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Abstract

A constantly rotating spherical container sustains turbulence of a fluid partially filling it. This simple turbulence
generator has the potential for wide engineering applications as a bladeless mixer. Using the coupled level-set and
volume of fluid method and the boundary data immersion method, we conduct direct numerical simulations of
liquid—gas flow in a spherical container rotating about a horizontal axis to investigate the driving mechanism of
turbulence, flow dependence on the filling rate ¥ and the mixing ability of the sustained turbulence. Even if the
Froude number Fr is small enough (Fr < 1073) for the liquid—gas interface to be undeformed, if the Reynolds
number Re is large enough (Re 2 103), small-scale turbulent eddies are sustained by being stretched in shear flow
around a counter-rotating pair of container-size vortices, whose swirling directions depend on ¥. We clarify that
the angle of flow near the solid wall colliding with the interface controls the swirling direction of these container-
size vortices. Furthermore, we track fluid particles in the liquid phase to quantify mixing properties to show that
almost perfect mixing occurs after approximately 10 spins of the container for lower ¥ (< 0.5), whereas the mixing
requires less energy consumption for higher ¥ (= 0.7) at the examined Re = O(10°).

Impact Statement

We propose a new bladeless mixer, which has advantages such as efficient cleaning and contamination
avoidance. Flow in a bladeless mixer must be driven by the motion, e.g. rotation, of a container. Since the
container’s steady rotation always leads to solid-body rotational flow of a fluid filling it, its mixing ability
reduces sooner or later. However, we discover that a liquid—gas interface can sustain turbulence of a liquid
partially filling a constantly rotating spherical container if the Reynolds number is large enough and the
Froude number is small enough. This turbulence is not due to the interface’s oscillations but sustained by
internal shear flow. We also numerically demonstrate that different filling rates of liquid lead to qualitatively
different turbulence, which has different mixing times and energy consumption rates. This implies that we
can change the mixing properties depending on materials to be mixed only by changing the filling rate. Since
this system is one of the simplest mixers, we expect a wide variety of applications.

1. Introduction

Mixing is one of the most important units in process engineering. Since we generally use stirring blades
in a mixer, it is essential for efficient mixing to select an appreciate type of blade according to the
materials to be mixed (Nagata, 1975; Uhl, 2012; Zlokarnik, 2001). However, with the recommendation
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Figure 1. (a) Schematic of a rotating sphere with a liquid—gas interface, and the definition of the
coordinate system whose origin is set at the centre of the sphere. We set the angular velocity of the
sphere as w = (0,0, w) and the gravitational acceleration as g = (—g,0,0). We examine the velocity
along the dashed vertical line in figures 2 and 5. (b,c,d) Experimental results. Turbulence of water
partially filling a rotating sphere with the filling rate (b) ¥ = 0.2, (c) 0.5 and (d) 0.8. We visualize
flow by seeding refractive flakes and using a laser sheet on the equatorial plane of the sphere. We have
changed the colour map to amplify the contrast of the images. The radius of the sphere is 90 mm, and

the spin angular velocity is 0.2 rad s~'; the Reynolds number is approximately 5.1 x 10°. See the
Appendix for the details of the experiments.

S

of low environmental impact, the use of stirring blades is sometimes undesirable because it requires
much energy for cleaning. The use of stirring blades is also often avoided in biotechnology. Although
mixing in a bioreactor is generally needed to promote cell growth, shear flow around blades can inhibit
the growth or it is even lethal for fragile cells (Cherry & Papoutsakis, 1986; Wu, Graham, & Noui
Mehidi, 2006). In addition, since it is known that different mixing methods in a bioreactor can lead to
differences in the cell growth process (Sikavitsas, Bancroft, & Mikos, 2002), various types of mixer
were proposed (Stephenson & Grayson, 2018). It is therefore worth proposing a new type of bladeless
mixer, that may be used in biotechnology, for example.

There exist several kinds of bladeless mixers, in which flow is driven by a motion of the container.
One of the simplest motions is a rotation. However, since a steady rotation of the container, irrespective
of the container’s shape, always leads to solid-body rotational flow of a fluid filling it, we cannot expect
the steady mixing of the confined fluid. Therefore, to drive non-trivial flow in a rotating container, we
have to temporally change the magnitude or the orientation of the angular velocity of the container. The
latter method is widely utilized in the so-called gyroscopic mixers or planetary mixers (Kure & Sakai,
2021; Massing, Cicko, & Ziroli, 2008). For this kind of mixer, where we change the orientation of the
angular velocity (i.e. the precession), it was shown that a slow precession could drive turbulent flow
(Goto, Ishii, Kida, & Nishioka, 2007) and almost perfect mixing of a fluid filling a precessing sphere
could be achieved by only approximately 10 spins of the container (Goto, Shimizu, & Kawahara, 2014b).

However, the spin-up of the solid-body rotational flow is a phenomenon for a fluid filling a container.
It is unclear if this phenomenon occurs when the container is partially filled with a fluid. To clarify
this fundamental but non-trivial issue, we conduct experiments (see the Appendix for the details)
to visualize the flow in a constantly rotating spherical container, which is partially filled with water
(figure la). Surprisingly, we observe complex patterns irrespective of the filling rates between 0.2
and 0.8 (figure 15—d). Since characteristic length scales of the visualized patterns by reflective flakes
indicate the smallest eddy size, the results shown in figure 1(b—d) imply that the flow is turbulent. Note
that this turbulence is caused by the presence of the liquid—gas interface because, without it, the flow
must tend to solid-body rotational flow. Moreover, since the Froude number is sufficiently small in these
experiments, the interface hardly oscillates. Therefore, the generation mechanism of the turbulence
observed in figure 1(b—d) is essentially different from those driven by the oscillations of a liquid—gas
interface (Micheletti et al., 2006; Reclari et al., 2014; Weheliye, Yianneskis, & Ducci, 2013).
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Because of the difficulty of numerical, experimental and theoretical treatments of flow with a
liquid—gas interface, and because of the intuition that non-trivial flows are not driven, there were only a
few studies on the flow of a fluid, which partially fills a constantly rotating container. Among them, Varley,
Markaki, and Brooks (2017) showed that the constant rotation about its horizontal axis of a cylindrical
container with a liquid—gas interface resulted in a simple flow rotating with the container when the
Reynolds number was low. The observed flow is different from the turbulence shown in figure 1(b—d)
in a spherical container at a higher Reynolds number. Incidentally, Meunier (2020) recently showed
that unsteady flow was sustained in a cylindrical container rotating around its axis and tilted from the
vertical direction. He also proposed that the system could be used as a bladeless mixer.

The present study aims at (i) clarifying the sustaining mechanism of turbulence (figure 16—d) in a
spherical container which is constantly rotating about a horizontal axis, and (ii) evaluating the mixing
performance of this system towards future industrial applications as a bladeless mixer. In the present
experimental apparatus, however, we can observe and measure flow only on the equatorial plane (see
the Appendix). It is therefore difficult to experimentally achieve the first aim, and it is also difficult to
evaluate the mixing performance in experiments. Therefore, we conduct direct numerical simulations
(DNS) of liquid—gas flow in a rotating spherical container to show that (i) turbulence is sustained by
vortex stretching in internal shear flow around a counter-rotating pair of container-size vortices, and
(i1) almost perfect mixing is achieved after approximately 10 revolutions of the container when the
filling rate is less than approximately 0.5.

2. Numerical method
2.1. Governing equations

We investigate two-phase flow of liquid and gas in a rotating spherical container. As depicted in
figure 1(a), the spherical container with radius R rotates at a constant angular velocity w = (0,0, w)
about a horizontal axis. The gravitational acceleration g is (—g,0,0). The origin of the Cartesian
coordinates (x,y, z) is set at the centre of the sphere.

Let £ be a three-dimensional domain which consists of a spherical fluid domain £¢ and a surrounding
solid domain Q;. The mass conservation equation in £ is expressed as V -u = 0, where u = (u, v, w) is
the velocity vector. For fluid motion, we numerically solve the two-phase Navier—Stokes equation,

p(g—l; +u-Vu) =-Vp+V.(uD(u))+pg inQy, 2.1

where D(u) = Vu + (Vu)” and p is the pressure field. Note that p and u are the fluid (i.e. gas or liquid)
density and viscosity, respectively, which are evaluated by (2.5a,b) given in the next subsection. The
momentum equation (2.1) is not applied to the solid domain Q. Instead, the velocity vector in £y is
prescribed as u = U4y, where U,y = —wye, + wxe, with e, and e, being the unit vectors in the x and y
directions, respectively.

2.2. Coupled level-set and volume of fluid method

We track the liquid—gas interface by a modified ‘coupled level-set and volume of fluid method’
(CLSVOF) (Sussman & Puckett, 2000), which is a combination of the volume of fluid method and
the level-set method (Sussman, Smereka, & Osher, 1994). The volume fraction ¢, of the liquid and the
level-set function ¢ both obey the advection equations:

9dL B [ ) _
o (u-V)p,=0 and T (u-Vyy =0. (2.2a,b)
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We solve the first equation in (2.2a,b) by the THINC/WLIC (tangent of hyperbola for interface captur-
ing/weighed line interface calculation) method (Yokoi, 2007) and the second equation by the CIP (cubic
interpolated pseudo-particle) scheme (Takewaki, Nishiguchi, & Yabe, 1985). Since i loses the property
of the distance function due to the advection, we reinitialize ¥ every 30 numerical steps by the scheme
proposed by Sussman et al. (1994). In the scheme, we integrate

W (- v, 23)

or % 2

to obtain the reconstructed ¢ as the steady solution of (2.3). Here, 4 is the grid width and ¢’ is artificial
time. The initial condition ¢ for (2.3) is set as ¢y = 0.75(2¢, — 1) 4. We use the function i to define
the physical properties of the liquid and gas. The fluid density and viscosity are expressed in terms of a
smooth Heaviside function,

0 W < —e)
H(y) = (Y +&)/2e +sin(ny/e) 2 ([y| < &) , (2.4)
1 W >¢)

where € = 1.54. We have set H(y) to be 1 for the liquid and O for the gas. The density p and the
viscosity u are then calculated by

p=HW)pr+(1—HW))ps and pu™'=HW)/u+ (1 -HW))/uc, (2.5a,b)

respectively. Here, p; and p¢ are the densities of liquid and gas, and y;, and g are their viscosities.

2.3. Boundary data immersion method

We treat flow in a spherical container by the boundary data immersion (BDI) method (Weymouth & Yue,
2011). More concretely we define the solid domain £ by the spherical shell with the inner and outer
radii being R and R + 84, respectively. The BDI method, in which we solve the meta equation written
over the entire domain including both fluid and solid phases, simultaneously ensures the solenoidal
condition and the kinematic condition. Although the BDI method was originally used with the MAC
(marker and cell) method, we apply it to the SMAC (simplified marker and cell) method.

We use the fractional-step algorithm. In the following, X" (e.g. ") denotes the value of X at the time
1" (= nAt). First, the predicted velocity u* is written as

u*_un _ 1 el ; el X )] 3Hn_Hn—1
5 = [v (u D(u))+V (,u Dw))|+ ==

ut = Uwall in .Qs. (26b)

1
- —Vp'+g in Q4 (2.6a)
P :

Here, we have used the second-order Adams—Bashforth method for the advection term H" = —V - (u"u"),
and the Crank—Nicolson method for the viscous term. In addition, in order to handle the viscous terms,
the second viscous term in (2.6a) with variable coefficients is decomposed as

1
— V- ("' D)) = vVu" + V- (W"™'D®W")) - voVu", 2.7)
pn

pn+1

where vy = %(/,l L/pL + Hc/pc)- Then the terms with a constant viscosity are treated implicitly and the
others explicitly (Dodd & Ferrante, 2014). For fluid—solid interactions, we solve the meta equations (see
(2.13) and (2.15)), which are derived as follows. First, substituting (2.7) into (2.6a) and rearranging, we
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obtain the equation for the prediction step for £y as

. w-u" L 1 ;
Fore(U*) = v -R- zvovzu =0, (2.8)
where
N 1 3Hn Hn—l 1
— n+1 n 2.n n
R_pn+1v'(# D(u ))+§V0VU + —T—;VP +g. (2.9)
On the other hand, for Q;, we rewrite (2.6b) as
Byre(W') =u" = U,y = 0. (2.10)

The meta equation M, is then derived by the phase mixing of the governing equations, ¥, and B,
with the phase indicator function y as

Mpre(W*) = xFpre (@) + (1 = x)Bpre(u*) = 0. 2.1D)
Here, y is calculated by
0 (d < —Ed)
x(d) =9 (d+eg)2e4+sin(nd/ey) 27 (|d] < &4) (2.12)
1 (d > 8d)

where d is the signed distance from the wall, and €; = 24 is the thickness of the artificial boundary
between Q; and Q. Substituting (2.8) and (2.10) into (2.11), we obtain

u' = LyAvoVu = (1 = Y)Uyan + x(u" + AtR), (2.13)

which we solve to obtain u#* in the prediction step.

Second, for the projection step, since the equations for the updated velocity """

are expressed as

At
7:pr/(un+1) — un+1 _ u* + —V5p — 0 in Qf
; P ,

) (2.14)
Bprj(un+1) — un+1 —ut = 0 in Qs
the meta equation is expressed as
w =yt - At( X ) vop, (2.15)
pn+1

where 8p is the pressure increment. To satisfy V - u"*! = 0, we solve the Poisson equation,

V-u*
v. ((piil)V6p) = (2.16)

for 6p, which is obtained by taking the divergence of (2.15). Finally, the new pressure is given by

P =p"+6p — LxAtvV6p. (2.17)

To evaluate the spatial derivatives in (2.8), (2.15), (2.16) and (2.17), we use the second-order central
difference method with a uniform staggered Cartesian mesh. Equations (2.13) and (2.16) are iteratively
solved by the SOR (successive over-relaxation) and BiCGStab (biconjugate gradient stabilized) methods,
respectively.
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Figure 2. (a,b) Time-averaged velocity field on the z = 0 plane by (a) the DNS in the case with the
medium grid width (4 = 8.7x1073) and (b) the experiment. The vectors are depicted every six grid points
in each direction in (a). (c) Time average of the x component of the velocity along the line (the dashed
vertical line in figure 1a) between (0,0, 0) and (-1, 0, 0). We show three DNS results with different grid
widths (coarse, A = 1.3 x 1072, medium, A = 8.7 x 1073, fine, 4 = 5.7 x 1073). Panel (d) is similar to
(c) but for the y component. Results with the filling rate ¥ = 0.5, Re = 5.1 x 10° and Fr = 3.6 x 107>.
The arrow on the frame in (a) and (b) indicates the wall velocity on the equatorial plane.

It is worth mentioning that we need a special treatment of the level-set function ¢ near the solid
boundary. This is because we need extrapolate ¢ into £, when the solid phase contacts with the liquid,;
otherwise it is regarded as the gas. To this end, we integrate 9y /3t + u®"" . Vi = 0 for a short time
(10 numerical steps with At = 0.14) to extend ¢ to Q, before calculating the density and viscosity by
(2.5a,b) (Sussman, 2001). Here, 7 and u®"? are the artificial time and the unit vector normal to the
solid surface, respectively.

2.4. Numerical conditions

We list the numerical conditions in table 1. Although the density and viscosity of the gas are set larger
than those of the air for the sake of the numerical stability, the other parameters are the same as in the
experiments (figures 1 and 2; see the Appendix for the details). We report results for the several cases,
where the filling rate ¥ of the liquid in the container varies between 0.2 and 0.8.

In the following, we show results in the non-dimensionalized form using the time unit w~', length unit
R and mass unit R*p; . The non-dimensional parameters governing the system are the Reynolds number
Re = pR*>w/uy and the Froude number Fr = Rw?/g. The examined condition (table 1) corresponds
to Re = 5.1 x 103, which is large enough for the system to be turbulent, and Fr = 3.6 X 1073, which is
sufficiently small so that the interface is almost undeformed. In fact, in both experiments and DNS, we
have confirmed that the interface hardly oscillates. Moreover, we have also conducted DNS with a further
smaller Fr(= 3.6 x 107) to confirm that the flow is almost the same as the one with Fr = 3.6 x 1073,
This implies that the deformation of the interface is unimportant in our set-up. We neglect the surface
tension because the Bond number Bo = (p; — pg)gR?/y, where v is the surface tension coefficient, is
O(10?) for the current set-up. We also neglect the wettability for simplicity.
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Table 1. Numerical conditions: R, the radius of sphere; w, the magnitude of angular velocity of the
sphere; pp and pg, liquid and gas densities; uy; and ug, liquid and gas viscosities; g, the magnitude of
the gravitational acceleration.

R(m) w(ads™)  ppkgm™)  pgkgm™)  pu(Pas)  pg(Pas)  g(m*s7h)
0.09 0.2m 1000 10 107 107 9.8

3. Results
3.1. Validation of DNS results

To validate DNS results, we compare them with experimental data in figure 2. As described in the
Appendix, we can measure velocity fields only on the equatorial plane (i.e. the z = O plane) of the
container in our experiments by particle image velocimetry (PIV). Therefore, we compare temporally
averaged velocity fields on the plane. To check the mesh convergence, we have conducted DNS with
three different numerical grid widths: coarse (4 = 1.3x1072); medium (8.7x 107%); and fine (5.7 x 1073)
grids. We determine the time increment At so that the CFL (Courant-Friedrichs—Lewy) number is the
same; i.e. At/4 = 3.6 x 1072, We take the temporal average over 10 spin periods both in the DNS and
in the experiments. Figures 2(a) and 2(b) show the results with ¥ = 0.5 of the DNS in the case with the
medium grid and the experiment, respectively. The mean flow obtained by DNS is qualitatively similar
to the experimental data.

To make a more quantitative comparison, we show in figures 2(c) and 2(d) the temporal average of
the x and y components # and v of the velocity along the line between (0, 0,0) and (-1, 0, 0), where
an overbar (*) indicates the temporal average. Agreements of the numerical and experimental data are
not perfect but satisfactory in the cases with the medium and fine grids. Considering the computational
cost, we use the medium grid (the number of computational cells is 256°) and accordingly, the time
increment At = 3.1 x 10~* in the following arguments. Incidentally, the small discrepancy observed in
figures 2(c) and 2(d) may be due to the fact that the dynamic contact angle is not taken into account and
the gas phase properties are not realistic in the DNS (see table 1). Since the numerical data are validated,
at least qualitatively, we may investigate the generation mechanism of turbulence by the DNS, which is
a main purpose of the present study.

3.2. Turbulent structures

First, we visualize the positive isosurface of the second invariant, Q = —%(61@ /0x;) (Ou;/0x;) of the
velocity gradient tensor to see whether we can numerically simulate the experimentally observed
turbulence in the liquid phase. Figure 3 shows the results in the six cases with different filling rates
between 0.2 and 0.8. Here, we visualize vortices in the bulk (\x*+y?>+z> < 0.9 and x < xo —
0.05 with x being the location of the initial liquid—gas interface). We can see that tubular vortical
structures exist in all the cases of ¥ similarly to the experiments (figure 156—d). Thus, the DNS also
shows that the presence of the interface can generate turbulence even when the container constantly
rotates.

The spatial distributions of vortices depend on ¥'. For example, we observe in figure 3(ii) that they
are concentrated near the z = 0 plane when ¥ < 0.5, while this tendency is weaker for ¥ > 0.6; we also
observe in figure 3(i) that they tend to exist in the region y > O for ¥ > 0.6, while this tendency is weaker
for ¥ < 0.5. The ¥-dependence of the spatial distribution of vortices suggests that the mechanism
of turbulence generation may depend on ¥. In other words, if small-scale turbulence is generated
by container-size shear layers induced by mean flow, this difference in the spatial distribution of the
vortices corresponds to the difference in mean flow. In the next subsection, we show that this is indeed
the case.
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(ai) (i) (aii) (dii)
(o] [ ]
(1)

Figure 3. Isosurfaces of the second invariant of the velocity gradient tensor (DNS results). The threshold
is set to be Q = 1. Only a bulk region (\/x* +y* + 7% < 0.9 and x < xo — 0.05) of the liquid phase is
visualized. Subpanels (i) and (ii) are viewed along the z-axis and the y-axis, respectively. The filling
rates are (a) ¥ = 0.2, (b) 0.4, (¢) 0.5, (d) 0.6, (e) 0.7 and (f) 0.8.

3.3. Mean flow and turbulent production

To investigate the generation mechanism of turbulence and the cause of the ¥-dependence of the spatial
distribution of vortices (figure 3), we show the mean flows in figure 4. Here, the length of the vectors
in these figures is proportional to the velocity magnitude, but those on the y = 0 plane (figure 4ii) are
three-times enlarged for visibility; the arrows on the frame of each figure indicate the wall velocity on
the equatorial plane. Note also that figure 4(iii) shows the mean flows on the plane at x = xy — 0.01.
Comparing figures 4(a,b) and 4(c,d), we can see that the mean flow significantly depends on ¥'. For

example, the mean flow on the z = 0 plane is inclined from the contact point (xp, —/1 — xé, 0) between
the container and the interface to the bottom of the container when ¥ < 0.5. In contrast, when ¥ > 0.6,
no such inclined flow is observed and the flow on the z = 0 plane follows the motion of the container wall.
It is further important to observe that the mean flow on the y = 0 plane is composed of a counter-rotating
pair of container-size vortices in all the cases (figure 4ii). Interestingly, however, the swirling direction
of the counter-rotating vortices is opposite for ¥ < 0.5 and ¥ > 0.6; see the downward and upward
flow along the x axis for ¥ < 0.5 and ¥ > 0.6, respectively. We emphasize that these counter-rotating
vortices play important roles in the mixing (see § 4.2).

For a quantitative comparison, we show the time-averaged velocity in the x direction along the line
between (xg,0,0) and (—1,0,0) in figure 5(a). As expected from the observations in figure 4, the x
component # of the mean velocity (figure 5a) is negative throughout the liquid phase for ¥ < 0.5, while
it is slightly positive for ¥ > 0.6. We therefore define the indicator,

(Y —
vertical = 7~ ,0,0) dx, 3.1
torion = (s [ #00.0 @D
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K O .
(ii) (i) (ii) (ii)

-1.0

Figure 4. Time-averaged velocity fields on (i) the z = 0 plane, (ii) the y = 0 plane and (iii) just below
the interface (—0.01 below the initial interface). The filling rates are (a) ¥ = 0.2, (b) 0.4, (c) 0.6 and
(d) 0.8. The arrow on the frame indicates the wall velocity on the equatorial plane; DNS results. The
vectors are depicted every six grid points in each direction.

to quantify this difference in the mean flow. Since u,..i.; quantifies the strength of the upward flow
along the centreline, it indicates the strength of a pair of container-size vortices (figure 4ii). We plot
Uyerrical @S @ function of ¥ in figure 5(b). We can see a clear transition in the mean flow between ¥ =
0.5 and 0.6. It is also important that the circulation of the counter-rotating vortices is much faster for
¥ <0.5than¥? > 0.6.

Next, we visualize, in figure 6, the (blue) isosurfaces of shear strain rate

. E= - 1 (om on
I = SUSU’ S,’j = 5 (a + a—xj) s (32)
L i

of the mean flow and the (red) isosurfaces of the turbulence production term

—— 0l

P = —uju; o 3.3)
Here, similarly to figure 3, we visualize I and P only in the bulk of the liquid phase. We can see
in figure 6 that P takes larger values where I is also large, which implies that the mean shear pro-
duces turbulent fluctuations. We also observe the significant ¥-dependence of I', and therefore of
P. This ¥-dependence of P stems from the ¥-dependence of the mean flow. In fact, comparing the
turbulence generation (figure 6) with the mean flow (figure 4), we notice that turbulence is always
generated in internal shear with larger I", which is located vertically between the counter-rotating pair
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Figure 5. (a) Time-averaged velocity component i (DNS results) along the line (the dashed vertical
line in figure la) between (xy,0,0) and (—1,0,0). The location of the liquid—gas interface is around
x=-0.43,-0.13,0,0.13 and 0.43 for ¥ =0.2,0.4,0.5,0.6 and 0.8, respectively. (b) The indicator
Uyerrical defined by (3.1) of the mean circulation on the y = 0 plane as a function of the filling rate ¥.

of vortices for ¥ < 0.5 (figures 6aii,bii,cii and 4aii,bii) and horizontally above them for ¥ > 0.6
(figures 6dii,eii, fii and 4ciidii). Note that these observations do not imply the turbulence generation due
to the fluctuations of the liquid—gas interface because Fr (= 1073) is too small to deform the interface.
Instead, it means that small-scale turbulent vortices are stretchered and amplified by the mean shear
flow around the counter-rotating pair of container-size vortices. Recall that their swirling directions
are opposite for ¥ < 0.5 and > 0.6, which explains the difference in the location of the region with
larger I'.

4. Discussions
4.1. Causes of the 'V-dependence of mean flow

As observed in the previous section, the mean flow depends on the filling rate ¥, and this difference also
affects the spatial distribution of small-scale turbulent vortices. In this subsection, we clarify the cause
of this ¥-dependence of the mean flow. We observe in figure 4 a notable difference in the flow just below
the interface depending on ¥. It is dominated by the y component for ¥ > 0.6 (figure 4ciii,diii), while
it has non-negligible z components and it converges to the z = 0 plane for ¥ < 0.5 (figure 4aiii,biii).
As will be shown below, this difference in the flow just below the interface is the key to the explanation
of the difference in the mean flow. Here, we note that the ¥'-dependence of the flow near the interface
comes from the ¥-dependence of the flow which collides with the liquid—gas interface. Due to the
no-slip boundary condition on the container wall, fluid particles near the solid wall move with it and
collide with the liquid—gas interface. This means that the collision angle 8 of the fluid particles with the
interface, i.e. the angle between the interface and the container wall, depends on ¥ (figure 7a). Although,
more precisely, 6 depends also on z (see figure 7a), we neglect this z-dependence of 6 in the following
arguments. Incidentally, as a result of the smallness of Fr in the present set-up (Fr = 3.6 x 1073),
the interface is hardly deformed by the collision, and therefore flow direction after the collision is
approximately parallel to the interface.

To show that the difference in 6 leads to the difference in the mean flow, here an external force is
applied just below the interface to simulate the flow colliding with the interface. In other words, we
examine the difference in the mean flow due to the difference in ¥ without rotating the container. Instead,
we use the BDI method to drive the flow near the interface by enforcing the velocity, U(z) = V1 — z2,
in the red or green region shown in figure 7(b). Note that U(z) is the wall velocity at the liquid—gas
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Figure 6. The isosurfaces of the turbulent production (red) and the strain rate of the mean flow (blue);

DNS results. The thresholds are set to be P = 0.025 and I' = 2.4. Only a bulk region (\/x> +y? + 72 < 0.8
and x < xo — 0.05) of the liquid phase is visualized. Subpanels (i) and (ii) are viewed along the z-axis
and the y-axis, respectively. The filling rates are (a) ¥ =0.2, (b) 0.4, (c) 0.5, (d) 0.6, (e) 0.7 and (f) 0.8.

Figure 7. (a) The relation between 6, which is the angle between the interface and the container wall,
and filling rate ¥. Solid and dashed circles (with radii 1 and 0.5) indicate the container wall at 7 = 0
and 7 = 0.87 planes, respectively, and arrows indicate the wall velocity. (b) Schematic of the numerical
model in which we drive the flow near the interface by using the BDI method. Velocity in the x or y
direction is enforced in the green or red regions.

interface. For the velocity field parallel to the interface, we enforce it in the red region, while for the
velocity field towards the interface, we enforce it in the green region.

Figure 8 shows the time-averaged velocity field in the statistical steady-state after a sufficiently long
time has passed since these artificial velocities are enforced. When the velocity parallel to the interface is
driven, the fluid just below the interface flows straight to the opposite wall (figure 8aiii), and it flows along
with the container (figure 8ai). These are similar to the mean flow observed for ¥ > 0.6 (figure 4cd).
Moreover, the flow forms a counter-rotating pair of vortices (figure 8aii), which is also similar to the
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Figure 8. Time-averaged velocity fields obtained numerically by the model in which we drive the flow
near the interface by using the BDI method on (i) the z = 0 plane, (ii) the y = 0 plane and (iii) just
below the interface (—0.01 below the initial interface). Results with enforcing the (a) horizontal and
(b) vertical velocities in the red and green regions in figure 7(b), respectively. The arrow on the frame
indicates the enforced velocity at z = 0. The vectors are depicted every six grid points in each direction.

flow observed for ¥ > 0.6 (figure 4cd). On the other hand, when the velocity is driven perpendicular to
the interface, the flow near the interface converges to the z = 0 plane (figure 8biii), which results in the
downward flow from the interface and the formation of the pair of vortices (figure 8bii). This is similar
to the mean flow observed for ¥ < 0.5 (figure 4ab).

Thus, the numerical model (figure 7b) simulating the collision of fluid particles with the interface
excellently reproduces the mean flow observed with low and high filling rates. We therefore conclude
that the collision angle of the flow near the wall with the interface determines the mean flow.

4.2. Mixing performance

The steady rotation of a container filled with a fluid is not suitable for mixing because the flow of the
confined fluid eventually settles into a solid-body rotation. In contrast, as shown above, in the presence
of a liquid—gas interface, turbulence is sustained in the container even with its steady rotation. By
taking advantage of this characteristic, we may propose a bladeless mixer. We have also shown that
the mean flow (figure 4) and small-scale turbulent vortices (figure 3) depend on ¥. These differences
may have a significant effect on the mixing performance. In this subsection, we therefore investigate the
¥-dependence of the mixing characteristics.

To this end, we numerically track fluid particles uniformly distributed in the liquid phase at 7 = 0
which is an instant in the statistically stationary state. Let /(> 1) be the number of the fluid particles,
and x; () be the position vector of the ith fluid particle. Then, x;(¢) evolves according to

dx;

’n =u(x;(1),r) fori=1,2,...,1 4.1
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Figure 9. Temporal evolution of fluid particles initially segregated by the z = 0 plane; DNS results. The
filling rates are (a) ¥ = 0.4 (b) 0.6 and (c) 0.8. The elapsed times are (i) 1/21 = 0, (ii) 2.5, (iii) 5 and
(iv) 1.5. A supplementary movie is available at https://doi.org/10.1017/flo.2022.22.

‘We numerically integrate (4.1) by the second-order Adams—Bashforth method. Flow and particle motions
are simultaneously simulated, and the fluid velocity atx; is estimated by linearly interpolating the velocity
field on the regular grid.

First, let us give an overview of the ¥-dependence of the mixing. The temporal evolutions of the
particle distributions for three different ¥ are shown in figure 9. Particles are coloured blue or yellow
depending on their initial z coordinates. We show the temporal evolution of the particle distributions
with time intervals of 2.5 spins in figure 9. The evolution of mixing depends on . It is remarkable that,
for ¥ = 0.4, only 7.5 spins are required to achieve almost perfect mixing (figure 9a). In contrast, for
¥ = 0.8, there are more yellow particles in the z > 0 region after 7.5 spin periods (figure 9c¢).

To quantify these observations in figure 9, we introduce the degree of mixing in the container by the
procedure proposed by Danckwerts (1952). First, we divide the tracked fluid particles into two groups
(groups A and B). For example, particles with an initially positive z-coordinate (yellow particles in
figure 9) are categorized in group A; and the others (blue particles in figure 9) are placed in group B.
For simplicity, here we examine the case that the same number, /2, of particles are assigned to each
group. Next, we divide the liquid phase in the container into J subdomains. Then, we define p; as the
ratio of the number of group A particles to the total number of particles in the jth subdomain; and let o
be its standard deviation,

1 J 12 J
o= szj(pj_i), W:ij, (4.2)
Jj=1

J=1

over all subdomains. Here, w; denotes the volume fraction of the liquid phase in the jth subdomain.
Since it is difficult to divide the liquid phase, which is surrounded by a spherical wall and the liquid—gas
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interface, into subdomains with a common volume, we divide the numerical domain into small cubes
with an equal volume and take into account the volume fraction w; of the liquid phase. In terms of o,
the degree M of mixing is evaluated by M = 1 — 20. Note that M = 1 or M = 0 when particles are
perfectly mixed (o = 0) or segregated (o0 = 1/2). However, when the number of tracked particles is
finite, fluctuations of p; are inevitable even in the well-mixed state. Hence M may be modified (Goto
et al., 2014b) as

~ 1-20

M= 125 4.3)

where & is the standard deviation of p; in the perfectly mixed state. Then M = 1 for the perfect mixing,
while preserving the requirement that M = 0 for the perfect segregation.

Note that M (and M) depend on the size of the subdomains and the initial categorization of particles.
In this study, we define the two groups according to the z coordinates (figure 9i) of particles’ initial
positions, since it is most difficult to mix in the direction parallel to the rotation axis. The side L; of the
cubic subdomains is set to be 1/3, 1/6 and 1/12 of the radius of the spherical container. We initially set
two particles in each numerical cell for the DNS. Therefore, the total number 7 of the tracked particles
depends on the filling rate; I ~ 1.3 x 10’%. We numerically evaluate & in (4.3) by calculating the
variance ¢ for randomly distributing I particles.

We plot the temporal evolution of the mixing degree M in figure 10(a—c) for three different sizes L
and for five different ¥, which show that M increases rapidly irrespective of ¥ and L. This is consistent
with the observation in figure 9. To quantify the ¥ -dependence of the mixing performance, we define
T x by the mixing time at which M reaches 0.95. We plot T 1 as a function of ¥ in figure 10(d), which
shows that perfect mixing is achieved within approximately 10 spins for ¥ < 0.5. It is also important
that the mixing time is independent of L;. This is because the small-scale vortices (figure 3) contribute to
the fast small-scale mixing. In other words, the large-scale mixing, which is enhanced by the container-
size vortices, determines the mixing time. The fastest mixing is achieved when ¥ is approximately 0.4
but Ty is approximately constant (T ~ 8) for ¥ < 0.5. For higher filling rates (e.g. ¥ = 0.8), it takes
longer times to achieve perfect mixing. However, recalling that mixing never occurs with ¥ = 1, it is
important for applications that mixing occurs if the filling rate is reduced by only 0.2.

It may be misleading to evaluate the performance simply by Ty when ¥ is different because we need
to repeat the same operation 1/? times to mix the liquid with the full volume of the container. Moreover,
in applications, not only the time required for the mixing but also the energy efficiency are important.
We define the energy dissipation per unit time

E= / redv. 4.4)
_Q.

to evaluate the energy required for mixing. Here, € = 24, /p.S;S;. We plot the temporal average E
of E as a function of ¥ in figure 10(e). We can see that E increases up to ¥ ~ 0.6 and decreases for
¥ > 0.6. As observed in figures 4(a) and 4(b), when the filling rate is low, the fluid near the wall does not
follow the wall motion, i.e. the velocity gradient near the wall is large. This is the reason why the work
by the container wall is large when ¥ is small. Although the contact area between the container wall
and the liquid increases with ¥, the flow tends to be the solid-body rotational flow as ¥ approaches 1.
This explains that E reduces when ¥ is sufficiently large. The ¥-dependence of T vt divided by ¥ is
shown with triangles in figure 10(f) in the case L; = 1/6. This quantity corresponds to the time required
to mix the liquid with the container’s volume when the same mixer is used repeatedly. The fastest mixing
is achieved in the case ¥ ~ 0.7, but Ty /¥ is almost constant for 0.4 < ¥ < 0.7. Here, it is worth
comparing the mixing ability with another existing mixer. As a representative of bladeless mixers, we
recall that the precession mixer with a spherical container leads to perfect mixing of confined (¥ = 1)
fluid with approximately 10 spin revolutions (Goto et al., 2014b). This means that the proposed mixer
takes approximately 1.5 times longer than the precessing mixer for the perfect mixing even in the fastest
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Figure 10. (a—c) Temporal evolution of mixing index M. The side of the cubic subdomains is set to be
(a) Ly =1/3, (b) 1/6 and (c) 1/12. (d) The number T g of revolutions to achieve almost perfect mixing
(M = 0.95) as a function of V. (¢) The mean energy consumption E per unit time in the liquid phase
for the mixing as a function of ¥. (f) Mixing efficiency as a function of ¥ in terms of (left-hand axis)
the processing time T /¥ and (right-hand axis) energy consumption T ME /.

case (¥ = 0.7). However, we emphasize that the present mixer has a much simpler driving mechanism.
The ¥-dependence of T /% multiplied by E is also shown with circles in figure 10(f). This quantity
corresponds to the total energy consumed to mix the liquid with the container’s volume. Interestingly,
higher ¥ (¥ > 0.7) is more favourable in terms of the total energy consumption.

Another method to evaluate the ¥-dependence of the mixing ability is to use the Lyapunov exponent
(Kantz & Schreiber, 2004). We have evaluated the exponent by investigating the temporal evolution of
the mean distance between initially neighbouring pairs of fluid particles to confirm that the exponent
is a decreasing function of ¥. This result supplements the ¥-dependence of the global mixing ability
shown in figure 10(d).

In summary, the counter-rotating pair of container-size vortices (figure 4), cooperating with small-
scale turbulent eddies (figure 3), enhance the mixing in all the cases of ¥. Since the counter-rotating
vortices swirl faster for lower ¥ (figure 5), mixing time is shorter for smaller ¥ (figure 10d). On the other
hand, since the stronger vortices induce higher energy dissipation rates near the wall in lower ¥ cases,
higher filling rates are more advantageous in terms of the energy consumption (circles in figure 10f).
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5. Conclusion

We have discovered a new sustaining mechanism of developed turbulence of liquid, which is driven
only by the steady rotation of a container. More concretely, if a spherical container is partially filled
with a liquid, its steady rotation sustains turbulence, in which small-scale turbulent eddies exist — see
figure 1(b—d) for experimental evidence. This phenomenon is scientifically interesting because it is
quite different from the fact that the steady rotation of an any-shaped container eventually leads to the
solid-body rotational flow of fluid filling it. In other words, the liquid—gas interface is essential for the
sustainment of the turbulence. This phenomenon is also important for applications because, by using it,
we can construct a new kind of bladeless mixer.

To understand how turbulence is driven in the container and to quantify its mixing ability, we
have conducted DNS of multiphase (solid wall, liquid and gas) flow by means of the CLSVOF and
BDI methods. The DNS have been validated by comparing the mean velocity with experimental data
(figure 2). Then, we have demonstrated that small-scale turbulent vortices (figure 3) exist in all the cases
examined in the present DNS, where the Reynolds number is high enough (Re = 5.1 x 10°). It is rather
important that these vortices are amplified and sustained by being stretched in shear flow around the
counter-rotating pair of container-size vortices. As evidence, we show the clear coincidence between the
location of the small-scale eddies (figure 3), large-scale shear flow (blue isosurfaces in figure 6) and
the turbulence production term (red isosurfaces in figure 6). This means that turbulent eddies observed in
the experiments (figure 15—d) and in the DNS (figure 3) are not created by the fluctuation of the liquid—gas
interface but by the shear flow around the container-size vortices (figure 4). In fact, Fr(= 3.6 x 1073) is
too small to deform the interface.

One of the most important observations in this flow is that the container-size pair vortices (figure 4)
depend on the filling rate ¥ of the liquid. In particular, the direction of their circulation is different
depending whether ¥ is larger or smaller than approximately 0.5. To understand the origin of this
difference, we have examined in § 4.1 a numerical model, in which we drive flow, by the BDI method,
just under the interface so that we can mimic the flow which is actually determined by the angle between
the interface and the wall (i.e. the flow near the rotating wall). Note that the angle depends on ¥ (see
figure 7a). This numerical model excellently reproduces the ¥'-dependence of mean flow in the rotating
sphere (figures 4 and 8). Thus, we conclude that container-size vortices stem from the flow just below
the liquid—gas interface, which is driven by the flow colliding with the interface near the solid wall. It is
of importance that this ¥-dependence of the container-size flow (figure 4) leads to ¥'-dependencies of
the turbulence production (figure 6), mean shear rate (figure 6) and the spatial distribution of small-scale
vortices (figure 3).

It is therefore important to appropriately set the filling rate ¥ when we apply this flow system to a
bladeless mixer. In particular, the counter-rotating pair of container-size vortices, which plays important
roles in the mixer, is stronger for ¥ < 0.5 than ¥ > 0.6 (figures 4ii and 5). Though the stronger counter-
rotating vortices seem appropriate for effective mixing, the smallness of the filling rate is disadvantageous
when we use this system as a mixer. According to our quantification of the mixing efficiency in § 4.2 the
fastest mixing is achieved when ¥ ~ 0.4, but it is only weakly dependent on ¥ for ¥ < 0.5, and almost
perfect mixing is achieved with only 15 spins of the container for all the examined cases (figure 10d).
We have also shown that the higher filling rates (0.7 < ¥ < 0.8) lead to more efficient mixing in terms
of the energy consumption (figure 10f).

We emphasize that the shown generation mechanism of turbulence works with large Re and small
Fr. However, in the present DNS, we have only examined the cases with these parameters corre-
sponding to our laboratory experiments (see the Appendix): Re = 5.1 x 103 and Fr = 3.6 x 1073,
For actual applications as a bladeless mixer, it is important to know the Re- and Fr-dependence of
the mixing ability. It is also important to investigate the dependence of the mixing ability on the
container’s shape. Since such an extensive parametric survey, which we are conducting by experi-
ments and DNS, is beyond the scope of the present study, we will report results elsewhere in the near
future.

https://doi.org/10.1017/fl0.2022.22 Published online by Cambridge University Press


https://doi.org/10.1017/flo.2022.22

Flow E28-17

Laser sheet

Flange

Window for measurements

Water

Figure 11. Container used in the experiments. Its outer and inner shapes are cylindrical and spherical,
respectively. We set a laser sheet on the equatorial plane and take digital images through the window
at the bottom of the cylinder.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/f10.2022.22.
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Appendix. Experiments

Weconduct experiments by using the apparatus made for the investigation of turbulence in a precessing
container (Goto et al., 2014a, 2014b). Though the precession of the container is driven by two motors, we
use one of them in the present experiments to drive the spin of a spherical container with radius 90 mm.
We use a stepper motor and an accurate pulse generator to drive the spin. The container (figure 11) is made
of acrylic, the outer and inner shapes of which are cylindrical and spherical, respectively. A laser sheet
(with wavelength 532 nm, thickness approximately 1 mm and intensity 100 mW) runs on the equatorial
plane of the spherical cavity. The working fluid is water, and we put a small amount of reflective flakes
with 10-40 wm major dimensions and submicron thicknesses (TiO,-coated mica particles; see figure 1
in Goto, Kida, and Fujiwara (2011)) to visualize fluid motions. The images shown in figure 1(b—d) were
taken using a digital camera through the bottom window of the cylinder. Since the indexes of water
and acrylic are not too different, we can observe flow without distortions. However, the reflection at the
liquid—gas interface creates an imaginary image, which has been removed in figure 1(b—d). As shown in
figure 1(b—d), we can observe complex patterns, whose characteristic length scales indicate the smallest
eddy size. This implies that there exist small-scale vortices with size O(10) mm in the sphere in all the
cases with different . This is consistent with the DNS results shown in figure 3.

For the PIV (see figure 2) we seed nylon powders with the diameter approximately 50 wm instead
of the reflective flakes. We take the images using a digital camera with the frame rate 100 frames per
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second and use the direct correlation method to obtain the velocity field on the equatorial plane. We
take the sufficiently long time average (10 spin periods) to obtain the mean velocity field (figure 2).

With the present experimental apparatus, we can accurately measure flow on the equatorial plane.
However, we cannot measure flow on the y = 0 plane, which is essential to capture the container-size
vortices (figure 4ii) because we cannot take clear images with a laser sheet on the y = 0 plane due to the
flange of the container (see figure 11).
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