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ON AREA INTEGRALS AND RADIAL VARIATIONS OF
ANALYTIC FUNCTIONS IN THE UNIT DISK

TAKAFUMI MURAI

1. Introduction

We are concerned with the behaviour of analytic functions near the
boundary. Let T and D be the unit circle [2|] =1 and the unit disk
|z] <1, respectively. The element of T is denoted by 4 (0 <4 < 2x).
Let f(z) = > 5.1 a,2" be analytic in D. The area integral A(f,6) of f
at 6 is defined by

a0 = [ 17wenrrardy,

where I'(6) = {z; |z| > §,|arg (z — e¥)| < 1}. It represents the area of the
image of I'(6). We know the following two relations:
(1) The finiteness of A(f,6) reflects the existence of lim,_, f(re*’).
(2) The infiniteness of A(f,6) reflects the totality of f(I'(6)), that

is, f'0) = {#; |2] < 4+ oo}

So it is interesting to know whether A(f,6) is finite or not. Our pro-
blems are to characterize the finiteness of A(f,6) and to study these
relations (1) and (2). But it is complicated to examine them for given
f and 6eT. So some authors studied them for a given f occasionally
neglecting a small subset of 7. (cf. Theorem (1.1) in [4] p. 199) The
author also took the same line at first. But, in this paper, we shall
study them neglecting a class of functions. To define a negligible class
of functions, we need a probability space.

Let (2,8, p) be a probability space, where 2 is a space, B events
and p a probability. Let X = (X,)7., be a sequence of independent
random variables. Consider a class of analytic functions, so-called a
random Taylor series by X, fx(z) = > 7., X,0,2". For a random Taylor
series fy, we shall neglect a class of functions in f; with probability 0.
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From the point of view of random Taylor series, we shall consider the
above problems. First, we remark the following fact. The property of
the finiteness of A(fyx,6) is an event and independent on the values of
a finite number of X,a,2*. By the zero-one law, we obtain that A(fy, )
< 4+ o0 holds with probability 1 or 0.

We shall also treat by the same manner the generalized area integrals
and the radial variations which are defined in the section 2.

2. Definitions

Let C be the complex plane. The element of C is denoted by z =
ret, g, -+. ete. Let T and D be the unit circle and the unit open disk
with center zero, respectively. The element of T is denoted by ¢ (0 <
0 <2rm). Let f(» = >.7.,a,2" be analytic in D.

The area integral A(f,6,p8) of f at 4 is defined by

0.0 = [ | EP T,

where I',(0) = {z; |2| > %, |larg (z — )| < g} (0 < g <=z/2). We denote
A(f,0) = A(f,6,1). We have two generalizations of A(f,6).

The area integral A.(f,0) of f of order a« (—1 < a < 1) is defined
by

1 0+ (1—~7)
40,0 = [ra—nar [ 7 reenrdp.

We know that A(f,60) and A(f,6) are equivalent in the following sense:
There exist y, 7, 0 <7y, 7. <=m/2) such that cA(f,0,7) < A(f, ) <
cA(f, 6,7, for some positive constants ¢, ¢,.

The area integral fL( f,6) of f of tangency @ (0 < a < ) is defined
by

0+ (1—r)i—a

A(f,0) = j: rdrf | f/(re*®) [ dp .

—(1-7)1—a

The radial variation V(f,6) of f is defined by

vr,0 = [ |reen)dr.
0
For convenience sake, we write the following notation:

47,0 = [[ra —n=ar [ | pwenrdy @ <t<D
0 0—(1-7)
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c(n,m; t) = nm j‘t Y] — ) ‘r-r cos (n — m)edyp ,
0

~1+7

where n,m are integers. We denote ¢ (n, m) = c,(n,m; 1). Let f(2)
= > = a,2" be analytic in D. We have

G+ (1—7) | oo 2

Z nanrn—lei(n—lw ng

n=1

AL(S,0) = J: (1 — ’r)“"drj

0—~(1~7)
o

= > >, c(n,m; tae’a,e™ .
n=1 m=1

In this paper, we use the following notation: If the inequality
0 < f(2) < cg(2) holds for some positive constant ¢, we denote f(z) < g(2).
If the inequality ¢, f(2) < ¢g(2) < ¢,f(2) holds for some positive constants
¢, ¢,, we denote f(2)=~g(2).

Next, we define the probability space (2, B, p) which is fixed through-
out this paper. Let I be the interval [0, 1) and let (I,%B;,p;) be the
usual probability space. Set 2 = [[;.,I,, where I, = I for all n. Then
the product space (2,8, p) is usually defined. The element of £ is de-
noted by o. The expectation is denoted by &[ - 1. We consider a sequence
X = (X,);., of independent random variables which satisfies the follow-
ing conditions:

(i) X, is real-valued.

(ii) X, is a random variable on I,.

(iii) X, is symmetric, that is, p(X, > ¢) = p(—X, > ¢) for all ¢ > 0.
(iv) sup €[X2] < 4+ oo.

(v) sup [X:A61XE]2 < oo,

As a technique, we shall use a Rademacher series which is defined
as follows. Let J be two points {—1,1}. Set £ = [[r.,J,, where J,
=J for all n. Then the usual probability space (J,B, §) is defined. The
element of § is denoted by z. A Rademacher series ¢ = (¢,)7, is defined
by

(a) &, is a random variable on J,

(b) ex(—=1) = —1, e,(D) = 1.
Then ¢ = (¢,)7., is a sequence of independent random variables with
Plen=D =0, = - =% n=12,-.-.).

If some property P, on £ hold with probability 1, we say that P,
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holds almost surely (a.s.). If some property P, on T holds with Lebesgue
measure 27, we say that P, holds almost everywhere (a.e.).

3. Immediate consequences and constructions of examples
We first show the following

PROPOSITION 1. Let |a] <1 and let fx(2) = > 5., X,0,2" be a random
Taylor series defined by X = (X,);_,. Then A(fx,0) < +o00 a.s. if and
only if 3, ENXLFIn @, < +o00- - (%),

For the proof, we prepare the following

LEMMA 1 ([1] p. 6). Let Y be a positive random variable. Then for
0<2<_1, we have

p(Y > 261Y]) > A — *¢[YTe[Y]™ .

1
Proof of Proposition 1. First we remark f r-1(1 — P)i-edr=n+-2
0

Assume that (%), holds. From the hypothesis (v), we have, with some
constant ¢, £[X%] < ¢€[X2). Since

Ai(fx,0) = Z Z X, Xne (n,m; a,b, ,

n=1m=1

it follows from (iii) that

8

o

E[A(fx, 0)] = Z Z‘ X Xple(n, m; 0)a,dn

n=1m=1

l

8

E[X2e(n,n; t)|a,l .

n

Letting ¢ tend to 1, we have
ETA(fz, O] = i EIX2e,(n, m) |a, P Y SIXEIN |a,ff < +oo .
n= n=1

Hence A, (fz,0) < + oo a.s..
Conversely, assume that A,(fy,0) < +oco hold a.s.. We shall apply
the above lemma to the random variable A:(fx,0). We have

SLALL OF = (33 61X30e.00, 13 ) as)
and

ElAY(fx, 0] = g[(;}n X, Xnc(n,m; t)andm)z]
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- 5[ 3 XX X XnaCulta, 5 80Ny M5 t)anlamlanzam,,]

1Mminzme

> OIX, Xn X, Xn e (n, m; e (1, My D)0y Tm 0 0m,

< 26X X e, (n, m; De(m,m; ) |an |0n ]

+ 22 CLXRXC Je (n, m; 1) [anf |am [

Since we have
EIX2XE] < VEIXAI VEIXE] < cS[X2I61XE]

and

1—

c(n,m;t) < nm f rmrmei(l — r)“'drj ' do < Ve, (n,n; t) Ve (m,m; ¢,
0

147

we obtain
SIAL(fx, 0] < 2¢ (z ELXc.(1, 15 ©) | 12)2 .

Therefore

SLAL(fx, OPELAL Fr, 002172 > % .

By Lemma 1, we have

PALS3 0) 2 SEIANT 0D 2 (1= (3)) (=0 > 0.

Choose a sequence (¢,)7_, such that 0 <¢, <1 and £,11. Set

E, = {Ar(fx,0) > 36[A2(fx, 0]} .

Since p(E,) > 5 for all n, we have p(lim sup,... ;) > 5. By the assump-
tion, there exists oelimsup,.. E, such that A4,.(fxw0) < +oco. Then
we have

n-r00

3 SLX " 0, = STAfx, 0] = lim €[4 (f, 0)]
< lim A% (fx, 0 = Az 0 < 400 .

n—sco

This completes the proof.
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COROLLARY 1. Let |a| <1 and fy be the same as in Proposition 1.
Then A,(fx,60) < + oo a.e. holds a.s. if and only if (), holds.

Proof. Congider the product space (2 X T, B X B, » X df). We
denote by &[ -] the expectation. Define a sequence Y = (Y,)=., of
random variables on 2 X T by Y,.(0,60) = X,(w)et*’. Then we have

sup E|Y,[ 10 Y,[17* = sup S[X;161X0]) 7 < + oo

and
g[YnIle?n,Ymg] = 27Téa[Xn1Xm1Xn¢Xmg]5n1+m;,n3+'m, s

where d, » means Kronecker’s. By the same method as in Proposition
1, we know that A,(fy,0) < +co a.s. (p X df) if and only if (+), holds.
Since 4,(frw,n 0) = A(fxw,0), we know that A,(fx,6) < + oo a.e. holds
a.s. if and only if (), holds, this completes the proof.

PROPOSITION 1. Let fx(2) = > 7.y X,0,2" be a random Taylor series.
Set s; = Coicncase: IXE |0, P2 If 3508, < +oo, then V(fy,0) < +oo
a.s..

Proof. We have

1
ananr""l dr .
2i<n<2i+1

V(fz, 0) = f:lf!v(r)l dr < g,f

0

Since we have
/2
& [ X, no,r*?
2i<n<2i+1

1,
] <& [ > X,,anmanamr“m‘z]
2<n,m<2I+1

<

1/2
(.3, S1XaInt g, frine)” < 2o,
2/<n<2i+1

we obtain

ElV(fx, 0] < f} sjzf“f 2y = i s; < 4oo.
7=0

0 7=0
Therefore we have V(fy,0) < 4+ oo a.s.. This completes the proof.
COROLLARY V. If 355.,8; < + oo, then V(fx,6) < + oo a.e. holds a.s..

This is easily proved by the same method as in Proposition 1’.
Hence we omit the proof.

Remark 1. The similar assertion as in Proposition 1 for ]i,, 0< e«
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< %) holds. Now, choose a sequence (a,)7.; such that > o, n|a, < + oo
and Y2 7 le,f= +c0 (0<a<pB<}. Consider a random Taylor
series f,(2) = > €.0,2". Then we have almost surely A.(f.,0) < + oo,
A(fu8) = +o00, A(f,0) < +oo and A(f.,,0) = +o a.e..

PROPOSITION 2. Let X = (X,)7., be a sequence of independent real-

valued normal Gaussian variables (i.e. p(X, <t) =1 /x/égj‘t e~s"2ds) and

—o0

let fx(2) = >z, Xn0,2" be a random Taylor series. Then V(fx,0) < + oo
a.s. ’if and only if jl \/i n? Ianlz =2 dpr < 4+ oo.
0 n=1

Proof. We can assume that a,’s are real. We have
]dr = \/E .[1 Ji} @[ r** dr .
T 0 n=1

Hence ‘if’ part holds. Set V(fx,0) =Jtl f%ldr. We shall show that
0
EIVH( Sz, 0UCIVH([fx, 012 < 4 for all 0 <¢t<1. We have

SV (fx 0 = | ¢

> Xana,rt!
n=1

SIVH(fr, O] = %(ﬁ J il 12 |y 1= a‘h«)2

and
ELVH [z, 0)]

=L.Jel

[ 1 ol _ Bx2+Ay2—~20xy>
= | s ag = [ [ et o —r B L Yaay,

] drds

> Xana,rt?
n=1

> Xna,sm!
n=1

where

A=£[

> Xana,rt?
n=1

2 o oo
] = > nt|a,frnt, B = > nt|a,p sn?
n=1 n=1
and
C = é”[zl X, na,rm! Zl Xnnans”"] — Zl n?|a, [f rrlsnt
n= n= n=

Since

1 Y _ sz—!—Ayz—Zny)
JAB —C f_w I-w 211yl exp( "TTTAB - O dady

< 4/AB = C* < 4V/AB ,
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we have
SIVH(fy, 0] < 4(]2 J 3 el d?)z .

Therefore &[Vi(fx, 06[Vi(fx, 00172 < 4. Hence the rest of the proof
follows in the same manner as in Proposition 1. This completes the

proof.
To discuss the sure properties, we consider lacunary series. Let

G (B)p, (0 <a<1) be a sequence of positive integers such that (1 —
)bk +1)>2¢,k). We denote by N, (k) = 2% and N(k) = 2% through-
out this paper.

PROPOSITION 5. Let 0 < a < 1 and let (a,);., be a bounded sequence
such that a,=0 for n#+ N, (k) (k=0,1,--.). Set f(& = > 7, a,z"
Then A(f,0) < +oo for all 6§ or A(f,60) = +oo for all 8 according to
Yman|a,f < 400 or = +oo.

Proof. We can assume |a,| <1 for all n. We have

Ai(f,0) = f} c(n, m; t)a,e"’a,et™
1m=1 *

DMe iDMe

ca(Na(k)’ Na(k) s t) Ia'N,,(k) I2

0

+ 2Re (z: ST e (N, NG ; t)aN,,(k)aNa(kqe“NM-N«‘k'”’) .
%=1k =0

&
I

We have the following estimation:
|(The second term)| < 3 5% N.ON.(ON.(0) + NGk
<3 NBT RNk — 1) < oo
Letting ¢ tend to 1, we have A,(f,0 = >.o,n*|a,[* + 01). This com-

pletes the proof.

PRrOPOSITION 5. Let 0 < a <1 and let (a,);., be an absolutely con-
vergent sequence such that a, =0 for n + N(k) (k=20,1,---). Set f(2)
= > a,2". Then A(f,0) < +oo for all 6 or A(f,0) = +co for all @
according to > o n*|a,f < 400 or = +oo.

By using the following estimation, we have A,(f,0) = D v, n*|a,|
+ 0Q1).
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i i Ca(N(k), N(lg’) ; t)a/N(k)aN(kz)ei(N(k)—N(k')”
k=1%"=0
had k-1
< kZ=:1 (@ iy | kZJO [ @y cin NUONE)N(E) + NU))=—2

oo 2
< (g:]llam,l) < 4.

COROLLARY 2. There exists an absolutely convergent Taylor series
J@ = >z a,2" such that A(f,0) = +oo for all 6 and all 0 < a < 1.

Proof. Let(a,);_,be a sequence such that ay ) =& +1D*(k=0,1,.-+)
@, =0 n # N(k). Then > ,n*|a,f’= +oo for all 0 <« <1. By Pro-
position 2/, A (f,0) = +oo for all # and 0 < o« < 1. This completes the
proof.

Remark 2. By [2], 6eT is called a Lusin point of s if A,,(f,6,%)
= ” , | /@ rdrdp diverges for all 0 <¢<1l. We know that
|z—teil| <1—-¢

there exists a bounded function such that every point 6e T is a Lusin
point of it ([2]). Let f be the function in Corollary 2. Then every
point e T is a Lusin point of f. We shall show it. We have fL,z( )
= + oo for each 4. We can assume ¢t > 1. If we choose suitable con-
stants g, 7. ,, we have, for each ¢,

Aulf,0,8) = ” | F@P rdrdg
|Tz<—tzew|<1—z

1
+jrdrj |S[ do
t le—0]|<arc cos (2t -1+ 72) (27t) —1

1
zj rdrj P dp = Ap(fr0) F 1oy = +oo
t lp—01<ps ¥i-71

Therefore fL,Z(f, 0,t) = +oco for all #eT and all 0 < ¢ <1. But there
exists g(z) = 37, b,2" such that each #eT is not a Lusin point of ¢
and 4,(9,0) = +oo for all § and all « > }. For example, put byu =
BNk~ (k=1,2,---) and b, = 0 for n = N(k).

EXAMPLE. There exists an analytic function f such that V(f,6)
= +o0 and A(f,0) < +oco for all 4.
Put by, = BNV (K =1,2,--.) and b, =0 for n # N(k) (k=
1,2,--.). Consider f(z) = L (f; an")de. We show that f satisfies the
n=0
required conditions. We have
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V(0 = [ |5 barmer| ar
= Z Z buvceybavar V() + NQI) + 1)-tgiavsr-ans
= 37 by @N® + D
£33 5 buabwin (V) + NGF) + Dot

We have the following estimation:
(The first term) =~ f‘_, El= 4+
k=1
|(The second term)] < 3. by N 3. by < 32 N(k — 2)71 < 400 .
k=1 k=1 k=2

Therefore we have V(f,0) = + oo for all 4. On the other hand, we have

0+ (1-7)

a0 =[Lar (77713 bamene| dp

6+ (1-7)

—_ N (k) + N (k) + N (k) + N (ka)

I J‘ On O iy On i On o™ ™ 2 : ‘
9—(1-7) k1, kﬁ,ks ka=1

§—(1~7r)

X ei(N(kl)+N(ka)—N(ks)—N(k4))¢d§D

oo

= Z bN(k;)bN(k,)bN(ks)bN(k.)(N(kl) + N(kz) + N(ks) + N(k4))~2

-
< 35 DN + 35 BN 3 b + 33 N0 (3 bver )
giﬂﬂ+§kwm~mﬂ+gmh4w+gwwm—wz

+ 00 < —-l-oo .
Therefore we have A,(f,0) < 4o for all 4.

4. Almost sure property for all 4

THEOREM 1. Let |a| <1 and fx() =2, X,0,2" be a random
Taylor series. Set 8; = V> yncwr S[X2I0* |0, (G =0,1,---). If 8,10
and 3 5085 < +oo, then A, (fx,0) is bounded ((as a function of 6) a.s..

We denote by ||P|.. = supscr|P(@)]| for a continuous function P on T.
We use the following
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LEMMA 2. ([1] p. 55) Let (P,).., be a sequence of trigonometric
polynomials of degree <N. Set P,= > ¢, P,. Then we have, with
positive constants c,, ¢,

PP > ooz Ny(3 1Pa2)") < e

Proof of Theorem 1. First we consider the case of a Rademacher
series. We denote E..(2) = Xiyw<n<nwsn nttn2” (K =0,1,.-.). We have

VAT, 0 < VAaz, 0) + z VAR 0) .
We show

ﬁ(«/nA‘ Ry Ol > cillog Nk + 1))1/2( S e |an|2)”z)
N(E)Sn<N(k+1)
<Nk 4+ D1,

Set ‘g(k) = N(k + 1) - N(k); gl‘ = EN(K)—14p0 b# = a’N(k)——l-pﬂ and b‘u(a) —
Uy iy, 88100 (=1, ...,4(k)). We denote by b, = b, --,
Ewc)bz(k)(o)) and

C = (c/iv)#.v=1,“':‘(k)
( CN(K), N(R)), - - - co(N (), N(k + 1) — 1) )

Nk + 1) — 1, N(E), - - -, (N + 1) — 1, N(k +1) — 1)

Since C is positive definite, there exists a unitary matrix U = («,,),-1,

-+, 4(k) such that U*CU = ( ), where {2,}i*) are eigen values of

0 ‘ch)
C. Set d., (0 = > eb,0u, ©=1,---,4Fk). Then we have

AR, 0) = BOCEEO) = 5. 4, |4, .
y=1
Since deg b,(0) < N(k 4+ 1), we have
4(k) 1/2
P dal. = elog NGk + D)(( 3 1B, lwf) ") < V(e + 1)~

Therefore we have

za(nd.,n°° > ¢,(log N(k + 1))1/2(“;"’1|b,,121u,w|2)”2 for some v (1 <y < e(k)))
< eNEk + 1D,
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Since
4(k)
NA(Rs )l < ; Ayl
and
£(k) 2(k) 2 ) (k) 2l(k) ) £(k) o
Z' Z b, [ lu,.lF = Z;lbpl ,‘leylu,wl = #leb,,icy,,
s Rl | = = -
= Z Cn(n, ’l’b) |a/n IZ ’
N(k)Sn<N(k+1)
we have

f’( VI[AR.i, ). > c(log N(k + 1))1/2< ST cun,m) lanlz)l/ 2)

N (&) <n<N (k+1)

< eNE+ D,

By the Borel-Cantelli lemma, we have

VA Rg Ol = 0((1og Nk + 1))1/2( > em, n)|an|2)‘”) a.s. (7).

N (k) <n <N (k+1)

Since

57 (log N(k + 1))1/2( > ca(n,n)lanlz)mzi 2"“( 2. Sﬁ)w
k=0 k=0 2k j<2k+1

N (k) <n<N(k+1)

oo

<Z 32k<}:‘s,—|—so< + o0,
%=0

we have ||A.(f. )Mo < +o0 a.s. (p). We show this in the general case.
Consider a random Taylor series f.x(2) = > v, e, Xn0,2". Set

T =27 3 XK@ n)af)”

N (k) <a<N(k+1)

Then we have

PRI ‘gN 5 T EIT D A EITuar D
(Cga [Tw(0) D =~ Z 2k/2( > s@)m
2RI+

j+so<‘|‘°°-

u‘M 8 TM 8

Consequently > i, Tw(@ < +oo a.s. (p). Therefore we have ||A,(f.x, )
< 4 oo a.s. (p) for each w such that > 7. Tw(w) < +oco. Hence |A.(fx ).
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< +o a.s. (P X p). There exists a sequence & = (§,)=_, of numbers 1 or
—1 such that ||A.(fix, e < +oo a.s. (p). For positive integers N, ¢
and k&,

N
Zk = {(xl, cee, xN); sup Z xnxmandmei(n—m)oca<n, m: 1— %)' < Z}
& In=1

EZk ={wef; X(w), -+, Xyl)) e Fﬁ‘,’k}
and
BV ={0e®; EX(0), -, & X () e FY} .

If FY, is a cylinder set, p(E};) = p(E’Z ©) (since X’s are symmetric). In
the general case, using a limit process, we have p(E7};) = p(E‘ﬁf »). Since
lim,_., lim,_. limy_. p(EY,) = lim,_. lim,_. lim,_. p(lf’f‘?’: o = 1, we have
TA.(Fxy )l < 4+ o0 a.s.. This completes the proof.

COROLLARY 3. Let fx(2) = > v, X,a,2" be a random Taylor series.
Set 8; = Caicncarsr EX2D) (@D (G =0,1,--2). If (s)7., is a decreasing
sequence and fz is bounded a.s., then Ay fx, -) is also bounded a.s..

Proof. It is known that if fr is bounded a.s., then > 7.,s; < 4+ o0
(11 p. 72). By Theorem 1, we have [|[A{(fx, ). < + oo a.8.. This com-
pletes the proof.

THEOREM 1. Let fx and (s))7., be the same as in Corollary 3. If
D507t 8; < 400, then V(fy, ) ts bounded a.s..

Proof. First, we consider the case of Rademacher series. We de-
note by Qu(?) = Yucncrr e0,2"" and Qu6) = Que®) (k=0,1,---).
Since

V(a0 <3 j Qu@| dr < 35 27 [l

it is sufficient to show that > 7., 2"‘||Q5,c|]°,, < 40 a.s. (p). By Lemma
2, we have

f)(n@,knw > clkW(zk > nﬂanv)"z) < o2 |

<nk+1

By the Borel-Cantelli lemma, we have
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1@ull. = 0(k(, 3, wlaf)”)  as.

KLl 2k+1

Since

f] Z‘kk”z( > W |¢Jr,n]2>1/Z < i ks, < 400,
k=0 k=0

k< n2k+1

we have > 7,27 ||Q,,c||,,° < 400 a.s.. In the general case, using the same
method as in Theorem 1, we obtain the proof. Hence we omit the rest
of the proof.

Next, we prove the following:

THEOREM 2. Let |a| <1. Let X = (X,)7.. be a sequence of real
valued mormal Gaussian variables and fx(z) = >, X.0.2" o random
Taylor sertes by X. If >z in*(logn)|a,l? < + oo, then A(fx, ) is bound-
ed a.s..

LEMMA 3. Let Y be a real valued Gaussian variable such that £[Y]
= 0 and &[Y?] =o. Then for any E B, we have

2 1 6-—1/2
jE Y dpe) < op(E)(4 log 21— + 7;_) .

Proof. We have se~*** < 4/ 2e 2, We have

f lYde(w):f f =1L +1,
E E; |7 |2<04 log (1/p(E)) E; |V (2> 04 log (1/p(E))
1
I, < op(EN4 log ———
‘ p(E)
and
I, < —~2——r ste~sodg = 2 o - ste~*"ds
V2re Jevivicgam@Ey T 2 Yiog (/pCEY)
2 ® 3 e~
< -——_—e"/zaj se~ds = — ___op(E) .
E: 2 vIog (1/p(E)) vV

Therefore we have

. 1 o2
J,¥rane < o410 2+ S

LEMMA 4. Set r;=1— 277 and
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i

Atz 0 = [ a—naar [ prrenr g

i
§=0,1,.... Then we have, for 0,pcT such that |6 — ¢| < 1.
AflF00) < AuFxr ) + 204(10 = pl27

-+

it U DI AL S
1 — n=1

Proof. We can assume 0 < ¢ < §<1. We have

Aaj(fX? 6) — Aaj(fX, §0)
_ J’::+1 a— T)‘“Tdr{j“u_r) . r+(1~r)} |fLre ) dy

6-(1-7) e—(1-7)
Ti4+1 8+ (1—1) 90— (1—1) )
= | birsrenr ar

rj ¢~ (1~7) ¢~Q1-7)
0r<1—(0~¢)/2

Ti+1 0+ (1—-7) o+ (1—1)

+ a— r)—ardr{f - } \FHrepPdy =J, + J,,
-(1~-7) p—1=-7)

ry
1=(0-¢)/2<r<1

Ti+1 0+ (1~7) 6~ (1-7) ) o

n<[a-nea{[T7 4 [T S X et 5 )y
77 ¢+ (1-7) p—(1=7) n=1 n=1

<200 — o) i‘. 1 X, nt|a, T’]’ﬂf”h 1 = tedr

n=1 T

J

< 2090 — )20 37 | X, n2 |a, P st
n=1

and

Ti+1

JZ <4 a-— 7.)1—0:7.,% Ianz n2|an]2 Tn—l'i pr-tdp
n=1 n=1

T
1~ (6~p)/2<r<1
) 1
< A3 Xt |, w;;}j A — )-=dr
n=1 1~(0-9)/2

2l+“ 1—-a - 2 2 2 pn—1
=5 a(ﬁ -9 1¢Z=:1IX"I nla, et .

This completes the proof.

Proof of Theorem 2. We may assume that a,’s are real. Since
n*|a, = O1), we can assume that |a,| < n. If > n?|a,f < 400, wWe
have

SUA Sz N < 62 [ @ — e 35 Xt g oo 35 e
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2 S wtant < 4o

— @ n=1

<3 nzlanlz-zf A — Pedr =
n=1 0 1

Therefore |A,(fx, )l < + o0 a.8.. Suppose D> = n?|a,* = +oco. We have,
for each j,,

142 e < =2 S IXaP 0 aaP 7557 + 5 [ 4uFxs e

Since > ;| X, n*|a,fr7t < 4+co a.s. for each j, it is sufficient to
show that > 7 ; |14 (fxs e < +co a.s. for some j,. There exists 7,
such that >, %*|a,[r7* > 1. For a positive integer ¢, let E,(4) be
the event:

Az, e = Glog -2 S fan [ @ = yerniar
1— r; n=1 ry

We shall show that p(lim sup,.. E,(¢) =0 for some £ > 0. Choose a
random variable 6;(w) such that A,;(xwy 0;(@) = ||4.(fxws ) .. Let N
be an integer such that 2% > 2¥+4+imax (1,1/(1 — @)). Then 2-9¥*blel >
2 max (1,1/(A — a))20+1«+M7 for any j>1. Set K =27 and 4, =
2z(k/K) (k=0,1,---,K —1). Let E)4,k) be the event: E; and 6,(»)
€Wy — /K,y + n/K). We prove p(E,(4, k) < exp (e?/(4y/ & ))2- 1
for j > j,. Suppose we E;(4,k). By Lemma 4, we have

Aaj(fX(m)! l9j(€0)) < Aaj(fX(w), \l’k)
+ 21+a<2(—N+a)j + I 1 2—N(1—a)j> ;::1 IXn(w)|2 n? Ianlz 7,.;9;} X

We integrate each term by dp|z,.r and use Lemma 3. Then we have

.fE (4, k) A i (fx@y 05(@))dp(w)

<[ Aure0dp) + 2re(2wer T pvasas)
Ej(2,%)

— &

x 33 wlanf ozt
n=1 (

E ;(¢,

| Xl dp) =1 + 1, ,

I, = '[Tm 1 — rrdr ‘[W(l—” d«]r{f i‘ X, na,r**cos (n — D r dp(w)
r4 Yre—1-7) Ej(¢,k) |n=1

+ f i} X, na,r**gin (n — 1)11r‘2 dp(w)}
E (k) |n=1

<2 Jml a-— r)““r.f} n? @ [ " ~*dr p(E (4, k)
rj n=1
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% (4log LI e"”z)
p(E (4, k) o !’
and

I, < 2'**max (1, —1—1——>2"”'“N”<i WT’};})IO(EJ-(& k)
— n=1

1 o2
X (4 log @y T f{)

< 2Utemax (1, ii_)z(aﬂal—mjp(Ej(Z, k)

— X
1 e
x (4108 P EGT) ¢7>

28 ;
I 210_25]) .
A — 75’

(since 33 ntrizt < 3% nn + D + 2 + Byt <
n=1 n=1
For j > j,, we have

J'rj+1 (1 — )r-e i 12 | @2 ¥ > J’ J+1 (1 — #)i=ady > 2-U+Dlal
n=1 ry

i

> 2" max (1, _1
1l—-a«

)2(5+|a|—-N)j .
Therefore we have, for 7 > 7,

IE ) A ([ 05(0))dp(w)

+1

< 83wl [ (= ey p@E e )
n=1

]
ri
1 o~
% (41 _>.
( CEGH T Vx

On the other hand, we have

J‘E i(4,k) Aaj(fx(“’)’ 0j(w))dp(w)

1 - 2 2 J+i 1 2 1
nE @y I A — »)eridye
1

7
—_— 1"1 n= Ty

> (p(E (¢4, k) log I

Therefore p(E,(4, k)) < exp (e"2/(44/ 7 ))2~“"i for j > j,. Consequently,
we have p(E;(£)) < exp ((e™*/(4v/ & )2V -4 for j > 7,. Choose £, = 12N
4+ 12. Then p(E,;(4)) < exp ((e™2/(44/ = ))277 for j > j,. By the Borel-
Cantelli lemma, we have (lim sup;._., j»;, £;(4)) = 0. So we have
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“Aa(fX’ ')”eo = 0(log 1 i n’ ianlz J‘Tj-“ a-— 7-)1—ar1.2n-1d,r)
1 _ Tj n=1 L]
= 0(2 12|, ‘rm 1 — r)t-=r»-tlog 1 dr)
n=1 Ty 1—7r
j=joajo+1,“' a.s..
Since
el Ti+1 1
1 — 1-aj2n—1 l dr
jZ=:0Irj @ — rymertntlog ———
0 -7
o 1 1 - 1
— T 1 — 1-a 2n+m—1d ~ o
WLZ=1 m j‘o( Ir) T r 1"Z=:1 m(n + m)z—a
1 &1 1 &1 _ .-
S Bm T S SR
we have

i i‘ 7|, JWH A — r)t-=rin-tlog I 1 ar < i} n*(log n) |a, 2 < 4+ o0 .
n=1

7=02a=1 ry -7

Therefore >.5.;, [[4.;(fx, ) < +o0 a.s.. This completes the proof.

By Theorem 2, we can answer the converse problem to Corollary 3.
That is, we can show that there exists a random Taylor series fx such
that |fxll. = +o0 and [|A(fx, . < +co a.s.. For example, set a, =
1/Glogj) G =2,---)and a, =0 for n 2/ (j =2,...). Let X = (X)),
be the same as in Theorem 2. Then > 7., Cucncu+ [@)V2 = 3520 Gy =
+oo. Therefore fx(z) = > 5, X,0,2" is unbounded a.s.. On the other
hand, since > 7., (logn)|a,[* < + oo, we have [|[Ay(fx; ) < +00 a.s..

The method of the proof is usual. But it has many applications.
Since the case of V(fy, ) is typical, we show some applications for

V(fl: ')-

PROPOSITION 6. Let X = (X,)7., and fx be the same as in Theorem
2. For any m > 1, we have with constant c,,

p(V(fx, 0) >cm r ,\/i " |a, | ,,.m—zd,,.) < e,
0 n=1

LEMMA 5. Let Y be the same as in Lemma 3. Then for any E € B,
we have
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I Y| dp(w) < «/_p(E)<~/_«/10g + «/2)

Proof. We have

[¥iap < |

+ A‘.
E;|Y1< Vo Y210g 1/(p(E)) E;1Y|>Yoe ¥21og 1/(p(E))

_ 1
< E)Aaj21 —-—f
< \/Gp( )\/ og p(E) + 4'/271-0- Vo ¥2log 1/(p/(E))

= VapB)(VE Alog P JE).

Proof of Proposition 6. Let E be the event:

se~%**(s

V(00 2 4/ Zm | JE w0t r
Then we have
B Zm [ J W dr
< [ vz 0dp@
<2f JE e arom@(VE Jog Lo+ J2).

Therefore p(E) < e~ @m-uVr < g-m2,

PROPOSITION 7. Under the same hypothesis of Proposition 6, for
any m < 1, we have, with constant c,,

p(V(fX,O) <cm J: \/;Z‘: nzlanlz'r”“zdr) >1—m

LEMMA 6. Let Y be the same as in Lamma 3. Then for any E
e B, we have

[ 17100 = N Evop@Ey.
Proof. Choose a such that p(Y| < @) = }p(E). Then we have

a2 [T eras = Zvop(Yi <0 = opm) .
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Then we have

[ i@ [ |¥iap@

E E:|Y|2a

> ap(E; Y| > ) adp(E) > “/ 2t /5 p(By .

Proof of Proposition 7. Let E be the event:
‘fé_” mjl Ji} n?|a,[fr~tdr .
0 n=1

V(fX, 0) S

We may assume

j‘l \/i n(Re a,)r** 2 dr > %I‘ \/i 7 @t 727 dre .
0 n=1 0 =

Then we have

2B Y2 | «/Znﬂ—a—rmdr
> fE V(/x, “ar [ |3 XunRe a,)r| dp)
> VI [ 5 wiRe a,yir p(Ey
vzn

f «/ 2, W |t 7207 dr p(E) .

Therefore we have p(F) < m. Consequently, we have

p(V(fx,

I JZ 0@, P rin 2dr) >1-—

THEOREM 2. Let X = (X,);., and fx be the same as in Theorem 2.
If

dr< 40,

J‘l «/Z nzla |27‘Z" 210g 1
0

then |[V(fx, Mo < +c0 a.s..

Proof. The proof is analogous as in Theorem 2. For the sake of
completeness, we give the proof. We can assume that a,’s are real and
|a,] < 1. There is nothing to prove in the case of > 7., %n?|a,]? < 4 co.
Suppose that >, n*la,f = +co. Let E; be the event:
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rivr [ T T
I ot ag P i .
T n=1

We shall show that p(E;) < exp (1/(8v 7))277 for large 5. Set K =24
and v, = 2z(k/K) (k =0,1,...,K —1). Choose a random variable 6,(w)
such that

max Irm | f4(ret®)| dr > 15ﬁ\/log I 1
[ T4 — ’rj

rj‘l-l . Ti+1
[ 175we ) ar = max [ s el dr
T4 [ i

Let Ey(k) (k=0,---,K —1) be the event: E; and 6,(0) € [yr — =/K,

¥y + x/K). We prove p(E, (k) < exp (1/(8+/ = ))2™% for large j. Suppose
oeFE k). Then

[T e )| < | fhare™)| + 2 2 1Xa(a) |72 [aq] 2772
Therefore
Ti+1 .
[ 175we ) ar
7
< [T 1 kel dr + E27 3 X)) 2 a2
ry n=
Integrate each term by dp|z,: and use Proposition 6. Then we have
[ av@ [ rtre ) ar
E 4(k) T4
< (2 Irj+1 \/i N2 @, [t r=idr 4 72781 i nzmnl,,ﬂ}ﬂ)

X p(E,0)(VE 5 Jlog—L (E . 2).

Since > 2., ntla,f = + oo, there exists j, such that

j’r’j+l JZ nzla I2 27— Zd,,. > 71.2 55— IZ n2lan17‘j:§

for all § > 7, Then we have, for j > j,

P(E, )15V E [ JZ 2| 10 Zd“/log

<" N3 0o ()

x (VEoE Ly @) V).
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Therefore p(E,(k)) < exp 1/(8v 7 ))27% for j > j,. Consequently, p(E,)
< exp (/@ )27 for 5 > 7, So we have

max I““ | fi(ret®)| dr = O(Jlog 1 JW“ Jf‘_, 7|, [ rz"‘zdr)
[ r§ n=1

1—,"‘7 ri

= O(J.wl Ji} 0|, r**=t log I 1 dr)
T n=1

— 7T

I =17Jnf+ 1, as.

dr < 4+co0, we have

Since jl «/i n?|a, [ vt log 1 1
0 n=1

-7

1V(xr e < 5 1 Xalmlaal 7557 + 35 max [ 7ire) | dr < + o0 as.

(£

This completes the proof.
Next, we consider one of converse problems for Theorem 2.

THEOREM 3. Let |¢| <1 and let fz(z) = > 7., X,0,2" be a random
Taylor series by X = (X)7-,. If limsupy.. (Jog N)7' > ¥ [ X:n*|a, )P =
+oo and n*|a,|* = OQ), then lim supy.. A.(f%,0) = + oo for all 6 a.s..

For the proof, we use the probability space (2 X 2,8 X 8,5 X p).-
We denote by £[ - ] the expectation. Define a sequence Y = (Y,)o., of
random variables on £ X 2 by Y,.(@,0) = ()X, (o).

LEMMA 7. Let (v)7., 0o = 1) be an increasing sequence of positive
integers. Set Py, 0) = A(f¥,6) — A (f¥,6) and

qj=( > 5(Y‘;’,)c,,(n,n)|an|2>1/2 G=1,2"--).

vj—1<nLyj
Let E, be the event:
There exists § such that Py;(0) < 2% for j=1,---, .
Then we have, with positive constants B,g (0 < g <1),

3 1/2
P X pE) B;wi(jZ:l q?) sup{g;*;7 =1, -, u}p*.

Proof. We denote by (2/,%,p) = (@ X 2,83 X B, X p). Set 2=
IT,,-1<n<v; Ju X In. The element is denoted by (x;, 0). Let (2,%],p}) be
the usual probability space. We consider (2,9, p’) as the product space
(1151 2 1152085 T[54 07).  Set

https://doi.org/10.1017/50027763000017360 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017360

ANALYTIC FUNCTIONS IN THE UNIT DISK 157
QYj(a) = QYj(xj, wj)(ﬁ) = Aa(fij — f¥4,0)
and
RYj(a) = RYj[(xu @)y ey (xjr wj)](ﬁ)
=2 Re( > Y, >, Ynanc(n, m)eim”) .

vi—1<n<vj mvj—1

Then we have Py;(0) = Qy,(6) + Ry;(0). Let E(6,7) be the event: Qy,(6)
< 34} or Ryy(0) < 0. We show p'("N)5-, E@, 7)) < y* for some y (0 <y <1).
For any {(xf, w¥)}iz}, let El(xf,0f); k=1,...,7 — 11() be the event:

Qrj(@;, 0)@) < 3¢5 or Ryl(af, of), -, @k, of), (@5, 0)16) <0 .
By the Lemma 1, we have, with constant 5 (0 <5 <1),
p;‘(QYj(ﬁ) > “21‘(I§) >n.

Suppose Qy;(&;,d,)0) > 345 and Ry, [(xf, o}), - - -, (@}, 0}, (5,310 < 0
for some (%;,@,). Then we have Qy,(—%,,d,)(0) > +¢% and

RY/[(xiky w;k)’ ] (x}k—l, w}k—l)’ (—xjy CZ’j)](e) >0.
Therefore we have

(Qy,(0) > 3¢% and
RYJ[('%;“: wik)r 0y (x}k_u w;‘_l), (xj, (0])](0) Z 0) 2 %—77 .

That is, p'j(E[(x,’f,w,’f); k=1.-..,7—-1]1@0) <1 — ] (:7’)- We have
p'(("w EG, 7’)) —pX e X zo;(,r"w E@, y’))
Jj=1 Jj=1

- j DB @ 003 k=1, g — 1@, X -+ XD,

"8 B0,
J=1
u—1 .
<ix o x o ((EOD) < - <7

Let F(0,7) be the event: Py,(6) < %q%. Then F(9,7) C E(,7). There-
fore M4, F@6,7) € N4, E@,7). We write ¥, = 2z(k/K) (k=0,.--,K—1),
where K is an integer which will be determined later. Then we have
P’ (U Mas F(Pi, 1)) < Ky*.  Next, we estimate ||Py;|l.. We have

Py, = >, Y., 3 Yyc(n,m)a,e™

vj—1<n<vj mLvj

+ > Y. >, Yue.(n,maype™ .

NEyj—1 vj—1<m<yy
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Therefore we have

”P;’j”w < 4’Jjn§jlyn| lan| 2] [ Yal|@n| c.(n, m)

vj—1<m<vj

<y, Y, llaul Ve, m) 3 | Yallan| Vem,m)

n<vj vj~1<m=vj
<Y D Yila,ffe(m,n) v > Y2 anf e (m,m) .
n<vj vj—1<m=<vj

We have &[||Py,l.] < 435331, 4)"%q;. Consequently, we have
j 1/2
PPyl = 40K < 165K-53(3 a2) a7
k=1
Let F', be the event: [P%,|l. < (4n)'Kq} for j=1,--.,p. Then
“ 1/2 .
p'(F) < 167rK"‘/.evf.(kZ_l1 qi) sup{¢;*;7=1,---, 4} .

For any 6, there exists k such that [Py;(0) — Py;(yr)| < zK™' || Piylle-
Therefore Py;(yx) < nK™'||Pyjlle + Pry0). If (xr,0)eE,NF, then we
have 7K'||Pys,um;ll. < 105 and Py;(0) < 1¢5 for some 6 and j=1,...,p.
Therefore we have for some k, Py .e) < 3¢5 (G=1,---,4). Hence
we have E, N F, C\Ui (51 F(Y, 9. That is, E, CF U U (= F(Ys, 7).

Consequently, we have
’ 1/2 .
vE) < Kt + 167:K“pui(jz=:l q“}) sup{g;*;i=1,---,4}.

Let K be the integer part of y~#2. Then we have, with positive con-
stant B,

» 172 .
p,(E#) < B/jﬂi(]z::l q~27) sup {‘I]l§ )= 1’ v ’rﬂ}?’m .

This completes the proof.

Proof of Theorem 3. We can assume &[Y2] = ¢&[X2]1<1 and
c(n,n)|a,P <1 for all n. Let ¢ (£ >2) be an integer. We define a
sequence (v;);_, of integers, inductively. Set v, =1. Assume that {v,}42}
are already chosen. Then let v, be the smallest integer such that », >
vop and 30, cne,, €1Y01C(m, 1) [a,f (=¢) > 4. Set ¢, = (logy,)™' 4. ;.
By the assumption lim supy._.. (log N)=* X2, £[Y2In"|a,)P = + oo and ¢ <
+1G=1,2,.-.), we have limsup,_..c, = +co. We have

P 172 .
M@QSWWM=LwMKw4HW”
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= (£ — D 'pexp (3 i qi-L — plog l)
7=1 c B

7

< (4 — D'uexp (3(4 + 1)% — log %)y .

]

Since liminf, .. ¢;' = 0, we have

1/2
lim inf ﬂvi(fi Q“&) sup{g;;j=1,---, 4B =0.

p—roo

By Lemma 7, we have liminf, .. p’(E,) = 0. Let G(¢,m) be the event:
there exists 6 such that Py;(¢) < 14 for j=m,m + 1, .--. Since G(4,1)
C E, for all 4, we have p(G(4,1)) = 0. By the same method, we have
(G4, m))=0forall m, ¢ (m,£=2,8,-..). Therefore p'( i, Us., G(¢, m))
= 0. This show that lim sup,_. Py;(6) = + oo holds for all 4 a.s. (X p).
Since A.(f,0) = Py;(0) + A (f3*,60) > Py;(6), we have

lim sup A, (f¥,0) = + oo for all 4 a.s. (P X D).

Nesco

There exists &* = (¥, (¢¥ =1 or —1) such that lim sup,.. A.(f¥, 6) =
+ oo for all # a.s.. Since {X,};_, are symmetrie, (by the similar method as
in Theorem 1,) we have lim supy.. A (f¥,0) = +oo for all @ a.s.. This
completes the proof.
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