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Abstract

The study of the S-unit equation for algebraic numbers rests very heavily on Schmidt's Subspace
Theorem. Here we prove an effective subspace theorem for the differential funrtion field case,
which should be valuable in the proof of results concerning the S-unit equation for funrtion
fields. Theorem 1 states that either

O r d ^ L . V - L J
has a given upper bound where

^(PJ . I^P) , . . . , ! , , , ^ )
are linearly independent linear forms in the polynomials

r = (pl(x),p2(x),...,pn(x))

with coefficients that are formal power series solutions about x = 0 of non-zero differential
equations and where Orda denotes the order of vanishing about a regular (finite) point of
functions fk t : (k = 1, n; i = 1, n) or

P = (/>,(*),.P2(x),...,/>„(*))

lies inside one of a finite number of proper subspaces of (K(x))n . The proof of the theorem
is based on the wroskian methods and graded sub-rings of Picard-Vessiot extensions developed
by D. V. Chudnovsky and G. V. Chudnovsky in their function field analogues of the Roth and
Schmidt theorems. A brief discussion concerning the possiblity of a subspace theorem for a
product of valuations including the infinite one is also included.
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1. Introduction

For a long time there has been much interest concerning the accuracy with
which algebraic numbers can be approximated by rational numbers. In 1955,
K. F. Roth [6] showed that if a is real and algebraic of degree at least 2 then
for each e > 0 the inequality

(1) a-P-
1p_

q v ~2+e

has only many solutions in rationals p/q . This result is best possible of its
type but non-effective in the sense that it does not yield an upper bound for
the largest value of q. Later C. F. Osgood [4] proved an effective "Roth-
type" result for the solutions of algebraic differential equations, and D. V.
Chudnovsky and G. V. Chudnovsky [1] used wronskian methods and graded
subrings of Picard-Vessiot extensions to prove an effective analogue of Roth's
Theorem for the solutions of ordinary linear differential equations.

A powerful generalisation of (1) for a system of algebraic linear forms was
given by Schmidt's Subspace Theorem [8] which was later extended by H. P.
Schlickewei [7] to the p-adic case. Both results were ineffective but found to
be crucial in the study of the 5-unit equation

(2)

summarized by J. H. Evertse and K. Gyory [2] in their results concerning (2)
for n > 2.

The purpose of this paper is to present a proof of an effective subspace
theorem for the differential function field case based on the methods used by
D. V. Chudnovsky and G. V. Chudnovsky [1] in their function field analogue
of Roth's Theorem.

The theorem in this paper gives a bound on a valuation of a product of
linear forms Lx, L2, ... , Ln where the coefficients of each linear form are
functions of x. As such, it is similar to a result obtained by C. F. Osgood
[5, Theorem XIII]. However, the methods used by Osgood to obtain the
auxiliary polynomial rely on Nevanlinna theory and are therefore different
from those used in this paper. Also the exceptional subspaces, though implicit
in Osgood's work (the auxiliary polynomial is required to be non-zero for the
bound to hold), are neither considered in detail or utilised, as they are here,
to present a function field analogue of Schmidt's Subspace Theorem.
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2. Definitions

(1) If y = y(x) is a function of x then

is the 7th derivative of y with respect to x.
(2) The notation

atj: (l = l,n;j=l,m)

is used to denote the expression

a(j for i = 1 to n and j = 1 to m.

(3) Let ak j = 0: (k = \, n; i = 1, n) be a system of non-zero linear
differential equations of the form

having coefficients afc i:j+l: (k = 1, n; / = 1, j = 0, Nk ( - 1) belonging to
some differential field F with field of constants C. A differential field con-
taining F is called a Picard-Vessiot extension of F for ak t: (k = 1, n; i =
1, n) if

(a) M = ^ ( y , , , , ! , ^ . ! ^ . — . ^ , , , , ^ . ) where ykJA,ykJt2

yk j , Nn n are A^ ( solutions of (3) for (k = 1, n; i = 1, «) which are
linearly independent over C, and

(b) M has the same field of constants as F, that is, M has the field of
constants C.

(4) If F is a differential field of charactristic zero then a non-zero differ-
ential polynomial R over F is an expression of the form

where yl(x),y2{x), ... ,yn(x) are differential indeterminates, n and m
are non-negative integers and

is a polynomial in the n(m + 1) variables

y\j):(i=l,n;j

having coefficients in F.
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(5) Let / = f{x) be a function of x. Then Ord a / is the order of
vanishing of / about a finite point x = a. If / is written as a power series
about x = a in the following way,

then Ordfl / is the smallest i for which ci ̂  0 if such an / exists. Otherwise
we say that Orda / = -oo .

3. The theorem

THEOREM 1. Let K denote an algebraically closed field of characteristic
zero. Suppose

L,(P),L2(P),...,Ln(P)
are linearly independent linear forms in

P = (Pl(x),P2(x),...,Pn(x))

with coefficients

fk,i = fk.M)'- (k=\,n;i=\,n)
where

(1) Pj{x) is a polynomial in x with coefficients in K: (i = 1, n) and
(2) fk t(x) is a formal power series solution about x = 0 of a non-zero

linear differential equation

with coefficients in K(x): (k = 1, n; / = 1, n). Let Orda denote the order
of vanishing about a regular (finite) point of functions fk t: (k = 1, n; i =
\,n). Then for each e > 0 either

O r d ^ V - L J < (1+fi)]Tdegi>+C

where C is an effectively computable constant (that is, it is independent of
P), or

P = (P1(x),P2(x),...,Pn(x))

lies inside one of a finite number of proper subspaces of (K(x))" .

The proof of Theorem 1 relies upon the construction of a differential poly-
nomial

DN(PltP2,...,Pn)
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and, by proving a series of lemmas, finding upper and lower bounds on the
quantity

OrdaDN(Px,P2,...,Pn).
Let M be the Picard-Vessiot extension of K(x) corresponding to the

differential equations ak (, = 0: (k = 1, n; i = 1, n). that is M is the
minimal differential extension of K(x) containing fkir:(k=\,n;i =
1, n; r = 1, Nk .) with the field of constants K. For Jv > 0 we denote by
MN the vector space over K generated by monomials of the form

n n ft'/?;:-; where ± ± xx,,r=N.
k=\ 1=1 r=l k=\ 1=1 r=l

According to Hilbert's Theorem, later generalised by Serre and henceforth
referred to as the Serre-Hilbert Theorem [3], dim^. MN = PQ(N) for N > NQ,
where P0(N) is an integer valued polynomial. We define fiN to be equal to
dimfc MN and we take functions

as a basis of MN, and introduce the following auxiliary polynomial in the
differential indeterminates P{, P2, ... , Pn:

D ( P P
Ni " 2 ' - ' n)~

w h e r e

:(l=l,m;s=l,m)Y

THEOREM 2. (1) DN{PX, P2, ... , Pn) is a differential polynomial in Px,

P2, ...,Pn,
(2) the coefficients of the differential polynomial are invariant under the

action of the differential Galois group of M over K(x) and so the coefficients
belong to K(x), and

(3) Oida/)„(/>,, P2, . . . , Pn) <MNEl

Since the wronskian is formed by taking the sum of products consisting of
elements taken from each row, (1) is clearly true. We prove (2) by using the
following two lemmas.

LEMMA 1. The coefficients of DN(PX, P2, ... , Pn) consist of the sum of
terms of the form

DlxD2x--- xDn
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where Dt is a determinant of the form

or

for i = 1, n and where

Lemma 1 follows from the application and manipulation of the definition
of deteminant.

LEMMA 2. Under the action of the differential Galois group of M over
K(x), any determinant of the form

D =

is sent to some constant times itself.

Under the action of the differential Galois group, G, of M over K(x),
each fjN is sent to a linear combination of ff, f2

N,... , f^ in the following
way: for any automorphism T e G,

and
"• < f V

where cr , e K: (r = 1, jnN; j + 1, jiN). Lemma 2 follows from the ap-
plication of the above results to each element of D and from the algebraic
transformation of determinants.

By Lemma 1, the coefficients of DN(Pl, P2, ... , Pn) consist of the sum
of terms of the form

x D2 x • •

Wf
x D .
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which, applying Lemma 2, are clearly invariant under the action of the differ-
ential Galois group G and hence belong to K{x). Hence DN(Pl,P2, ... ,Pn)
is a polynomial in P{, P[l\ ... , pfff'^ having terms of the form

1=1 j=\

where
n

A-eK(x) and
i=i j=\

Therefore

(4) O m a Z y P , , P2,..., P^^
1=1

where Cl (N) is a constant independent of Px, P2,... , Pn .

LEMMA 3. If f/N~l belongs to the basis of MN_{ and fk , is a solution of
one of the original differential equations ak ( , then

where the C\'j are constants belonging to K and the vectors Ct = Cj'j: {i
1, n; j = 1, nn) are linearly independent over K.

Clearly M1Mn_l c MN and so

It follows that

where C\'} e K: (i - 1, n; j = 1, nN) for / = 1, nN_x. Multiplying by
Pi and summing for / = \, ... , n gives the required result. The vectors
Cl = C\'J: {i = 1, n; j = 1, fiN) are clearly linearly independent over K,
for suppose on the contrary that there are constants dt£ K not all zero such
that
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Then

£ < : ; • ' < / , = 0 for(i=l,n;j=l,vN).

Multiplying by f** and summing for j = 1, . . . , /nN we see that

Hence

implying that

which is a contradiction of the linear independence of the ff~l over K.
Hence the Cl,'j: (I = I, /*N_l) are linearly independent over K.

LEMMA 4. We can make a non-singular transformation that reduces the
determinant

to the form W, the determinant of the matrix A in which the first HN_X

columns have the form

for 1 = l,HN-x or

v*"~/ I /•=/ ) J

for 1 = l,fiN_{.

Lemma 4 follows if we can make a non-singular transformation that re-
duces W to the form Wk , the determinant of the matrix Ak in which the
first k columns have the above form, for k = 1, nN_{. This is proved using
induction on k.

https://doi.org/10.1017/S144678870003278X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003278X


328

LEMMA 5

are satisfied

. The equations

TT ( d

1 1 l a p O
i n \ C' •* »

whenever

('

Alice Ann Miller

, ) -

"f"

DN(Pl,P2,

ek,X+\ K ^N-I

• • • > P n ) -
= 0

[9]

at

for k = 1, n.

Clearly, under the transformation of Lemma 4, the above equations are
all satisfied if and only if

n y y *-<>
whenever

at

for A; = 1, n , which follows since each of the derivatives of W consists of
the sum of determinants, each having at least one of their first fiN_, columns
identical to that of W. Hence at

the expression

n \jw)) w where

A=0 \Orn / \ X=0

consists of the sum of determinants, each of which has at least one column
consisting entirely of zeros.

https://doi.org/10.1017/S144678870003278X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003278X


[10] A subspace theorem 329

LEMMA 6. (1) DN(PX, P2, ... , Pn) can be expressed as the sum of mono-
mials each of which has the form

,n n [ \ t
(X)

k=\

where
(nnN—l)

XI ek,x+i ^ J"JV-I fork=\,n,
X=Q

where

and where for each set 1,

Ae = Ae^r (k = l,n;i=l,n;A = O, {nfiN- 1)))

is some polynomial in

jf)
i:(k=\,n;i=\,R;X =

(2) / / DN(PX ,P2,...,Pn) is non-zero, then

(5)

where C3{N) is a constant depending only on N and fj*': (j = 1 , fiN).

Part (1) follows from the Taylor expansion of DN(PX, P2, ... , Pn) about
Lx = 0, L2 = 0 , . . . , Ln = 0 and Lemma 5. Part (2) follows from (1) and
the properties of Orda .

PROOF OF THEOREM 1. From (4) and (5) we see, if DN is non-zero, that

P,. + CX(N) > nN_x Orda(LxL2 • • • £ „ ) - C3{N)

and so

Orda(L,L2 •••Ln)< -Z2- 2JdegP,. + C4(N).

Now, according to Hilbert's Theorem [3],

HN dim.MN XT" = —.—£—£ • 1 as N —> oo.
HN_X dimkMN_x

Hence, if DN(PX, P2, ... , Pn) ? 0, for iV > Nx(e), we have

(6) Orda(L1L2 • • • Ln) < (1 + e) ̂ d e g P , . + C4(N),
i=i
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where C4(N) is a constant independent of Px, P2,... , Pn. However, if
D N ( P { , P 2 , ... , Pn) = 0 t h e f u n c t i o n s Pjf: (i = \ , n ; j = 1 , n N ) a r e
linearly dependent over K. Hence

° f o r c o n s t a n t s c i j £ K n o t ^ z e r o -

Choosing a basis of MN over K(x), g^: (r = 1, aN) say, having dimen-
sion aN, each of the f? can be expressed as a linear combination of the

*:g*:(r=l, aN) having coefficients in K(x) with degrees bounded by some
m = m(N). That is,

flr,;W^ :{j=\,HN)
r=\

and so

a

i,J r, j7=1 i=\ r=l

r=l

where the br>i(x) e A"(x) with degrees bounded by m, not all zero. Now as
we saw above,

Hence

(
(=1 \r=l

and so

r=l \i=l

At least one of the linear relations
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is non-trivially zero, by the linear independence of the g^ over K(x). That
is, there exists at least one linear relation among the Pt of the form

* , ( * ) / > , ( * ) + B2(x)P2(x) + ••• + Bn(x)Pn(x) = 0 ,

where Bt(x) € K(x): (i = 1, n) and where

deg2»,.(x) < m' = ro'(tf): (i = 1, n).

Because the degrees of the polynomials Bt{x): {i = 1, n) are bounded, only
finitely many linear relations of the above form exist. Now the expressions

B,{x)Px{x) + B2(x)P2(x) + ••• + Bn(x)Pn(x) = 0

imply that at most (n - 1) of P{, P2,... , Pn are linearly independent, and
hence from (6) and the above, either

or the polynomials P{, P2, ... , Pn lie inside a finite number of rational sub-
spaces of {K{x))n.

In considering a possible extension of Theorem 1 to obtain an upper bound
for

where A = {ax, a2,... , ar, oo}and where a{, a2, ... , ar are elements of
K, it seems difficult to approach this type of result using the homogeneous
form of the wronskian. It is the inclusion of the point x = oo in A that is
responsible for this lack of conformity. One might also expect that one could
put e = 0 in Theorem 1.
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