , n. For that a0, 
(2.3.3) is weaker than the single congruence x = a0 (mod pr), r = max &f; 
for it implies x = a0 (mod pki), hence x ^ at (mod pki), i = m + 1, m + 2, 
. . . , w, as required in (2.3.3). 

Now, if p does not occur in (2.3.1), we replace (2.3.3) by x = a0 (mod pT) 
and include the latter in (2.3.1). This only strengthens L, preserving condition 
(a). If however, p does occur in some congruences (2.3.1), say in x = ai 
(mod pkl), then, by (b), ki is less than all kt in (2.3.3). Thus by Lemma 2.2, 
there is an a' Ç A such that a! = a\ (mod pkl) and af ^ at (mod pki), i = 
m + 1, . . . , m'. Clearly, both (2.3.3) and x = a\ (mod pkl) are weaker than 
the single congruence x = a' (mod ^ r ) where r = max (&m+i, . . . , km>). Thus 
we replace both by that single congruence. This again strengthens L and 
preserves (a). This process, when applied to all incongruences (2.3.2) trans
forms L into a stronger system U of the form (2.3.1), with all pi distinct. By a 
well-known elementary argument [1, p. 24] (which applies to all torsion-free 
abelian groups), L' has a solution in A. This completes the proof. 
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We shall say that a subgroup A0 of A is closed in A, with respect to linear 
systems L of a certain kind, if any such system can be solved in A0 whenever it 
has a solution in A and its constants are in A0. 

2.4. LEMMA. If A0 is a pure subgroup of A and if [p]A0 = [p]A for all primes, 
then AQ is closed in A with respect to all systems of the form: 

(2.4.1) qtx = at (mod rt), i = 1, 2, . . . , m\ 
(at G A0) 

(2.4.2) qtx ^ at (mod rt), i = m + 1, m + 2, . . . , m' 

Proof. Let L be a system of that form, with a solution x = c0in A. We have 
to show that L is solvable in AQ, also. As A is torsion-free, we may assume that 
each qt is prime to the corresponding rt (otherwise, reduce by the common 
divisor d of rt and qit noting that at too must be divisible by d in both A and A0 

(by purity), since L does have a solution). Then (cf. [1, p. 23]) each congruence 
(hence also each incongruence) in L transforms into one in which qt = 1, 
and at is replaced by some nat G A0. Thus we may assume that all qt equal 1, 
from the outset. 

Moreover, every congruence, x = a (mod r), is equivalent to a system of 
the form x = a (mod pjk0,j = 1, . . . , &, where r = p±

kl . . . ph
kh is the prime-

power decomposition of r. With the same notation, an incongruence, x ^ a 
(mod r), is equivalent to a disjunction composed of the incongruences x ^ a 
(mod £ / ' ) • ( I n other words, the incongruence x ^ a (mod r) holds for some 
x if and only if x satisfies at least one of the incongruences x ^ a (mod £/>)• 
Thus, as x = to is a solution of L, 0n£ such incongruence (at least) holds for 
x = ^o, and it implies x ^ a (mod r) . Hence, substituting that incongruence 
for x ?£ a (mod r), we only strengthen L, retaining the solution x = c0. By 
applying this replacement process to all of (2.4.1) and (2.4.2), we thus replace 
L by a stronger system L' of the form (2.3.1)-(2.3.2), with all at in A 0 and 
with the same solution x = c0 in ^4. In this manner all reduces to showing that 
U can be solved in A0 as well. 

For brevity, let tt = pt
ki in (2.3.1)—(2.3.2). Then, by our assumption 

and by Lemma 2.1, [tt]Ao = [tt]A for all i. Suppose that, for some i = i0, 
tt = q < oo. Then one can find in A, as well as in A0, exactly q (but not more) 
elements mutually incongruent mod ti0; let them be e0, ely . . . , ea-i G ^4o. 
(Observe that, by the purity of ^40, the elements e0, ei, . . . , eQ_i are ti0-
incongruent in both A0 and A.) Then the element c0 G A (constituting the 
solution of L') must be (tiQ)-congruent with one of the et; say, with e0. This 
means that x = c0 is also a solution of 

(2.4.3) x = e0 (mod / i 0 ) , e0 G A0. 

This congruence is stronger than the incongruence x ?£ ai0 (mod ti0) 
occurring in U ; for, since c0 satisfies both, x = eo implies x = c0, hence x ^ &*0 

(modulo ti0). Thus, replacing that incongruence by (2.4.3), we only strengthen 
U, retaining the solution x — c0. In this manner we remove from U all 
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incongruences (2.3.2) in which [pt] < oo , and then are left with a stronger 
system L" satisfying 2.3(c) . Moreover, the existence of a solution x = cQ 

easily implies t h a t every congruence in L" is stronger than any other con
gruence or incongruence in which the same prime pi occurs with a smaller or 
equal exponent kt. These weaker congruences and incongruences may then be 
dropped from L", wi thout affecting any of its solutions in A or AQ (the lat ter , 
by the pur i ty of Ao). After this removal, L" satisfies (in A as well as in Ao) 
the conditions (a) , (b) , (c) of 2.3, and its constants are still in AQ. T h u s L" 
(hence also the weaker original system L) has a solution in A0. This proves 
the Lemma. 

Note. T h e assumption [p]A = [p]Ao was only used in the last pa r t of the 
proof, to remove incongruences from L. T h u s it is r edundan t if L contains no 
incongruences. T h e same remark applies to Proposit ions 2.6 and 3.7 below, 
based on 2.4. 

2.5. L E M M A . For a subgroup Ao to be closed in A, with respect to all linear 
systems L, it suffices that A0 be closed with respect to those L which contain no 
equations (only inequalities, congruences and (or) incongruences). 

This was proved in [14, 3.9], for ordered groups. T h e same proof also applies 
to unordered torsion-free groups, so we omit it. 

Given Co £ A, we define the Co-extension of a subgroup A0 ^ A to be the 
subgroup of all elements x G A t h a t satisfy equat ions of the form tx = sc() + b, 
with b Ç Ao and t, s integers (t > 0 ) . As is known, it is the smallest pure 
subgroup of A containing both Ao and c0. 

2.6. L E M M A . Let Ax be the Co-extension of a subgroup Ao ^ {0} of A. If A0 is 
pure in A\ and if \_p~\Ao = [p]Aifor all primes p, then AQ is closed in A\, with 
respect to all linear systems. 

T h e proof is qui te similar to t h a t of an analogous proposition [14, proposi
tion 4.2], with minor adjus tments . Let L be a linear system in n unknowns 
Xj, with its constants at in A0, and let (ci, c2, • • • , cn) be its solution in Ax. 
We have to show t h a t L can already be solved in Ao. By 2.5, we m a y assume 
t h a t L contains no equations. 

Now, as Ai is the c0-extension of A0 in A, the elements Cj G A± satisfy some 
n equat ions of the form 

(2.6.1) tfi = sfo + bj (bj e Ao), j = l,2,...,n, 

where tj and Sj are integers (tj > 0) . Since (cu . . . , cn) is a solution, we m a y 
subs t i tu te the Cj for the x3 in L, and thus obtain a finite set of correct formulae. 
Using (2.6.1), we then el iminate Ci, . . . , cn from these formulae. (This elimina
tion can be carried out in any torsion-free group, as explained in [14, Footnote 8] . 
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As L has no equations, this process yields a set of (true) formulae, of the 
form : 

(2.6.2) ktc0 ^ a/, i = 1,2, . . . , m1} 

(2.6.3) kiC0 = a/ (mod r / ) , z = mi + 1, mi + 2, . . . , m2, 

(2.6.4) &^0 ^ a / (mod r / ) i = m2 + 1, m2 + 2, . . . , m3, 

where fef, r / are integers ( r / > 0) , and all a/ are in A0. 
Next, replace c0l C\, . . . , cn by unknowns formulas (2.6.1) 

through (2.6.4), thus obtaining a new linear system U in n + 1 unknowns. 
In particular, equations (2.6.1) turn into 

(2.6.1°) tjXj = SjXo + bj (bj G A0), j = 1, 2, . . . , n. 

Clearly (cQ, cx, . . . , cw) is a solution of L m Ai. Moreover, the entire process 
described above is reversible (A being torsion-free). Thus , if (d0, dif . . . , dn) 
is a solution of U, then (rfi, . . . , dre) is a solution of L. Hence our problem 
reduces to showing t ha t Lf is solvable in Ac,. 

T o achieve this, we use (2.6.1°) to eliminate Xi, . . . , xn from L!, leaving 
only one unknown x0. Then we replace equations 2.6.1° by a set of exactly 
n congruences, SjX0 + bj = 0 (mod tj), j = 1, . . . , n, with sjy tjy b3- as before. 
This yields a linear system L" in one unknown x0 only; L " consists of the now 
added congruences, and of (2.6.2)-(2.6.4) (with c0 replaced by x 0 ) . Again, the 
process is reversible; so any solution of L" yields one for Lf. Moreover L" has 
a solution x0 = c0 in Ax. As A0 is pure in Alf and as [p]A0 = [p]Ai for all 
primes p (by assumption) , Lemma 2.4 yields a solution, in A0j of the partial 
linear system U" arising from L" by dropping from it the inequalities ktXo 9e au 

i — 1, . . . , Mi, and thus consisting of congruences and incongruences only 
(indeed, A0 is closed in A\ with respect to such systems). Finally, as A0 is 
torsion-free and not {0}, L'" must even have infinitely many solutions in A0; 
for if a G A 0 is a solution, so also is any element of the form a + rz where 
z G A§ and r is a common multiple of all r( and all (non-zero) kt occurring in 
(2.6.3) and (2.6.4). T h u s some of these solutions must also satisfy the (finitely 
many) inequalities (2.6.2). This yields a solution of all of L" in A0, as required. 
T h u s the lemma is proved. 

Lemma 2.6 concludes the preliminary algebraic par t of this paper. We now 
pass to the metamathemat ica l par t , with the aim of proving the model-
completeness theorem (Theorem 3.6). 

3. T h e m o d e l - c o m p l e t e n e s s t h e o r e m . As in [10], we formalize the con
cept of an abelian group ^ {0} by a system of axioms in the lower predicate 
calculus (LPC) , based on two atomic relations: the binary relation E(x,y) 
(read: "x is equal to y"), and the ternary relation S(x,y,z) (read: "z is the 
sum of x and y"). For model-completeness, our language will also include 
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certain unary atomic relations Dn(x), n = 1, 2, . . . (see below). We write 
11 ~ ", " A " , " V " , " O •" and "• = ." for "not", "and", "or", "implies" and 
"is logically equivalent", respectively. "(3%)" and " (# ) " are the existential 
and the universal quantifiers. 

3.1. AXIOMS OF EQUALITY (or EQUIVALENCE): 

(a) (x)E(XjX). 
(b) (x)(y)[E(x,y).D.E(y,x)]. 
(c) (x)(y)(z)[E(x,y) A E(y,s) O - E(x,z)]. 
(d) Qx)Qy)[~E(x,y)]. 

3.2. GROUP AXIOMS: 

(a') (x)(y)Qz)S(x,y,z). 
(W) (x)(y)(z)(w)[S(x,y,z) A S(x,y,w) O - E(z,w)]. 
(c') (x)(y)(z)[S(x,y,z) 0-S(y ,* ,*)] -
(d') (w)(w)(w)(x)(y)(2)[5(«,i;,w) A S(w,x,y) A S(v,*,z) 0 -5 ( t t , z ,y ) ] . 
(e') (w)(y)(w)(x)(3;)(z)[5,(^,?;,w) A E(u,x) A E(v,y) A E(w,z) 

•D-S(x,y,z)]. 
(f) (x)(y)Qz)S(x,z,y). 

Here the axioms (a'), (b') express the fact that the group is closed under 
addition and that the sum is unique; axioms (c'), (d') give the commutative 
and associative laws; (e') expresses the substitutivity of the equality relation 
with respect to addition, and (P) ensures the existence of the inverse. To make 
the group torsion-free, we now add the following sequence of axioms (which, 
in ordinary language, state that nx — 0 implies x = 0): 

3.3. AXIOMS EXCLUDING TORSION: 

(XI)(X2) . . . (xn){[S(xu xi, x2) A S(xi, x2, Xz) A S(xu xz, xA) 

A . . . A S(xi, xn-u xn) A S(xn, xnj xn)] O * S(xi, xu Xi)}, 

n = 2, 3, . . . . 

The system of axioms introduced above (3.1 through 3.3) is neither complete 
nor model-complete, mainly because it does not specify the prime invariants 
(cf. 1.1) of the group under consideration. To achieve both completeness and 
model completeness, we first of all introduce a sequence of new atomic predi
cates Dn(x) (read: "x is divisible by »") , and the following additional sequence 
of axioms: 

3 .4. AXIOMS DEFINING THE PREDICATES Dn(x): 

(x)[Dn(x) -E=- Q y i ) ( 3y 2 ) . . . Qyn-i)[S(yi,yi,y2) AS(yi,y2,y*) 

A . . . A S(yu yn-2l yn-\) A S(yu yn-U x)]}, n = 2, 3, 4, . . . . 

(It should be stressed that we treat Formulae 3.4 not as definitions, but as 
axioms, and the predicates Dn as atomic ones in our language. I t is the adjunc-
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tion of these atomic predicates that ensures the model-completeness of the 
system of axioms here constructed. In this respect, cf. also Note 1 below.) 

Next, we fix an arbitrary infinite sequence \mn] where each mn is a non-
negative integer or oo, and add yet another sequence of axioms: 

3.5. AXIOMS SPECIFYING THE PRIME INVARIANTS: 

[Pn] = (PnY\ n = 1, 2, 3, . . . 

where {pn) is the ascending sequence of all primes, and the [pn] are the cor
responding prime invariants of the group, which thus are specified by the 
formulae (3.5). It is understood that these formulae are only abbreviations of 
their formal representation in the LPC, as explained in [10, p. 233]. 

Any system consisting of all these axioms (3.1 through 3.5), for some 
particular choice of the mn in 3.5., shall be called a system of axioms for a 
torsion-free abelian group with specified prime invariants. Clearly, there are 
exactly 2Ko such systems, each corresponding to a particular choice of the 
sequence \mn}. 

Note 1. All such systems are consistent since they have models, as is shown in 
[14, Theorem 2.5]. Moreover, they exhaust all possible cases since the invari
ants [pn] always have the form indicated in (3.5) (cf. [14, Theorem 2.6.]); in 
particular, the special case of a divisible group is obtained by choosing all mn 

equal to 0. 

We shall need some more definitions and facts from [10]. 

A consistent system K of axioms in the LPC is said to be complete if, for 
every elementary statement X (i.e. one formulated in the LPC), either X or 
its negation, ~X, is deducible from K. 

A statement Y is said to be primitive if it has the form 

Y = G y O O ^ ) . . . (3yn) (Z) 

where Z is a conjunction of atomic formulas (in our case, formulas of the form 
E(x, y), S(x, yj z) and Dn(x)) and (or) their negations. 

The following proposition [10, 1.6], due to A. Robinson, may be accepted 
as a definition of model-completeness: 

A consistent system K of axioms in the LPC is model-complete if and only if, 
for every pair of models, A and A0, of K (where A is an extension of AQ), any 
primitive statement which holds in A and is defined in A0, holds in A0 as well. 

Note 2. By definition, A is an extension of A0 if A0 £ A and if every 
atomic statement which holds in A and is defined in A0, holds in A 0 as well. 
In our case, A is a torsion-free group, and A0 its subgroup. Moreover, A0 must 
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be pure in A because the predicates Dn are atomic, and so by the above defini
tion, Dn (a) holds in A 0 whenever it holds in A and is defined in A 0 (i.e. a £ A 0 ) . 

Finally, from [10, 1.8], we recall t h a t a countable model-complete system of 
axioms K is also complete in the ordinary sense, if: 

(a) Any two countable models of K, which have no constants in common other 
than those of K (if any), can be embedded in a joint extension M; and 

(b) K has infinite models only. 
We can now establish our main result. 

3.6. T H E O R E M . Let K be a system of axioms for a torsion-free abelian group 
with specified prime invariants. Then K is model-complete and complete. 

Proof. Let A0 be a model of K, and A its extension; so A0 is a pure subgroup 
of A, by Note 2. Let F be a primit ive s t a t emen t t rue in A and defined in 
AQ, in terms of the atomic predicates E, S and Dn, n = 2, 3, . . . . I n ordinary 
language, Y means t h a t a certain finite system of equat ions, inequalities, 
congruences and (or) incongruences of the form 

(3.6.1) a = 0, a + /3=y, « - 0 (mod f) , 
a 5e fi, ce + / 5 ^ 7 , a i ^ O (mod f) , 

has a solution. (Note t h a t formulae (3.6.1) only typify the equat ions, inequali
ties etc. , which may occur in the system any finite number of t imes. T h e let ters 
aj /3, 7 s tand for cons tants from A0 or the ' ' unknowns" (the n bound variables 
y*m Y)). 

Now, as noted above, the model-completeness of K will be established if ŵ e 
show t h a t (3.6.1) has a solution in A0 assuming t h a t it has one in A. (Let a 
given solution be (ci, c2, . . . , cn), ct £ A.) T o achieve this, we introduce a 
sequence of n subgroups, Ai, A2, . . . , An, where A t is the (c*)-extension of 
A i_i in A (i = 1, 2, . . . , n), so t h a t each A t is pure in A, by our definition of 
the (c0)-extension (see § 2) . As was noted above, A0 is pure in A, as well. I t 
follows t h a t Ao is pure in Ai, and A t_i is pure in A t. (Indeed, if a Ç A t_i and 
if a = 0 (mod r) in A t then, certainly, a = 0 (mod r) in A, hence also in A <_i, 
by the pur i ty of At-i in A.) 

This implies t h a t any two ^- incongruent elements of A f_x are also p-
incongruent in A t. Thus , for any p, the maximum number of ^>-incongruent 
elements in At cannot be less t han in At-i. In other words, [p]A0 S [p]Ai ^ 
. . . g [p]An ^ [p]A. Moreover, by assumption, A0 and A are models of the 
same system K, and so satisfy the same sequence of axioms (3.5). I t follows 
t h a t [p]A0 = [p]A = [p\Au i = 1, . . . , n, for each pr ime p. Hence recalling 
t h a t (3.6.1) has a solution (ci, . . . , cn) in An} and applying L e m m a 2.6 suc
cessively n t imes, we infer t h a t (3.6.1) has a solution in ^4n_i, hence in An_2, 
in ^4W_3, . . • , and in A0, as required. T h u s K is model-complete. I t s complete
ness now follows exactly as it was done for ordered groups in Theorem 4.6 of 
[10]. In fact, the system K is countable and contains no cons tants . W e now 
use [14, Theorem 6.1]. (This theorem reads as our Corollary 3.9 below, bu t 
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is limited to countable groups.) By tha t theorem, any two disjoint countable 
models of K can be embedded in a common extension ; and any model-complete 
system K with these properties is also complete in the ordinary sense, by 
Theorem 1.8 of [10], quoted above. Thus all is proved. 

T h e recursive pa r t of this proof (dealing with Aly . . . , An) also yields an 
algebraic result: 

3.7 COROLLARY. A subgroup A0 9e {0} of a torsion-free abelian group A is 
closed in A, with respect to all linear systems, if and only if AQ is pure in A and 
[p]A0for each prime p. 

Indeed, the proof given above works also with (3.6.1) replaced by any 
linear system L. T h u s the conditions are sufficient. We omit the easy proof of 
their necessity. 

Notes. (3) Theorem 3.6 contains Robinson's Theorems 3.1.5 and 4.3.2 in 
[6a] as special cases. To obtain them, one only has to choose the part icular 
system K in which all mn in (3.5) are 0 (this yields the divisible case). 

(4) Priïfer [5] showed t ha t any pure subgroup A 0 of an abelian group A is 
closed in A, with respect to all systems of linear equations. For torsion-free 
groups, our Corollary 3.7 extends Priifer's result to all linear systems, as 
defined in §1. (Cf. the Note following Lemma 2.4.) 

T h e completeness of K can also be expressed as follows: 

3.8 COROLLARY. TWO torsion-free abelian groups A and B, other than {0}, 
are elementarily equivalent if and only if [p]A = [p]B for each prime p. 

This is W. Szmielew's result when restricted to torsion-free groups, and 
simplified accordingly. Though this certainly falls short of the general theorem 
of W. Szmielew, the simplicity of the new proof seems to justify the singling 
out of this special case, t reated here more simply and thoroughly than in [4]. 

From Corollary 3.8 we obtain a classification of torsion-free abelian groups 
by their e lementary properties, along the same lines as t h a t of certain ordered 
groups, given a t the end of [10]. As we have noted, there are exactly 2K o 

different systems K, each corresponding to a part icular choice of the exponents 
mn in (3.5), i.e. of the prime invariants [pn]. By 3.8, each such choice yields a 
class of elementarily equivalent groups. Thus there are exactly 2X o such 
classes. In other words, apa r t from elementarily equivalent "copies" , there 
are exactly 2X o torsion-free abelian groups. The divisible case is only one of 
them (all divisible torsion-free abelian groups are elementarily equivalent ) . 

Our next corollary generalizes Theorem 6.1 of [14], proved there for cotmtable 
groups only. I t may serve as an example of a useful application of meta-
mathemat ica l methods to algebra (where ordinary algebraic methods require 
much more effort). In fact, we have: 

3.9. COROLLARY. Let A and B be two disjoint torsion-free abelian groups other 

https://doi.org/10.4153/CJM-1974-078-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-078-4


840 ELIAS ZAKON 

than {0}, with [p]A = [p]B for each prime p. Then there is a torsion-free abelian 
group M which contains A and B as pure subgroups and has the same prime 
invariants: [p]M = [p]A = [p]B,for each prime p. 

Indeed, A and B have no constants in common and are models of one and 
the same complete system K described in 3.6. Thus, by Robinson's Theorem 
4.2.2 proved in [8], there is a model M of K which is an extension of both 
A and B. This implies that [p]M = [p]A = [p]B and that both A and B are 
pure in M (as was explained in Note 2). Thus all is proved. 

Note 5. By the same argument, Theorem 6.2 of [14] (dealing with ordered 
groups) extends to arbitrary (not necessarily countable) "regularly dense" 
groups. Of course, when embedding A and B in M, we must identify their 
zero-elements. 

REFERENCES 

1. G. Birkhoff and S. MacLane, A survey of modern algebra (Macmillan, New York, 1965). 
2. P. C. Eklof and E. R. Fischer, The elementary theory of abelian groups, Ann. Math. Logic 2 

(1972), 115-171. 
3. M. I. Kargapolov, On the elementary theory of abelian groups, Algebra i Logika 6 (1963), 

37-41. 
4. G. T. Kozlov and A. I. Kokorin, An elementary theory of torsion-free groups, with a predicate 

that distinguishes a subgroup. Algebra i Logika 8 (1969), 320-334. 
5. H. Prùfer, Unlersuchungen ùber die Zerlegbarkeit der abzdhlbaren primdren abelschen Gruppen, 

Math. Z. 17(1923). 
6> Théorie d. abelschen Gruppen, I, Math. Z. 20 (1924), 165-18. 
7. Théorie d. abelschen Gruppen, II, Math. Z. 22 (1925), 222-24. 
8. A. Robinson, Complete theories (North Holland, Amsterdam, 1956). 
9. Ordered structures and related concepts, Mathematical interpretation of formal systems, 

Studies in Logic and the Foundations of Math. (Amsterdam, 1954), 51-56. 
10. A. Robinson and E. Zakon, Elementary properties of ordered abelian groups, Trans. Amer. 

Math. Soc. 96 (1960), 222-236. 
11. G. Sabbagh, Sur la pureté dans les modules, C.R. Acad. Sci. Paris, Sér. A-B 271 (1970), 

A865-A867. 
12. Aspècs logiques de la pureté dans les modules, C.R. Acad. Sci. Paris, Sér. A-B 271 

(1970), A909-A912. 
13. W. Szmielew, Elementary properties of abelian groups, Fund. Math. 1^1 (1955), 203-271. 
14. E. Zakon, Generalized archimedean groups, Trans. Amer. Math. Soc. 99 (1961), 21-40. 
15. Elementary properties of torsion-free abelian groups (Abstract), Can. Math. Bull. 9 

(1966), 399ff. 

University of Windsor, 
Windsor, Ontario 

https://doi.org/10.4153/CJM-1974-078-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-078-4

