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Abstract

Atmospheric aerosols influence the Earth’s climate, primarily by affecting cloud formation and scattering visible
radiation. However, aerosol-related physical processes in climate simulations are highly uncertain. Constraining
these processes could help improve model-based climate predictions. We propose a scalable statistical framework for
constraining the parameters of expensive climate models by comparing model outputs with observations. Using the
C3.AI Suite, a cloud computing platform, we use a perturbed parameter ensemble of the UKESM1 climate model to
efficiently train a surrogate model. A method for estimating a data-driven model discrepancy term is described. The
strict bounds method is applied to quantify parametric uncertainty in a principled way.We demonstrate the scalability
of this framework with 2 weeks’ worth of simulated aerosol optical depth data over the South Atlantic and Central
African region, written from the model every 3 hr and matched in time to twice-daily MODIS satellite observations.
When constraining themodel using real satellite observations, we establish constraints on combinations of twomodel
parameters using much higher time-resolution outputs from the climate model than previous studies. This result
suggests that within the limits imposed by an imperfect climate model, potentially very powerful constraints may be
achieved when our framework is scaled to the analysis of more observations and for longer time periods.

Impact Statement

Atmospheric aerosols influence the amount of solar radiation reflected by Earth, but themagnitude of the effect is
highly uncertain, and this is one of the key reasons why climate predictions are highly uncertain. We propose a
framework for reducing uncertainty in aerosol effects on radiation by comparing simulations from complex
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climate models to satellite observations. This framework uses parallel computing and statistical theory to ensure
efficient computations and valid inferences.

1. Introduction

Atmospheric aerosols affect the formation of clouds and scatter and absorb visible radiation, thereby
influencing Earth’s climate. Improved estimates of the change in the total effect of aerosols on the climate
over the industrial era—a highly uncertain quantity termed the aerosol effective radiative forcing (ERF)—
have the potential to reduce uncertainty in the sensitivity of the climate to these aerosols. Recent efforts to
constrain ERF have involved first reducing uncertainty in the distributions of more basic aerosol-related
physical parameters and then studying the effects of these constraints on ERF. This has been notably done
by comparing simulated data with observations collected on various global aircraft and ship campaigns as
well as from satellites and ground stations (Johnson et al., 2020, 2018; Regayre et al., 2020, 2018). Toward
constraining the aerosol radiative forcing, Regayre et al. (2023) employ simulated outputs from the
UKESM1 climate model that are averaged over month-long periods. In contrast, the present work
employs three-hourly simulation outputs from the same model, requiring an inferential framework
capable of handling this increase in the resolution and quantity of the data.

Establishing constraints on the input parameters of expensive computer models by comparing their
outputs with observational data is an area of active research (Biegler et al., 2010). It is often imperative that
a surrogate model be trained from an ensemble of model input–output pairs and used in place of the
simulator to ensure tractable computations, but this step contributes an additional source of uncertainty. If
the outputs, or surrogate outputs, do not match observations within some tolerance, then those parameter
values are deemed implausible. In Johnson et al. (2020) and Regayre et al. (2020), the method of history
matching is used, a technique from oil reservoir engineering that has been adapted to the evaluation of
computer models more generally in recent decades (Verly et al., 1984; Craig et al., 1997; Johansen, 2008;
Bower et al., 2010). However, the aim of history matching is to constrain parameter spaces and not
necessarily to provide well-understood probabilistic guarantees on those constraints.

In contrast with previous work on constraining climate model parameters, our framework draws on a
recent surge of interest in simulator-based inference (Schafer and Stark, 2009; Cranmer et al., 2020;
Dalmasso et al., 2023) to produce parameter constraints that provide rigorous statistical guarantees of
frequentist coverage. Specifically, our work deals with a special case of simulator-based inference where
the observations are given by a deterministic simulator and an additive noise model. Patil et al. (2022) and
Stanley et al. (2022) use a strict boundsmethod (Stark, 1992) to construct efficient confidence sets for the
model parameters in closely related inverse problems in remote sensing and high energy physics. Unlike
in these works where the forward models of interest are linear and known exactly, the present problem
features a forward model (UKESM1) which is nonlinear and estimated using an emulator. We take
advantage of the strict bounds method while inverting the emulated forward model numerically and
accounting for emulation uncertainty.

Our framework also offers a novel means of accounting for the systematic disagreement, known as the
model discrepancy, between a simulator and the physical system which it purports to model. A number of
approaches to accounting for model discrepancy in computer model calibration or simulator-based
inference have been developed (Kennedy and O’Hagan, 2001; Higdon et al., 2008; McNeall et al.,
2016). We propose a new data-driven procedure for incorporating model discrepancy (and other sources
of error that we cannot separately quantify, such as representation errors; Schutgens et al. (2017)) into the
strict bounds inversion framework. Cloud-based computing resources are leveraged to make each step in
the framework computationally scalable.

1.1. Data sources

Aerosol optical depth (AOD) is a measure of the amount of aerosol in the atmosphere. It is measured by
MODerate-resolution Imaging Spectroradiometer (MODIS) which is found on board the NASA-launched
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Terra andAqua satellites that offer near-global coverage twice daily and provide easily readable open-access
data sets. In the flow chart in Figure 1, this data set is the SatelliteTimeseries. For the present
application, we focus onMODIS retrievals from the South Atlantic and Central African region over July 1–
14, 2017. This domain and period of study are selected for its known biomass burning-related atmospheric
aerosol activity.

We compare these data with climate model outputs taken from the UKESM1 model (Sellar et al.,
2019).We use simulations that were nudged to the observedmeteorology following themethod of Telford
et al. (2008), and therefore, the simulated weather conditions will be sufficiently realistic that we can
examine the ability of the model to represent the observed aerosols. We use the perturbed parameter
ensemble (PPE) of 221 atmosphere-only simulations documented by Regayre et al. (2023), which have a
configuration that closely matches the atmosphere component of the UKESM1model used in the CMIP6
experiments (Sellar et al., 2019). For each ensemble member, let u be a vector of parameter inputs that
determine climatic aerosol-related processes of practical importance, and let x be a vector of control
variables that define the specific output of the climate model, denoted η x,uð Þ, representing the climate
observable ζ xð Þ. In our setting, x denotes a latitude–longitude-time triple in the climate model output’s
spatiotemporal grid, denotedMsim and called the SimulatedGrid in Figure 1. The parameters u are
listed in Table 1. The ensemble is a set of simulations, in notation

Dtrain ¼ x,uj,η x,uj
� �� �

: x∈Msim, j¼ 1,2,…,221
� �

:

For reference, this and some later notation used throughout this paper are summarized in Table 2.

1.2. Problem setup

In order to emulate the model output for unobserved parameter values, we assume as in Johnson et al.
(2020) that at x∈Msim, the model output is a realization of a Gaussian process,

~ηx uð Þ�GP mx �ð Þ,kx �, �ð Þ½ � u∈ℝpð Þ: (1)

For each x, we train the surrogate model ~ηx as described in Section 2.1.
Let z xð Þ denote the AOD observations and u∗ the true parameter value. Assuming that the emulated

climate model is unbiased, these observations and parameters are related according to the equations

z xð Þ¼ ζ xð Þþ εmeas,x¼E ~ηx u∗ð ÞjDtrain½ �þ εemu,x u∗ð Þþ εmeas,xþ εother,x:

Figure 1. The flow chart for our pipeline for building frequentist confidence sets on climate model
parameters. After matching both the satellite observation and model output grids, five steps of processing
follow. The EmulatorTraining and EmulatorEvaluation pipes provide scalability to the
framework by leveraging parallel computing in these most expensive steps. The
DataDrivenModelDiscrep, PlausibilityTest, and FrequentistConfSet pipes
implement the strict bounds-based method to ensure principled uncertainty quantification.
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The different sources of variance in themeasurements—namely, themeasurement uncertainty (εmeas,x),
the emulation uncertainty (εemu,x), and any other sources (εother,x) which are not analyzed uniquely,
including uncertainty due to model discrepancy and error in representativeness of measurements—are
assumed to be mean zero and independent across x. This is a simplifying assumption in that, in reality,
these terms might be correlated across x. By further assuming that εmeas,x and εother,x are Gaussian, the

Table 1. Seventeen of the 37 UKESM1 parameters (Regayre et al., 2023) used to build the surrogate
model, selected based on relevance for predicting AOD

Parameter name Physical name Min. Max.

sea_spray Sea spray emission flux SF 0.25 4.00
bl_nuc Boundary layer nucleation rate SF 0.1 10
ait_width Aitken mode width (nm) 1.2 1.8
cloud_ph Cloud droplet pH 4.6 7
prim_so4_diam Median diameter of primary ultrafine anthropogenic sulfate

particles (nm)
3 100

anth_so2_r Anthropogenic SO2 emissions flux SF outside of Europe, Asia,
and North America

0.6 1.5

bvoc_soa Biogenic secondary organic aerosol from volatile organic
compounds SF

0.32 3.68

dms Dimethyl sulfide emission flux SF 0.33 3.0
dry_dep_ait Aitken mode aerosol dry deposition velocity SF 0.5 2.0
dry_dep_acc Accumulation mode aerosol dry deposition velocity SF 0.1 10.0
dry_dep_so2 SO2 dry deposition velocity SF 0.2 5.0
bc_ri Imaginary part of the black carbon refractive index 0.2 0.8
a_ent_1_rp Cloud top entrainment rate SF 0 0.5
autoconv_exp_nd Exponent of Nd in power law for initiating autoconversion of

cloud drops to rain drops
�3 �1

dbsdtbs_turb_0 Cloud erosion rate (s�1) 0 0.001
bparam Coefficient of the spectral shape parameter (beta) for effective

radius
�0.15 �0.13

carb_bb_diam Carbonaceous biomass burning primary particle median diameter
(nm)

90 300

Note: Nd is the cloud droplet number concentration. SF is short for scale factor.

Table 2. A notational reference table

Notation Meaning Notation Meaning

u Vector of parameter values from ℝp z AOD observations
x Location in space and time of a

measurement
ζ True climate system

Msim SimulatedGrid (as in Figure 1) η Climate model
Msat SatelliteGrid ~η Emulator for the climate model
M MatchedGrid Dtrain Triplets u,x,η x,uð Þð Þ
M∗ MatchedGrid, excluding outliers Dtest Tuples u,x,E ~ηx uð ÞjDtrain½ �,Var ~ηx uð ÞjDtrain½ �ð Þ
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observations z xð Þ are jointly normally distributed across the x on the spatiotemporal gridMsat (Satel-
liteGrid) on which the MODIS retrievals are gridded. In particular,

z¼ z xð Þð Þx∈Msat
�N E ~ηx u∗ð Þð Þx∈Msat

jDtrain

h i
,ΣmeasþΣemuþδ2I ∣Msat∣

� �
, (2)

where Σmeas and Σemu are covariance matrices such that entry Σmeas,i,j ¼Var εmeas,xið Þ is the measurement
uncertainty at location xi when i¼ j, otherwise zero (i.e., it is a diagonal matrix and the measurement
errors are assumed to be uncorrelated between locations); Σemu,i,j ¼Var εemu,xi u∗ð Þð Þ is the emulation
uncertainty when i¼ j, otherwise zero; and δ2 ¼Var εother,xð Þ is a homoscedastic variance term standing
in for all other unaccounted-for errors. The matrix I ∣Msat∣ is an identity matrix with its number of rows
equal to the size of the set Msat. The disagreement between grids Msim and Msat is addressed in the
following section. The Σemu,i,i are modeled by the surrogate model (see Section 2.1). The Σmeas,i,i are the
published MODIS uncertainties, which may not account for all possible problems with the retrievals,
but these unaccounted-for uncertainties will be captured by δ2, which is estimated from the observations
(see Section 2.4).

2. Inference Framework

We used the C3.AI Suite, a cloud computing platform for data analytics workflows deployed toMicrosoft
Azure infrastructure (C3 Enterprise AI, n.d.). The platform combines databases, open-source packages,
and proprietary machine-learning workflows optimized for working with large-scale, data-intensive
applications. We built new data structures and methods for processing NETCDF4 files containing
high-dimensional time-series datasets. We also developed a scalable inference pipeline for training and
predicting through several thousands of Gaussian process models using asynchronous processing such as
parallel batch and map-reduce jobs. This pipeline is summarized in Figure 1 and complements other
recently published workflows for similar tasks (e.g., Watson-Parris et al., 2021).

The grid of satellite measurements is finer than the grid of simulations. The rawMODIS retrievals are
pre-processed algorithmically by the MODIS team before they are provided on a 1∘×1∘ spatial grid in the
Level-3 Global Gridded Atmosphere Product (Hubank et al., 2020). However, the model outputs are on a
1:35∘×1:875∘ grid. To reconcile these differences, we match simulated grid cells to their nearest neighbor
on the Level-3 MODIS product grid in space and time. Differences are computed on the resulting
1:35∘×1:875∘ resolution MatchedGrid, denoted M.

2.1. Emulate: Inside the EmulatorTraining pipe

As indicated in Eq. (1), we assume the climate model is a realization of a Gaussian process where for each
x∈M the mean and anisotropic exponential covariance functions are

mxðuÞ¼ β0,x, kxðu,u0Þ ¼ β21,xexp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
i¼1

ðui�u0iÞ2
ℓ2
i,x

vuut
0
@

1
A:

We make this choice for kx for the reason that a relatively rough process appears reasonable in this
problem.We place an anisotropy assumption on themodel by fitting a different length scale parameter ℓi,x

for each model parameter ui. By fitting ℓi,x separately for each x, we let the parameters’ effects on the
model output vary geographically.

We train the emulating Gaussian processes by estimating their parameters on Dtrain using maximum
likelihood (Rasmussen and Williams, 2006) with the scikit-learn Python library and L-BFGS-B opti-
mization algorithm, and thus we obtain a collection of models ~ηx, x∈M. Figure 2 illustrates the quality of
these emulators by verifying that the emulated AODvaries with respect to active parameters exactly as the
training data set would suggest. In terms of scalability, an ordinary Gaussian process model on the entire

ModelTimeserieswould compute inO jMjnð Þ3
� �

time, n being the number of members in the PPE,
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whereas the EmulatorTraining pipe trains in O jMjn3ð Þ time. This routine is parallelized by
distributing batches of training jobs to independent worker nodes on the C3.AI Suite cluster, making
the physical wait time much shorter.

2.2. Predict: Inside the EmulatorEvaluation pipe

We uniformly sample within the ranges given in Table 1 a collection of 5,000 new parameter vectors uk

(in contrast with 221 training vectors) to obtain a testing sample

Dtest ¼ x,uk,E ~ηx uk
� �jDtrain

	 

,Var ~ηx uk

� �jDtrain

	 
� �
: x∈M,k¼ 1,2,…,5000

� �
:

This set pairs points in the spatiotemporal-parametric space with the emulated mean and variance of the
AOD response, specifying a distribution closely mimicking the model response surface η x,uð Þ. We
expect that this number of sampling points uk is sufficient to reliably constrain a small number of
parameters. These predictions are performed efficiently by a map-reduce job across the collection of
models ~ηx.

The surrogate model appears to perform well at most locations in the spatio-temporal domain.
However, gross discrepancies between the observations and the model output arise in a small fraction
of the grid points which cannot be accounted for using our model discrepancy term (described later). In
particular, when we consider the distance metric

Jx,δ uk
� �¼ ∣E ~ηx uk

� �jDtrain

	 
� z xð Þ∣ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ~ηx ukð ÞjDtrain½ �þVar εmeas,x½ �þ γ2

p ,

we identify about 2% of the grid points for which Jx,δ uk
� �

is a visible outlier for all uk, k¼ 1,2,…,5,000.
The parameter γ here was tuned visually based on QQ plots since the other variance parameter δ is yet
unestimated. LetM∗ be the remaining coordinates in the spatiotemporal grid that have not been excluded
either as outliers or due to missingness.

Figure 2. Sample curves of the emulated response E ~ηx uð ÞjDtrain½ � averaged over two MODIS observing
times on July 1, 2017 for two locations x. (Left) Red gridpoints are missingMODIS AOD retrievals. Green
gridpoints are ruled out as outliers per Section 2.2. (Top right) The scattered points are fromDtrain, and the
221 curves are slices of the trained emulator response surface where all of the parameters are fixed to
their training values from Dtrain except the parameter labeling the x axis of each subplot, which is varied
within its range given in Table 1. Near 0 ° ,20 °ð Þ, AOD decreases as the accumulation dry deposition rate
increases. The average MODIS measurement is given by the dashed line. (Bottom right) At
�20 ° ,�20 °ð Þ, emulated AOD responds positively to the sea spray emission flux.
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2.3. Discrepancy: Inside the DataDrivenModelDiscrep pipe

The quantity δ2 as seen in (2) is the variance of the unaccounted-for uncertainty εother,x in ourmodel, which
we estimate using maximum likelihood. We write down the likelihood for unknowns u and δ2 from our
Gaussian assumption,

L u,δ2;Dtrain

� �¼ Y
x∈M∗

1ffiffiffiffiffi
2π

p σ2x,emu uð Þþσ2meas,xþδ2
� ��1

2 exp �1
2

η̂x uð Þ� z xð Þ½ �2
σ2x,emu uð Þþσ2meas,xþδ2

( )
,

where

σ2x,emu uð Þ¼Var ~ηx uð ÞjDtrain½ �, σ2meas,x ¼Var εmeas,x½ �, η̂x uð Þ¼E ~ηx uð ÞjDtrain½ �:
To numerically obtain the maximum likelihood estimate for δ2, we compute the maximizing value δ̂

2
k of

logL for each of the test parameters uk using the scipy Python library’s implementation of Brent’s
algorithm (Press et al., 1992); then among these maximizing values we select the one which gives the

overall maximum likelihood over k¼ 1,2,…,5,000. The resulting estimate δ̂
2
MLE ¼ δ̂

2
k̂ , where

k̂¼ argmax k logL uk, δ̂
2
k ;Dtrain

� �
, is an approximate estimator, where the approximation is due to the

search over the parameter space being finite.
This part of the pipeline runs quickly. Evaluating the expression for the likelihood and performing the

optimization routine took about 5 min in real time in our case and can be performed in local memory. Our
value for the estimator on the remaining data was δ̂

2
MLE ¼ 0:025, which is of similar magnitude as the

average measurement variance of σ2meas ¼ 0:027 and emulation variance of σ2emu ûð Þ¼ 0:038.

2.4. Test: Inside the PlausibilityTest pipe

To obtain a confidence set for the underlying atmospheric parameters, we perform a test for parameter
plausibility usingMODISAODobservations on theMatchedGrid. Following the terminology used by
Johnson et al. (2020), we write down the implausibility metric

I uð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
x∈M∗

E ~ηx uð ÞjDtrain½ �� z xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ~ηx uð ÞjDtrain½ �þVar εmeas,x½ �þ δ̂

2
MLE

q
0
B@

1
CA

2
vuuuut :

For each u in Dtest, we compare our observed implausibility measure against its approximate distribu-
tion under the null hypothesis that u is the correct parameter,H0 : I uð Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2 df ¼jM∗jð Þp
. Here we use

the facts that the sum of n squared independent standard Gaussian random variables is distributed as
χ2 df ¼ nð Þ and that n is assumed to be large enough that we can ignore the variation in the model-

discrepancy variance estimate δ̂
2
MLE. In other words, testing at the 0.05 significance level, a parameter

vector u will be deemed implausible if I uð Þ exceeds the 95th percentile of the above null distribution.
A method for obtaining confidence sets inspired by the application of history matching in

Johnson et al. (2020) can also be derived. We find that inference based on this method is sensitive
to the choice of tolerance level that is explicit in their choice of implausibility statistic. For a
discussion of how our test differs from this instance of history matching, see the Appendix in the
Supplementary material.

2.5. Infer: Inside the FrequentistConfSet pipe

Having obtained a collection of test results for each uk, k¼ 1,2,…,5,000, we approximate the Neyman
inversion (Dalmasso et al., 2023) of the test for plausibility described above by retaining all those
parameters uk for which we do not reject the null at 0.05 significance level to obtain an approximate 95%
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confidence set.1 This is the region of the 17-dimensional parameter spacewhich exclusively contains non-
implausible parameter vectors. A two-dimensional projection of this set is on the right of Figure 3.

3. Results

Using our strict bounds-based test for parameter plausibility, we obtain a simultaneous 95% confidence
set on the selected climate model parameters. We find that large values of the sea spray emission flux
parameter are on the verge of being constrained with just 2 weeks of AOD data, shown in the upper left
panel of Figure 3. However, the two plots on the bottom left show that for no level of either BVOCSOAor
the accumulation mode dry deposition rate does our test for plausibility always fail, and so formal
constraints on these cannot be obtained. To illustrate this point, suppose that the value of the accumulation
dry deposition rate parameter (bottom left of Figure 3)waswrongly set to 1when the true value is 10. Then
there are combinations of the other 16 selected parameters that enable us to fit the model outputs to the
observed AOD data within the modeled uncertainties. Hence we cannot rule out value 1 for the
accumulation dry deposition rate parameter, and likewise for the other values for each parameter. If
evaluated at a lower confidence level, our results seem broadly consistent with Regayre et al. (2023), who
constrain the dry deposition rate toward large values, and Regayre et al. (2020) and Johnson et al. (2020),
who also constrain the sea spray emission parameter.

We are able to obtain a constraint at 95% confidence level on the combination of the deposition rate of
dry aerosols in the accumulation mode and biogenic secondary organic aerosol from volatile organic

Figure 3. Parameter constraints at 95% confidence level. (a–c) One-dimensional projections of the
FrequentistConfSet described in Section 2.5. The 95th percentile of the approximate null
distributionH0 is indicated by the horizontal red lines. The sea spray emission flux parameter appears to
be on the verge of being constrained on its own from only 2 weeks of data. (d) The space spanned by the
BVOC SOA and accumulation mode dry deposition rate parameters is binned, and the color of each bin
shows the proportion of plausible parameter values inside. Dark purple indicates a proportion of zero—
evidently, the lower right corner of this space is ruled out as implausible.

1 Note that the repetition of this singular hypothesis test is for inversion purposes. Since we are not inverting more than one
distinct test, we do not face multiple testing issues of controlling Type I error.
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compounds. See the right panel of Figure 3 for a binned projection of the resulting confidence set onto
their span. The resulting constraint can be understood as physically meaning the following: If one
hypothesizes that there are a lot of aerosols emitted by vegetation while the deposition rate is low for
relatively large particles, then one will overestimate AOD so much that even when controlling for the
uncertainty of the MODIS retrieval estimates due to instrumental error, the imperfection of our surrogate
model, and any other sources of model discrepancy that we estimate for our climate model, a significant
region of the subspace of these parameters can be ruled as implausible at the 95% confidence level.

4. Conclusion

To the best of our knowledge, this is the first use of simulated AOD from a climate model at a time
resolution as high as three-hourly to obtain observation-based constraints on input parameters likely to
regulate AOD. That a salient andmeaningful constraint has been gleaned from just 2 weeks’worth of data
is suggestive of promising uses of high time resolution data in the future. Our framework is well suited for
problem settings where a perturbed parameter ensemble is available for one’s climate simulator andwhere
Gaussian process emulation is appropriate. Notably, any unquantified sources of uncertainty in this setting
are accounted for by the data-driven model discrepancy built into the presented pipeline, an aspect that
differs from other recent scalable frameworks for model calibration, such as ESEm (Watson-Parris et al.,
2021). Our approach assumes that the model discrepancy can be captured by an additive Gaussian error
that is independent across space and time, so our constraints rely on these assumptions being at least
approximately satisfied. A fundamental difference between our approach and the previous history
matching approach as done by Johnson et al. (2020) is that our method provides frequentist confidence
sets with well-defined probabilistic guarantees. In addition, as described in the Appendix in the
Supplementary material, our method has a potential advantage over Johnson et al. (2020) in that the
latter is sensitive to the tuning of its tolerance level. The computational cost of our pipeline is dominated
by the Gaussian process computations, so the approach is computationally feasible as long as enough
parallel processing resources are available for training and evaluating the pixel-wise emulators.

There are limitations to what can be achieved: with an imperfect and over-parameterized model,
constraints can become inconsistent, or different parameter combinations can yield the same simulated
ERF (Lee et al., 2016). However, employing more quantities for which we have observational and
simulated data would nonetheless allow us to constrain a larger number of these parameters and get the
most stringent constraints on aerosol radiative forcing we can. Other observable atmospheric quantities
such as sulfates or organic carbon are sensitive to different sets of atmospheric parameters than those to
which aerosol optical depth is sensitive, yielding potential opportunities to further constrain the parameter
space using larger, more diverse observational data sets.
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