
AN IDENTITY PROPERTY FOR 2-COMPLEX PAIRS

MICHAEL P. HITCHMAN
Department of Mathematical Sciences, Lewis & Clark College, Portland, OR 97219, USA

(Received 17 August, 1997)

Abstract. An identity property de®ned for a pair of 2-complexes (Y;X) ®rst
arose in 1993 within a strategy for constructing a counterexample of in®nite type to
Whitehead's Asphericity Conjecture. In this note we make use of the theory of pic-
tures to characterize a more general right N-identity property, where N < �1Y. We
also de®ne combinatorial asphericity (CA) for the pair �Y;X� and determine a test
for (CA) in the case that Y is obtained from X by the addition of a single 2-cell. This
test can be used to determine an explicit generating set for �2Y.

1991 Mathematics Subject Classi®cation. 57M20.

1. Introduction. In this note we study an identity property for a pair of 2-
complexes, (Y;X), where Y is obtained from X by the addition of 2-cells. This
property is a natural generalization of the (absolute) identity property for a 2-
complex and ®rst arose in the context of a question of J.H.C. Whitehead [15]: is every
subcomplex of a connected, aspherical 2-complex itself aspherical? Much research
has been conducted regarding this still unanswered question (see [4] for a good sur-
vey of this research). One strategy for building a counterexample to the Whitehead
conjecture (which asserts the answer to his question is ``yes'') is to construct an
in®nite chain of 2-complexes X1 � X2 � � � �Xi � Xi�1 � � � � in which �2X1 is not
trivial, but �2�Xi� ! �2�Xi�1� is trivial for each i � 1 (see [12]). In [8], Dyer intro-
duces the identity property within a strategy for constructing such a chain of spaces.
In this strategy, the identity property is used to replace the homotopy requirement
��2Xi !0 �2Xi�1) with a homological one that is perhaps more accessible. For the
reader's convenience we describe this strategy in some detail below, in Section 3.

We may recover the (absolute) identity property for a 2-complex Y by con-
sidering the pair �Y;Y�1��, where Y�1� is the 1-skeleton of Y. This absolute identity
property is the traditional way to detect asphericity of a 2-complex. More generally,
if N is a subgroup of the fundamental group of Y, the right N-identity property
approximates asphericity. That is, Y has the right N-identity property if and only if
�2Y! H2YN is trivial, where YN is the cover of Y corresponding to N. The right N-
identity property has been the focus of much attention (see [7] for a good survey
article), and it arises naturally in the context of the Whitehead conjecture. A deep
result of J.F. Adams [1] says that a subcomplex X of an aspherical 2-complex has
the right P-identity property, for some perfect subgroup P of the fundamental group
of X.

In this paper we use pictures to de®ne a right N-identity property for the pair
�Y;X�, where N is a subgroup of �1Y. We will always view our 2-complexes as
arising from group presentations in the standard way, and it is often convenient to
discuss the identity property in terms of a pair of group presentations �Q;P� where
Q is obtained from P by the addition of relators. In Section 3 we present various
characterizations of the N-identity property that extend known characterizations of
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the absolute identity property. In Section 4 we make use of a Cockcroft property on
certain disk pictures to determine a combinatorial group-theoretic characterization
of the identity property.

In the last two sections we generalize to 2-complex pairs �Y;X� the notion of
weakening the asphericity of a 2-complex to combinatorial asphericity. Simple
mixed pictures called relative dipoles play an important role here. We de®ne �Y;X�
to be combinatorially aspherical (CA) if �2Y is generated (over �2X) by a set of
relative dipoles. In the case Y is obtained from X by adding a single 2-cell, we prove
a simple test for determining an explicit set of generators for �2Y (over �2X).

2. Pictures. If Y is the model of the presentation Q � h x : r; s i, then elements
of �2Y are represented by spherical pictures over Q. We refer the reader to [5] and
[13] for two thorough treatments of pictures, but we outline some key features here.

Any oriented transverse path 
 in a picture B de®ned over Q determines a word,
!�
� 2 F�x�, from the labels of the arcs it traverses. If 
i and 


0
i are distinct transverse

paths from the global basepoint of B to the basepoint of a disk �i in B, then they
may determine distinct words in F. However, an important feature of pictures is that
these words determine the same element of the group presented. This fact is essen-
tially due to a pictorial version of van Kampen's Lemma.

Lemma 2.1. (van Kampen) Suppose P � h x : r i presents the group G. For any
word w 2 F�x�, there exists a picture B over P with @B � w if and only if w has trivial
image in G.

If B is a picture over Q, @B denotes the word in F spelled by the arcs traversed
along the topological boundary of B. If no arc meets the topological boundary, then
B is called a spherical picture, and its boundary label is 12 F. Two pictures are
equivalent if one can be transformed to the other by a sequence of allowable moves.
These moves are of three types: insertion/deletion of a ¯oating arc, bridge move, and
insertion/deletion of a folding pair. (See [5], [13], for details.) We multiply two pic-
tures by forming their disjoint union, and we invert a picture by taking its mirror
image while changing the sign of each disk label. With these operations the equiva-
lence classes of pictures form a group. The normal subgroup generated by spherical
pictures is abelian. We write P�Q for the product of two spherical pictures, and
B �D for the product of two arbitrary pictures. Similarly, ÿP denotes the inverse of
a spherical picture P, while Bÿ1 denotes the inverse of a disk picture B.

If P is a spherical picture over Q we let �P� denote the element of �2Y it repre-
sents. The left ZH-module structure of �2Y is induced by the following F-action on
spherical pictures. For w 2 F, w � P is the spherical picture obtained by encircling
P with arcs whose labels spell w. Then we have the well-de®ned H-action
�w � �P� � �w � P�; where �w is the image of w in H.

Suppose C�� ~Y� is the chain complex of the universal cover ~Y of Y. The standard
ZH-module injection � : �2Y! C2� ~Y� can be described in terms of spherical pic-
tures as follows. Suppose P over Q represents �P� 2 �2Y, and that P has k disks,
�1;�2; � � � ;�k, with disk �i getting the label !��i��i (�i � �1, and !��i� is a relator
of Q) for i � 1; 2; � � � ; k. A transverse path 
i from the global basepoint of P to the
basepoint of �i determines a word !�
i� from the arcs it traverses. Let hi be the
image of this word in the fundamental group H. Then
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���P�� �
Xk
i�1

�ihic
2
!��i�:

3. The N-identity property for (Y,X). A spherical picture overQ � h x : r; s i can
have some disks labeled by relators in r, and some with labels from s. We will call
the former disks r-disks, and the latter disks s-disks. Let N < H be any subgroup of
H, and suppose NF is the pre-image of N in the free group F�x�.

Definition 3.1. The pair �Y;X� (or (Q;P)) has the right (resp. left) N-identity
property if every spherical picture over Q has a pairing of its s-disks �i$ j� such that

!��i� � !��j�;
�i 6� �j;
NF!�
i� � NF!�
j� (resp. !�
i�NF � !�
j�NF).

Implicit in the de®nition is a set of transverse paths f
ig to the disk basepoints of
disks with labels in s. If the de®nition is satis®ed for a particular set of transverse
paths then it is satis®ed for any such set. This is a consequence of van Kampen's
lemma.

If r is empty (i.e., if X is the 1-skeleton of Y), then this de®nition matches the
de®ntion given in [7] of the right N-identity property for the two-complex Y.

If N /H is normal, then the left and right identity properties coincide. In this
case, we will refer to the N-identity property. If �Y;X� has the f1g-identity property,
then we say that �Y;X� has the identity property. It is this identity property that
appreared in [8]. If X � Y�1�, it is well known that the pair �Y;Y�1�� has the identity
property if and only if the 2-complex Y is aspherical.

Note that if the inclusion induced map i# : �2X! �2Y is surjective, then �Y;X�
has the identity property, for if this map is surjective, then any spherical picture over
Q is equivalent to one without s-disks. By virtue of the allowable moves on pictures,
it follows that any picture over Q has the requisite pairing of its s-disks. Thus, for
instance, if Y is aspherical and X is any subcomplex containing Y�1�, then �Y;X� has
the identity property.

For a speci®c example, consider P � ha; b : �a; b�i and s � fa3g, so that Q �
ha; b : �a; b�; a3i. Then �Y;X� has the H-identity property. Indeed, in the case N � H,
the third condition in the de®nition is super¯uous. Thus, �Q;P� has the H-identity
property if and only if the s-disks of any spherical picture P over Q can be paired so
that disks in each pair have the same label but opposite orientation. We will say such
a picture has parity in s. In view of the well-known ZH-module generators of �2Y
depicted in Figure 1, it follows that every spherical picture over Q has parity in s.

We observe from the de®nition that if N1 � N2 and �Q;P� has the right N1-
identity property, then �Q;P� has the right N2-identity property as well.

Let p : ~Y! Y denote the universal covering of Y, and consider pÿ1�X� � XL,
the covering of X associated to the normal subgroup L � hhsiiG. The homology
sequence of the pair � ~Y;XL� yields the following exact sequence of left ZH-modules:

H2� ~Y� H2� ~Y;XL� H1�XL�
k k k

1 ! H2XL !i �2Y !j L
s2s ZHc2s !

 
H1�L� ! 1:

�1�
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From now on, we will let ZH s denote
L

s2s ZHc2s . We have a left H-action on
H1�L�, induced by the conjugation action of G on L. That is, for h 2 H,
h � s�L;L� � gsgÿ1�L;L�, where g 2 G has image h 2 H, and �s is the image of s in G.
This action makes H1�L� into a left ZH-module, called the relative relation module
associated to �Q;P�.

The maps in (1) are as follows. For s 2 s,  �c2s � � �s�L;L�. The map
j : �2Y! ZH s is the composition

j � � � � : �2Y! C2� ~Y� � ZH r � ZH s ! ZH s

where � is projection onto the s-coordinates, and � is the map de®ned in the pre-
vious section.

For the third map in (1) note that if � 2 ZH r has image in H2XL, then ��; 0� 2
ZH r � ZH s has image in H2� ~Y�. Let i��� � �P��, where the spherical picture P� is a
representative of the unique class �P�� in �2Y with ���P��� � ���; 0��.

Given the subgroup N < H � �1Y, let YN denote the cover of Y associated to
N. Let NG � �ÿ1# �N� be the pre-image of N in G, and build XNG

, the cover of X with
respect to NG. Then XNG

is a subcomplex of YN, and the pair (YN;XNG
� covers

�Y;X�.

Definition 3.2. Let N < �1Y. The pair �Y;X� is N-Cockcroft if the composite
map

�2�Y� !
j
ZH s � H2� ~Y;XL� !�N H2�YN;XNG

�

is trivial, where �N is the induced map from the projection � ~Y;XL� ! �YN;XNG
� of

covers.
As with the identity property, we recover the N-Cockcroft property for a 2-

complex Y from the N-Cockcroft property for the pair �Y;Y�1��.
For any group N, the augmentation ideal IN � ker�� : ZN! Z�, where

��P nihi� �
P

ni; ni 2 Z; hi 2 N. Then IN � ZH is the right ideal of ZH consisting of
all ®nite sums

P
aibi; �ai 2 IN; bi 2 ZH�.

We may identify the quotient module ZH=IN � ZH with Z
N ZH by the
natural isomorphism b 7!1
 b where b denotes the image in ZH=IN � ZH of an
element b in ZH (see [6, p. 34]). Also, one can check that ZH=IN � ZH � Z�NnH�
where NnH denotes the set of right cosets of N, and that Z�NnH� � Z�NFnF� are
naturally identi®ed.

Figure 1
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Proposition 3.3. The following statements are equivalent for the pair �Y;X�.
1. �Y;X� has the right N-identity property.
2. The s-coe�cients of any spherical picture P over Q lie in the right ideal

IN � ZH.
3. �Y;X� is N-Cockcroft.

We remark that this proposition is an immediate generalization of parts of
Theorem 4.2 in [7], and the proof of Theorem 4.2 may be adapted to this more
general setting.

Proof. �1� ) �2� Let P over Q be an arbitrary spherical picture. For s 2 s, let bs
denote the coe�cient of c2s in j��P�� 2 ZHs. We must show that bs 2 IN � ZH. Sup-
pose 
 is a set of transverse paths to the disk basepoints of P. As usual, let !�
i� be
the word in F determined by the path 
i to the basepoint of �i, and hi this word's
image in H. Then bs �

P
�khk, where the sum runs over all disks �k labelled by

s�k ��k � �1�. If (Q,P) has the right N-identity property then there exists a pairing of
the s-disks �i$ j� such that �i � ÿ�j and hi � njhj for some nj 2 N. We may then
rewrite bs as

P
�j�1ÿ nj�hj where the sum includes one term for each pair of disks

labelled by s. Thus, bs 2 IN � ZH.

�2� ) �1� We can tensor (1) by Z
ZN ± to obtain the next exact sequence

Z
N H2XL !1
i Z
N �2Y!
1
j

Z
N ZH s !1
 Z
N H1�L� ! 1:

Since Z
N ZH s � �ZH=IN � ZH�s, condition (2) implies the map 1
 j is trivial,
and hence 1
  is an isomorphism. But Z
N ZH s � �s2s�Z�NFnF��c2s , and
Z
N H1�L� � Z
N L=�L;L� � L=�NG;L�, so that

�s2s�Z�NFnF��c2s � L=�NG;L�:

This map is given on basis elements by c2s 7!�s �NG;L�.
Now consider P over Q, and suppose j��P�� �P �i �bic

2
si
where �i � �1, bi 2 G,

and �bi is its image in H. From sequence (1),  � j�P�� � 0 implies thatP
�ibi �sib

ÿ1
i �L;L� � 0 in H1�L�, so that

P
1
 �ibi �sibÿ1i �L;L� � 0 in Z
N H1�L�.

Condition (2) implies that this element's pre-image in �s2s�Z�NFnF��c2s is trivial. In
particular, X

i

�i�NF fi�c2si � 0;

where fi is the pre-image of bi in F. So, for each s, the partial sum
P

si�s �i�NF fi�c2si is
trivial and the pairing sought necessarily exists.

�2�()�3� This equivalence follows from an analysis of the chain complex of the
pair �YN;XNG

�. We may identify C2�YN� with Z
N C2� �Y� � Z
N ZH r[s. Similarly,
C2�XNG

� � Z
NG
ZGr, from which we may identify H2�YN;XNG

� � C2�YN;XNG
�

with Z
N ZH s. Thus, �Q;P� is N-Cockcroft if and only if �2�Y� !j ZH s !
�ZH=IN � ZH�s is trivial; that is, if and only if j��P�� has coe�cients living in IN � ZH
for each P over Q

One checks that the pair �Q;P� has the left N-identity property if and only if the
s-coe�cients of any spherical picture over Q live in the left ideal ZH � IN of ZH. In
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fact, �Q;P� has the left N-identity property if and only if the s-coe�cients of each
spherical picture P in a module generating set of �2Y live in ZH � IN. We may restrict
our attention to a �2 generating set in this case precisely because �2Y is a left ZH-
module. See [14] for a discussion of this left/right distinction in the absolute case.

For example, suppose P � hx; t : �t; u� i where u 2 F�x� is non-trivial, and t is a
letter not in x. Let s � ftug, so that Q � hx; t : �t; u�; tu i. We remark that Q is Tietze
equivalent to hx : 1i. Thus, Q is not Cockcroft, and H is isomorphic to the free
group on x.

If Y is the model on Q, then one can check that the spherical picture over Q in
Figure 2 generates �2Y as left ZH-module.

Note that j�[P]� � � �uÿ 1�c2s , where �u is the image of u in H, from which we see
that �Y;X� has the left N-identity property for a subgroup N < H if and only if
�u 2 N. On the other hand, �Y;X� has the right N-identity property if and only if
h� �uÿ 1� 2 IN � ZH for each h 2 H. Furthermore, �Y;X� is hh �uiiH-Cockcroft here,
though Y itself is not Cockcroft.

In general, if N � f1g then IN � ZH is trivial. Thus, Proposition 3.3 ensures that
�Q;P� has the identity property if and only if the map j in (1) is trivial. Consider the
following diagram with commutative square, obtained from sequence (1) by adding
the vertical Hopf sequence:

�2X
#

1 ! H2XL !i �2Y !j ZH s ! H1�L� ! 1:
# #

H2�L� !� �2Y=im��2X�
#
1

�2�

Figure 2
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One checks that the map � is injective, and that � is surjective if and only if j is
trivial. Then, the following proposition holds.

Proposition 3.4. The following statements are equivalent.
1. �Y;X� has the identity property.
2. The map � : H2�L� ! �2Y=im��2X� is a ZH-module isomorphism.
3. The map  : ZH s ! H1�L� is a ZH-module isomorphism.

Remark 3.5. For the reader's convenience, we now consider the strategy for
constructing a counterexample to the Whitehead conjecture, as given in [8]. Suppose
X is a non-aspherical 2-complex modelled on P � h x : r i that is L1-Cockcroft, for
some non-trivial normal subgroup L1 / G � �1X.

Consider a strictly increasing sequence of normal subgroups of G

f1g � L0 < L1 < � � � < Ln < Ln�1 < � � � < G

and nested sets of elements of F�x�
; � s0 � s1 � � � � sn � sn�1 � � �

such that Ln � hhsniiG. Consider the family of group presentations Pn � h x : r; sn i
for each integer n � 0. ( P0 � P.) Suppose further that for each n � 1

(i) the pair �Pn;P� has the identity property; and
(ii) the map H2XLn

! H2XLn�1 induced by the injection Ln! Ln�1 is trivial.
Having such a sequence of presentations, we can construct an in®nite counter-

example to the Whitehead conjecture as follows.
Let Xn � X [ fc2s : s 2 sng: If p : ~Xn ! Xn is the universal cover, then pÿ1�X� � XLn

.
Since �Pn;P� has the identity property, H2XLn

� �2Xn for each n. This fact,
condition (ii), and the commutative diagram

H2XLn
! �2Xn

# � #
H2XLn�1 ! �2Xn�1

ensure that �2Xn! �2Xn�1 is trivial at each stage. In this way, we build
X1 �

S
Xn, an aspherical 2-complex having the non-aspherical subcomplex, X.

4. A group-theoretic gharacterization. In this section we require our subgroup
N /H to be normal. Suppose P is a spherical picture over Q. We may focus directly
upon the s-disks of P as follows: consider a set of paths f
ig to the r-disks of P (see
Figure 3). We assume that no two paths intersect except at the global basepoint. In
[13] such a set of paths is called a spray, except that here we're restricting a spray to
the r-disks. Next, cut along the boundary of this spray to obtain a disk picture
having all the s-disks of P (if any), and boundary label reading

Y
!�
i�!��i��i!�
i�ÿ1;
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where the product runs over all r-disks �i, and !��i��i 2 r [ rÿ1 is the label of �i. In
other words, we obtain a picture over the presentation Z � h x : s i whose boundary
is in R. This leads to the following notion.

Definition 4.1. Suppose P � h x : r i presents the group G, N / G is a normal
subgroup, and w is a set of words in F � F�x�. Let NF be the pre-image of N in F,
and R � hhriiF. Then P is N-Cockcroft (rel w) if and only if any disk picture over P
with boundary label in W � hhwiiF has a pairing �i$ j� of its disks such that

!��i� � !��j�; �i 6� �j; and !�
i�!�
j�ÿ1 2 NF:

We say that P is Cockcroft (rel w) if P is G-Cockcroft (rel w). We remark that a
notion very similar to this (in the case N � G) was introduced in [2] to study Cock-
croft properties of pictures arising from group constructions. The following key
lemma is a generalization of a fact stated in [2] for the case N � G.

Lemma 4.2. With the notation as in 4.1, P is N-Cockcroft (rel w) if and only if P
is N-Cockcroft and W \ R � �R;NF�.

Proof. First, suppose P is N-Cockcroft (rel w). Since 1 2W it follows that P has
the N-identity property; that is, all spherical pictures over P have the appropriate
pairing of its disks. Thus, P is N-Cockcroft. We must show that W \ R � �R;NF�.

Consider v 2W \ R. Since v 2 R, van Kampen's Lemma guarantees a picture B
over P having v as its boundary label. Since v 2W, the disks of B have the pre-
scribed pairing of De®nition 4.1. We must show this forces @B � v 2 �R;NF�.

Consider any spray of paths 
 � f
1; � � � ; 
kg to the disk basepoints in B, where

i attaches to disk �i. It is well known (see [13]) that the word determined by this
spray,

Q
!�
i�!��i��i!�
i�ÿ1, is freely equal to the boundary label of the picture B.

That is,

@B �
Y

!�
i�!��i��i!�
i�ÿ1:

But the words in this product are paired according to De®nition 4.1. Armed with
this pairing, one checks that the product is trivial in F=�R;NF�. (An easy way to see
this is to choose a spray of paths in B so that paired disks are adjacent in the
(clockwise) sequence of paths comprising the spray.)

Figure 3
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Conversely, consider a picture B over P having boundary label @B 2W. We
show that B has the prescribed pairing. By van Kampen's Lemma, @B 2 R, and so
@B 2W \ R � �R;NF�. It follows that @B is freely equal to a word v of the form

v �
Yk
i�1

fi�wi; ui�f ÿ1i

where each fi 2 F; each ui 2 NF and each wi 2 R.
Now, consider the picture D in Figure 4 having boundary label equal to v.

Each subpicture Bwi
of D is a picture over P associated to wi 2 R (this picture

has boundary label identitically equal to wi). Notice that by pairing each disk of Bwi

with its mirror image in Bÿ1wi
, the disks of D can be paired to satisfy the conditions of

De®nition 4.1. Indeed, we may always choose a path from a disk of Bwi
to its mirror

image in Bÿ1wi
whose associated word is a conjugate of ui 2 NF, and hence in NF,

since N is normal.
Let Q be the spherical picture associated to B �Dÿ1. Since P is N-Cockcroft, Q

has an appropriate pairing of its disks. Now the disks of D may be paired appro-
priately as indicated above, so the subpicture B has a pairing of its disks as well. �

Recall, Z is the 2-complex modelled on Z, A � �1Z, and set M � hhriiA. Let
�A : A! H and �F : F! H denote the inclusion induced maps on the fundamental
groups �1Z! �1Y and �1Y

�1� ! �1Y, respectively.

Theorem 4.3. Suppose N is normal subgroup of H, and let NA � �ÿ1A �N� and
NF � �ÿ1F �N�. The following statements are equivalent.

Figure 4
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1. �Q;P� has the N-identity property;
2. Z is NA-Cockcroft (rel r); and
3. Z is NA-Cockcroft and R \ S � �S;NF�.

Proof. (1))(2) Suppose B is a picture over Z with boundary label in R. Then
there is a disk picture D over P with boundary label identically equal to @B by van
Kampen's lemma. Then B�Dÿ1 is equivalent to a spherical picture over Q, and since
�Q;P� has the N-identity property, this spherical picture has the appropriate pairing
of its s-disks. Thus, the subpicture B, which contains all the s-disks of B�Dÿ1 must
have a pairing of its s-disks satisfying the conditions of De®nition 4.1. Indeed the
pairing that works for the spherical picture B�Dÿ1 restricts to a suitable pairing for
B.

(2))(1): Suppose P is a spherical picture over Q. We may cut the r-disks from P
as in Figure 3 to form a disk picture over Z with boundary in R. (If P has no r-disks,
then the original picture is unchanged.) This new picture has a prescribed pairing by
assumption. Moreover, this pairing can be used in P to see that the original picture
P has an appropriate pairing.

(2)() (3): This follows as a corollary to the above lemma, since the pre-image
of NA in the free group F is NF.

Corollary 4.4. The following statements are equivalent.
1. �Q;P� has the identity property;
2. Z is M-Cockcroft (rel r); and
3. Z is M-Cockcroft and R \ S � �S;RS�.

Proof. The pre-image of the trivial normal subgroup f1g in A is M, and the pre-
image of M in F is RS. The corollary is a restatement of Theorem 4.3 in this special
case.

Example 4.5. Consider any 2-relator presentation Z � hx : u; vi where
u; v 2 F�x� � F. Let P � hx : �u; v�ni and Q � hx : �u; v�n; u; vi, for n � 2. Let
r � �u; v�n, R � hhriiF, s1 � u; s2 � v and S � hhfs1; s2giiF. Since r 2 S \ �S;S�, it fol-
lows that R � S \ �S;RS�, and the group-theoretic condition of the corollary holds.
So long as Z is M-Cockcroft (e.g., let Z be any two relator, aspherical presentation),
then �Q;P� has the identity property.

We observe further that the inclusion induced map �2X! �2Y is trivial, while
both homotopy groups are non-zero. As the model of a one relator presentation,
�2X is generated as a ZG-module by a complete dipole. However, this dipole dis-
solves in the presence of the new s-disks. To see this, note that the root �u; v� of the
relator r is contained in S. It follows that X is L-Cockcroft. Thus �2X! �2Y is
trivial. Finally, �2Y is not trivial. In the case n � 2, a non trivial spherical picture
over Q is given in Figure 5. We remark that this picture also demonstrates that Y
itself is not Cockcroft.

In [8], Dyer's strategy for constructing a counterexample of in®nite type to
Whitehead's Conjecture is to begin with a 2-complex pair �Y;X� for which �Y;X�
has the identity property and 0 6� �2X! �2Y is trivial. To be able to extend this
pair to a longer chain of suitable 2-complexes, it is necessary for Y to be Cockcroft.
That is, if Y is not Cockcroft then there exists no 2-complex Y0 containing Y for
which the inclusion induced map �2�i� : �2Y! �2Y

0 is trivial. We have seen that the
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above example satis®es the ®rst two conditions, but is not delicate enough to satisfy
the third. It would be of considerable interest to ®nd non trivial examples (where
�2X 6� 0) of presentations that satisfy the three conditions of the following corollary.

Corollary 4.6. The following sets of conditions are equivalent.

�2X!0 �2Y
�Y;X� has the identity property

Y is Cockcroft

8<:
9=;, X is Lÿ Cockcroft

Z is Mÿ Cockcroft
R \ S � �S;RS� \ �R;F�

8<:
9=;:

Proof. For �Q;P� to have the identity property and Q to be Cockcroft, we must
have j��P�� � 0 for all spherical pictures over Q and all these pictures must have
parity in r, for all r 2 r. That is, Z must be M-Cockcroft (rel r) and P must be G-
Cockcroft (rel s). The result now follows from Corollary 4.4 and Lemma 4.2.

5. Combinatorial asphericity. Certain relations always hold in the relative
relation module H1�L�. Let CG�s� denote the centralizer of the image of the word s in
G. (For each s 2 s we let s also denote this word's image in the group G; context will
make clear whether we're viewing s 2 F or s 2 G.)

For any g 2 CG�s�, let �g be its image in H. Then

� �gÿ 1� � s�L;L� � gsgÿ1�L;L� ÿ s�L;L� � s�L;L� ÿ s�L;L� � 0.

We call the set f� �gÿ 1� � s�L;L� : s 2 s; g 2 CG�s�g the set of trivial identities in
the relative relation module H1�L�, and we say �Q;P� (or �Y;X�) has the generalized
identity property if H1�L� with generators fs�L;L� : s 2 sg is de®ned by the trivial
identities.

Figure 5
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The generalized identity property reduces to the identity property in the case
that the image of CG�s� in H is trivial for each s. We have observed that if �Y;X� has
the identity property then �2Y � H2XL. We turn to relative dipoles to study �2Y in
the presence of the generalized identity property.

Suppose P is a spherical picture over Q containing exactly 2 s-disks and possibly
some r-disks. Then P is called a relative s-dipole, or simply an s-dipole, if the two s-
disks are labelled by the same element of s but with opposite signs. Notice the �2
generators in Figure 1 are both s-dipoles.

If BP is a set of spherical pictures over P that generates �2X as left ZG-module,
then a set B of spherical pictures over Q generates �2Y over P if B [ BP generates
�2Y as left ZH-module. Two spherical pictures P and Q over Q are called equivalent
(rel BP) if �P� ÿ �Q� 2 im��# : �2X! �2Y�.

We will call the pair (Q;P) (or �Y;X�) combinatorially aspherical, denoted (CA),
if �2Y is generated over P by a set of s-dipoles.

Example 5.1. Suppose hx : si is a (CA) presenation of an in®nite group. We
construct a relative (CA) pair as follows. Let t be a letter not in x, and let u 2 F�x� be
a word having in®nite order in hx : si. Let w � tut and rx � �x;w� for each x 2 x.
Finally, set r � frx : x 2 xg, and consider the pair P � hx; t : ri and Q � hx; t : r; s i.
It follows from work on generalized graphs of groups in [2] (see also [5]) that �2Y is
generated over P by �2 generators of hx : si (which are dipoles since this presenta-
tion is (CA)) and one additional spherical pictures for each s 2 s. In particular, if
s � x�11 x

�2
2 � � � x�nn , with each xi 2 x, each �i � �1, then the relator s contributes the �2

generator pictured in Figure 6. Thus, �Q;P� is (CA).

In [2] it is proved that w has in®nite order in H, and it follows that these exam-
ples �Q;P� do not have the identity property. Thus, in the relative setting (as in the
absolute setting), combinatorial asphericity is a weaker notion than the identity
property.

Figure 6
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We summarize the above discussion with the following proposition.

Proposition 5.2. Suppose hx : si is (CA), and u 2 F�x� has in®nite order in the
group presented. If P � hx; t : �x; tut� �x 2 x� i, and Q � hx; t : �x; tut� �x 2 x� ; s i,
then �Q;P� is (CA).

For each 1 6� w 2 CG�s�, for each s 2 s, we may construct a basic s-dipole Pw as
depicted in Figure 7.

In this construction one may choose the word W 2 F representing w, and the
subpicture B of Pw having boundary label WsWÿ1sÿ1 2 R (such a picture B must
exist by van Kampen's Lemma). In general, such choices will lead to inequivalent
basic s-dipoles. However Pw is unique modulo �2X in the sense described in the
following lemma.

Lemma 5.3. Let BP be a set of spherical pictures over P that generates �2X.
Suppose w 2 CG�s�, for s 2 s, and Pw is a basic s-dipole formed from the word W 2 F
representing w and the picture B over P with @B � �W; s�. If P0w is a second basic s-
dipoles formed from W0 2 F representing w and B0 with @B0 � �W0; s�, then Pw and P0w
are equivalent (rel BP).

Proof. Since W and W0 both represent the element w of G, van Kampen's
Lemma ensures the existence of a picture D over P with @D �Wÿ1W0. Now con-
sider Pw ÿ P0w (Figure 8 (a)). Into this picture we may insert the trivial picture D�Dÿ1
as depicted in Figure 8 (b). Now we make a series of bridge moves to split o� the s-
disks (Figure 8 (c)) and then fold them from the picture (Figure 8 (d)). That is,
Pw ÿ P0w is equivalent to a spherical picture over P. Thus, any two basic s-dipoles
associated to w 2 CG�s� are equivalent (rel BP).

Figure 7
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For each s 2 s, construct one basic s-dipole Pw for each w 2 CG�s�. Let D�s
denote this set of basic s-dipoles, and let D� � Ss2sD�s . Finally, let J�D�� denote the
submodule of �2Y generated by D�.

Lemma 5.4. If P is any s-dipole over Q, then �P� 2 J�D��.

Proof. An arbitrary s-dipole P contains the local con®guration of Figure 9 (a),
where we assume a path to the negatively oriented s-disk determines the word V 2 F.
Consider the picture Vÿ1 � P depicted in Figure 9 (b).

By bridge moves we may open a path connecting the global basepoint to the
basepoint of the negatively oriented disk so that the two basepoints are in the same
region. See Figure 9 (c). We may contain all the r-disks of this new picture within the

Figure 8

Figure 9
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shaded subpicture having boundary label from the designated ``basepoint'' identi-
cally equal to sVÿ1VWsÿ1Wÿ1.

After planar isotopy, we may view our picture as in Figure 9 (d), and upon
including the arcs labelled by V into the shaded subpicture we obtain a basic s-
dipole. By Lemma 5.3, this dipole is equivalent (rel BP) to the s-dipole Pw in D�
where w is the image of W in G. It follows that the original s-dipole P is equivalent
(rel BP� to V � Pw, so �P� 2 J�D��.

Now suppose that As � G is a generating set for CG�s�, and Ds � fPw : w 2 Asg
for each s 2 s. Set D � Ss2sDs and J�D� to be the submodule of �2Y generated by
D.

Lemma 5.5. J�D� � J�D��.

Proof. Clearly J�D� � J�D��. The reverse inclusion follows from two facts. First,
for w 2 As, Pwÿ1 is equivalent to �wÿ1 � Pw�ÿ1. Second, if w1;w2 2 CG�s� and
w � w�11 w

�2
2 , then Pw is equivalent to �Pw

�1
1
� � w�11 � �Pw

�2
2
� (rel BP�. Both equivalences

can be checked directly by performing moves on pictures, and the second is
demonstrated schematically in Figure 10.

Figure 10
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Proposition 5.6. �Q;P� is (CA) if and only if �2Y is generated over P by D.

Proof. If �2Y is generated by the set BP [ D, then �Q;P� is (CA) by de®nition.
Conversely, if �Q;P� is (CA) then �2Y is generated by the set BP together with some
set of s-dipoles. But the two previous lemmas ensure that any s-dipole in this set is
equivalent (rel BP) to an element of the submodule of �2Y generated by D. The
result follows.

We remark that di�erent pictures in D may be equivalent. For instance, if
P � ha; b : �a; b�i and s � abÿ1, then CG�s� � G is generated by a and b. One may
check that the basic s-dipoles Pa and Pb determined by these words are equivalent.
Nonetheless, we can ®nd minimal generating sets in some interesting cases. For the
remainder of this paper, we assume the set D has been chosen, and consists of one
basic s-dipole Pw for each w 2 As in a generating set for CG�s�, for each s 2 s.

Proposition 5.7. If �Q;P� is (CA) and N < H, then �Q;P� has the right N-
identity property if and only if N contains the normal subgroup K � hhfAs : s 2 sgiiH of
H.

Proof. If �Q;P� is (CA) then �2Y is generated by the set BP [ D. The image in j
of any picture in this set is either trivial or of the form � �ws ÿ 1�c2s for some
s 2 s;ws 2 As. Thus, any picture P over Q has image in j of the form

j�P� �
X

hi� �wsi ÿ 1�c2si ;

where hi 2 H, wsi 2 Asi ; si 2 s. With respect to a subgroup N < H, P has the pre-
scribed pairing of De®nition 3.1 if and only if

NFuiwsi � NFui

where ui 2 F represents hi 2 H. That is, P has the prescribed pairing if and only if
uiwsiu

ÿ1
i 2 NF. It follows that all pictures over Q have the prescribed pairing if and

only if K � N.
For instance, let P � ha; b : �a; b�i and s � a3. Then �Q;P� is (CA) since �2Y is

generated by s-dipoles (as shown in Figure 1). Since G is abelian in this case, the
centralizer CG�s� � G is generated by a and b. The normal subgroup of H generated
by a and b is H itself, so the above result ensures that �Q;P� has the right N-identity
property if and only if N � H.

Proposition 5.8. If �Q;P� is (CA) then �Q;P� has the generalized identity
property.

Proof. According to the exactness of sequence (1), H1�L� is isomorphic to the
ZH-module generated by fc2s : s 2 sg and de®ned by the relations j��P�� � 0 for all
pictures in a generating set of �2Y. In the present situation, we may assume �2Y is
generated by the pictures in BP [ D. Since any picture P over P has no s-disks, j��P��
is 0 for elements of BP . Moreover, if P 2 D then j��P�� � � �wÿ 1� � c2s , where w is in a
generating set of CG�s�; s 2 s. That is, each P 2 D determines a trivial identity
j��P�� � 0. Thus, H1�L� is de®ned by trivial identities, and �Q;P� has the generalized
identity property.
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Example 5.9. Consider the pair P � hx : �u; v�2i; Q � hx : �u; v�2; u; vi: We
know from Example 4.5 that �Q;P� has the identity property, so it necessarily has
the generalized identity property. However, the spherical picture of Figure 5 is a
generator of �2Y which is not equivalent to a sum of s-dipoles and pictures over P.
It follows that �Q;P� is not (CA), and the converse to the above theorem is false.

We have the following partial converse to Proposition 5.8.

Proposition 5.10. If H2�L� � 0 and if �Q;P� has the generalized identity prop-
erty then �Q;P� is (CA).

Proof. We show that any spherical picture P over Q is in J�BP [ D��. Since
�Q;P� has the generalized identity property, j��P�� �P hi� �wi ÿ 1�c2si where hi 2 H,
wi 2 CG�si�, and �wi is the image of wi in H. trivial identities in H1�L�. We may
associate to this sum a natural picture P0 over Q that is a sum of s-dipoles. In par-
ticular, the term hi� �wi ÿ 1�c2si gives rise to the s-dipole vi � Pwi

where vi represents hi in
the free group, and Pwi

is the s-dipole in D� associated to wi. Let P
0 =

P
vi � Pi.

Then j��P�� � j��P0�) and �Pÿ �P0�� 2 ker j � im i, where i : H2�XL� ! �2Y is from
the fundamental sequence (1). Now, the Hopf sequence �2X! H2XL ! H2L! 0
ensures that H2L is isomorphic to H2XL=im��2X�. If H2L = 0 then every spherical
picture over Q in the image of H2XL actually comes from �2X. Thus,
�Pÿ P0� 2 im��2X! �2Y�, and P is equivalent (rel P) to a spherical picture whose
image is in J�D��. It follows that �P� 2 J�BP [ D�.

6. A test for (CA). Consider Q � h x : r; s i. For each s in s, let exps(P) = the
number of s� disks in P - the number of sÿ disks in P. Then Q has parity in s if and
only if exps(P) = 0 for each s 2 s and each P over Q. Recall, Q has parity in s if and
only if �Q;P� has the H-identity property. This is true if and only if �Q;P� is
Cockcroft.

A subset c of a (multiplicative) abelian group C is called linearly independent ifYk
i�1

cnii � 1 implies ni � 0 for each i

where ni 2 Z, and c1; c2; :::; ck are distinct elements of c.

Lemma 6.1. If s determines a linearly independent set of elements in H1�G�, then
�Q;P� is Cockcroft.

Proof. Take any spherical picture P over Q. Assume P has s-disks. Then any
spray to the s-disks determines an equationY

sÿdisks in P

wis
�i
i w
ÿ1
i �F w

where w 2 R, and wi 2 F for each i. Viewing this equation in G, we obtainY
sÿdisks in P

wis
�i
i w
ÿ1
i �G 1
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and modulo �G;G� we have Y
sÿdisks in P

s�ii �
H1�G�

1:

Grouping common bases, Y
s2s

sexps�P� �H1�G�
1:

The linear independence condition implies that exps(P) = 0 for each s 2 s.

In the case s consists of a single word, we have the following simple su�cient
condition for �Q;P� to be (CA).

Theorem 6.2. Suppose P � h x : r i presents the group G and the word s 2 F�x�
lives in the center of G and has in®nite order in H1�G�. If we let Q � hx : r; si then
�Q;P� is (CA), and �2Y is generated (over P� by the set D of basic s-dipoles.

Proof. Since s has in®nite order in H1�G�, Q � hx : r; si has parity in s � fsg by
Lemma 6.1. Thus, the image j��P�� of any spherical picture P over Q has the form

�hi� �gi ÿ 1�c2s
where hi 2 H, gi 2 G, and �gi is its image in H. Since the image of s is in the center of
G, CG�s� � G, and j��P�� is mapped by  to a consequence of trivial identities. Since
this holds for all P over Q, �Q;P� has the generalized identity property. Further-
more, the two conditions on s ensure that L, the normal closure of s in G, is in®nite
cyclic. Thus, H2�L� is trivial and �Q;P� is (CA) by Proposition 5.10.

Example 6.3. Suppose P � ha; b : �a; b�i and Q � ha; b : �a; b�; si where s is any
non-trivial word that does not set a �H b. Since G is abelian, CG�s� � G is generated
by a and b, and by our choice of s these words determine distinct elements of H.
Also, any such s has in®nite order in G � H1�G� so �Q;P� is (CA) by Theorem 6.2.
Finally, P is aspherical, so �2Y is generated by two distinct basic s-dipoles Pa and Pb.

For instance, consider the presentation Z � ha; b : s � a2bÿ3i, of the �2; 3� torus
knot group. Let P � ha; b : r � �a; b�i, and Q � ha; b : r; si. Then �Q;P� is (CA) and
�2Y is generated by two s-dipoles Pa and Pb, as seen in Figure 11. The pictures are
formed from simples choice for the disk pictures Ba and Bb.

Figure 11
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Example 6.4. Consider the presentation P � ha; b : a6 � b3; b3 � �ab�2i of the
group G, and let s � fa6g. Then Q � ha; b : a6 � b3; b3 � �ab�2; a6i presents H.

In G, s can be expressed as a product of a's and as a product of b's, so s is in the
center of G. Furthermore, the abelianization of G is the in®nite cyclic group gener-
ated by a, so a6 has in®nite order in H1�G�. Then by Theorem 6.2, �Q;P� is (CA).

To ®nd generators for �2Y (over P) ®rst note that CG�s� � G since s is in the
center of G. This centralizer is generated by a and b, so �2Y is generated (over P) by
two s-dipoles Pa and Pb, as shown in Figure 12.
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