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Abstract

This paper describes a method for finding the least fixed points of higher-order functions over

finite domains using symbolic manipulation. Fixed point finding is an essential component

in the calculation of abstract semantics of functional programs, providing the foundation for

program analyses based on abstract interpretation. Previous methods for fixed point finding

have primarily used semantic approaches, which often must traverse large portions of the

semantic domain even for simple programs. This paper provides the theoretical framework

for a syntax-based analysis that is potentially very fast. The proposed syntactic method is

based on an augmented simply typed lambda calculus where the symbolic representation

of each function produced in the fixed point iteration is transformed to a syntactic normal

form. Normal forms resulting from successive iterations are then compared syntactically to

determine their ordering in the semantic domain, and to decide whether a fixed point has

been reached. We show the method to be sound, complete and compositional. Examples are

presented to show how this method can be used to perform strictness analysis for higher-order

functions over non-flat domains. Our method is compositional in the sense that the strictness

property of an expression can be easily calculated from those of its sub-expressions. This is

contrary to most strictness analysers, where the strictness property of an expression has to be

computed anew whenever one of its subexpressions changes. We also compare our approach

with recent developments in strictness analysis.

Capsule Review

In recent years abstract interpretation has become a valuable tool for functional program

analysis. For it to be practical, however, sound and efficient algorithms for computing fixpoints

are needed. This becomes especially difficult for higher-order abstractions, where the problem
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in part, by the National Science Foundation (CCR–8909634) and DARPA (DARPA/ONR
N00014–91–J1472). A part of this work was performed while Tyng–Ruey Chuang was at
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may be intractable. This paper outlines a method for computing fixpoints in such higher-order

domains. The key contributions are a way to compute normal forms for the representation of

functions, and a way to compare them in the information ordering. All results are shown to be

sound, and there is some indication that the method will lead to a practical implementation.

1 Motivation and introduction

Finding the least fixed points of monotonic functions over finite domains is an

important task in abstract interpretation. In abstract interpretation, a standard

(or non-standard) semantics of a functional program is abstracted to a monotonic

function over finite domains, and if the program contains recursive definitions,

least fixed point finding is used to calculate the abstract semantics of the program.

Much work had been performed to devise elegant and effective methods to calculate

least fixed points on finite domains. Most notable is the frontier method developed

by Clack and Peyton Jones (1985; 1987), Martin and Hankin (1987; 1989) and

Hunt and Hankin (1989; 1991), with emphasis on applications to strictness analysis.

Recent progresses in the development of abstract interpretation, not all of them

based on least fixed point finding, abound as well in the literature. See, for example,

Ferguson and Hughes (1993), Hankin and Hunt (1992), Hankin and Le Métayer

(1994), Nocker (1993) and Seward (1993). We will briefly describe their work, and

compare our approach to theirs, in section 6.

For now, let us briefly describe how the frontier method works. Take a function’s

strictness property as an example. For the moment, assume that we are only in-

terested in whether a function application will terminate or not. We can describe

the function’s strictness property as a monotonic function f from a finite abstract

domain D to the two element domain 2 . Domain 2 contains only elements 0 and

1, with 0 v2 1. Element 0 denotes that the function application will not terminate,

while 1 denotes that it may or may not terminate. The maximal 0-frontier represen-

tation of function f is the smallest subset F0 of D such that for any element d in

D, if d is weaker than any element in F0, then the result of applying f to d is 0. A

similar minimal 1-frontier can also be defined which works equally well.

If the formulation of f is recursive in nature, then f is characterized as the

least fixed point of a monotonic functional F from domain D → 2 to D → 2 ,

where D → 2 is the monotonic function space from D to 2 . The least fixed point

of F is approximated by using a successive sequence of maximal 0-frontiers. The

approximation starts from ⊥D→2 , the least element in domain D → 2 , which has the

maximal 0-frontier representation {>D}. At each iteration of the approximation, the

new frontier is found by moving down from the old one. This is accomplished first

by using the old frontier as the function definition of f in the body of F . This yields

a new definition of f. Then elements of the old frontier are evaluated according to

the new definition of f to see if they are mapped to 0 or 1. If an element in the old

frontier is mapped to 1, then the element is replaced by elements not stronger than

it in the new frontier. If an element in the old frontier is mapped to 0, then it is kept

in the new frontier. The process then continues with the new frontier replacing the
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role of the old one. When the frontier does not change between successive iterations,

then the fixed point has been found.

Often a function’s strictness involves more than just termination status. For

example, if the function yields a list, we may want to know if the result is spine-strict

or not. In these cases, f is described by a monotonic function from a finite abstract

domain D to a finite abstract domain R. Domain R may be more complicated

than 2 . A typical case is where R is an abstract domain representing yet another

monotonic function space. Again, if the formulation of f is recursive in nature, then

f is characterized as the least fixed point of a functional from D → R to D → R.

For the frontier method, multiple frontiers will be needed for each step during the

approximation sequence for finding F ’s least fixed point.

The frontier method is attractive in several ways. The representation is economical

in space. It also allows fast function application. We simply check whether the

argument is weaker than any of the elements in the maximal 0-frontier. If it is, then

the result is 0; otherwise the result is 1.

Though elegant, there are several drawbacks in the frontier method. First, the

frontier representations do not compose easily. Suppose that we have the frontier

representations of functions f and g, what is the frontier representation of the

functional composition f ◦ g? It seems that we do not have much choice but to

calculate it from scratch. Normally this will require the program texts of f and

g. A functional program is very likely to be built up from smaller functional

components by using the mechanism of abstraction, application and composition.

But the frontier method does not provide such a building mechanism, unless, of

course, when functions are fully applied to their arguments. We may say that the

frontier method is not compositional, and does not fit well in a modular program

development environment where program texts for functions may not be exported

to one another.

Secondly, the frontier method is carried out mainly on the semantic domains of

a program; the method pays little attention to the program text itself. This may

cause great inefficiency. Consider a function f ∈ 2 11 → 2 , which is defined as the

least fixed point of the following functional F ,

F ≡ λ f . λ x0 . λ x1 . . . . λ x10 . x0 t (f x0 x1 . . . x10), (1)

where x0, x1, . . . , x10 ∈ 2 , and t is the (infix) least upper bound function (i.e. the

boolean OR operator) over domain 2 .

By symbolic evaluation, we determine

λ x0 . λ x1 . . . . λ x10 . x0

to be the least fixed point of F . The process begins with the weakest approximation

λ x0 . λ x1 . . . . λ x10 . 0,

and takes only two iterations. By the above result, we also know that (the uncurried

version of) f has maximal 0-frontier {〈0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1〉}.
But how would the frontier method reach this result? The frontier method will

approximate the maximal 0-frontier of the least fixed point from the least element
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in domain 2 11 → 2 . The frontier method will have to make, step by step, 210

approximations to reach the above maximal 0-frontier, which is right in the middle

of the ascending chain from the least element λ x0 . λ x1 . . . . λ x10 . 0 (whose maximal

0-frontier is {〈1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1〉}) to the greatest element λ x0 . λ x1 . . . . λ x10 . 1

(whose maximal 0-frontier is ∅) in the domain 2 11 → 2 . One can show that, by

induction, there exists an ascending chain of length 2n + 1 from the least element

to the greatest element in domain 2 n → 2 , and the element λ x0 . λ x1 . . . . λ xn−1 . x0

is right in the middle of this chain. Therefore, there are 2n−1 elements below the

element λ x0 . λ x1 . . . . λ xn−1 . x0, and 2n−1 elements above it. The frontier method will

need 2n−1 approximations to reach the least fixed point. See Chuang (1993).

In such ‘badly behaved’ cases, the frontier method is very inefficient compared

to a symbolic evaluation method. This phenomenon has been observed by Clack

and Peyton Jones (1985; 1987). Hunt and Hankin (1989; 1991) further suggest that

higher-order functional programs are often badly behaved in this way.

A symbolic evaluation method for computing least fixed points is proposed by

Martin (1989). However, the method is limited to first-order functions over (the

Cartesian products of) domain 2 . In this paper, we will develop a syntactic method

suitable for symbolic calculation of least fixed points over the monotonic function

spaces generated by domain 2 . Because higher-order functions over domain 2 are

themselves elements in the monotonic function spaces generated by domain 2 , our

syntactic approach can be used to computing least fixed points of higher-order

functions.

Our method uses a simply typed λ-calculus augmented with four predefined

constants – 0, 1,u, and t – and their associated reduction rules. A language Λ is

defined to describe elements of semantic domains, and is used to perform calculations

upon them. A relation � (pronounced ‘syntactically weaker’) is defined among Λ

terms, aiming to capture the relation v (‘semantically weaker’) among the denotation

of Λ terms. Several reduction rules in Λ are based on the � relation.

We will show in section 3 that, in a sufficiently expressive sub-language of Λ,

the proposed calculus is sound and complete with respect to the semantics. Because

functions for computing least fixed points are themselves elements in some monotonic

function spaces, we can directly perform the least fixed point computation on Λ by

means of symbolic calculation. That is, for a given type σ denoting a finite domain,

we will show in section 3 (Theorem 3.9) that there is a fixed point term Y ∈ Λ(σ→σ)→σ
such that for any term F in the sub-language of Λσ→σ , not only do Y F and F(Y F)

express the same element in domain Dσ , they also reduce to the same normal form

in Λσ . The iterative approach, used above to compute the least fixed point of F in

(1) by successively calculating more accurate estimates, is also shown to be sound

and complete.

What are the advantages of using a syntactic method over a semantic method

for computing least fixed points on finite domains? One advantage is that the

syntactic method may make fewer iterations than the semantic one, as illustrated

by the above example. Another advantage is that we have a more uniform way to

calculate the semantics of a functional program, whether it is a standard semantics or

an abstract semantics, since these calculations differ only in how the reductions are
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performed. This is contrast to the frontier method of computing a program’s abstract

semantics, in which the method used is outside of the syntactic calculus (such as the

λ-calculus) used to compute a program’s standard semantics. Our syntactic method

is compositional as well. The syntactic term for the strictness property of a function

can be composed with other terms to derive strictness properties of new functions.

We will mainly address least fixed point finding in the monotonic function spaces

generated by the basic domain 2 . We will later show how to relax this restriction and

make the method applicable to basic domains other than 2 . Several implementation

issues are discussed, and a substantial example is provided to demonstrate how the

proposed syntactic method is used to compute the strictness properties of some

higher-order functions over non-flat domains. We will also compare our work to

other developments in strictness analyses.

2 A language Λ for finite domains

In this section we define a language Λ to describe the semantic elements in a class

of finite domains. In addition to the syntax and semantics of Λ, a binary relation

� (pronounced syntactically weaker) is defined on Λ terms, aiming to capture the

relationship v (semantically weaker) among the elements in the domains. Reduction

rules for Λ are introduced, several of them based on the relation �.

Language Λ can be viewed as a variation of the simply typed λ-calculus. They

differ in that Λ is augmented with four predefined constants – 0, 1,t, and u – and

their associated reduction rules. They also differ in their interpretations of type

expressions. Most of the definitions in this section are standard or intuitive, many

of them borrowed from Barendregt (1984).

Definition 2.1

The set Γ of type expressions is inductively defined as follows:

• 2 ∈ Γ, and

• (σ → τ) ∈ Γ if σ, τ ∈ Γ.

Definition 2.2

The language Λ, along with the sub-language Λσ for each type σ ∈ Γ, is inductively

defined as follows.

• xσ ∈ Λσ , where xσ is a variable of type σ,

• (MN) ∈ Λτ if M ∈ Λσ→τ and N ∈ Λσ ,

• (λ xσ .M) ∈ Λσ→τ if xσ ∈ Λσ and M ∈ Λτ,

• 0, 1 ∈ Λ2 , and

• (M tN), (M uN) ∈ Λ2 if M,N ∈ Λ2 .

Type 2 is the (only) ground type of language Λ. Language Λ can be viewed as the

set of the simply typed λ-terms constructed from the ground type 2 and the four

predefined constants: 0, 1 ∈ Λ2, and t,u ∈ Λ2→2→2. The type constructor → is right

associative. That is, σ1 → σ2 → . . .→ σn is a shorthand for (σ1 → (σ2 → (. . .→ σn))).

The set Γ can also be defined inductively by the following: 2 ∈ Γ, and σ1 → σ2 →
. . . → σn → 2 ∈ Γ if σ1, σ2, . . . σn ∈ Γ. We take the liberty to omit some parentheses
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and type subscripts in a Λ term if it is clear to do so. All type expressions in Γ

and all terms in Λ are understood to be of finite length. Note that language Λ does

not include a constant Y to express recursion. We will show in section 3 that, for

any given type σ ∈ Γ, there is a term Y(σ→σ)→σ definable in language Λ(σ→σ)→σ and

denoting the least fixed point function.

The following two definitions give the interpretation of types in Γ and terms in Λ.

Definition 2.3

• Type 2 denotes the domain D2 = {0, 1}, with the ordering 0 v2 1, and

• Type σ → τ denotes the domain Dσ→τ = {f | f is a total, monotonic function

from domain Dσ to domain Dτ}, with the ordering f vσ→τ g iff f x vτ g x for

all x ∈ Dσ .

The least element in domain D2, written as ⊥2, is 0. The least element in domain

Dσ→τ, written as ⊥σ→τ, is the function that maps all elements in domain Dσ to ⊥τ, the

least element in domain Dτ. When the context is clear, we often drop the subscript

σ in vσ and often use a type expression σ to denote its semantic domain Dσ . For

example, we often write 2 for D2, and write 2 → 2 for D2→2. It can be shown that

for each type σ ∈ Γ, domain Dσ is a finite and distributive lattice.

Definition 2.4

Let environment ρ be a total function from typed variables to the union of all finite

domains,
⋃
σ∈Γ Dσ . Let [[M]]ρ be the interpretation of a term M ∈ Λ under the

environment ρ, and be defined as follows.

• [[xσ]]ρ = ρ xσ ,

• [[MN]]ρ = [[M]]ρ [[N]]ρ,

• [[λ x .M]]ρ = λ y . ([[M]](ρ[x 7→ y])),

• [[0]]ρ = 0,

[[1]]ρ = 1, and

• [[M tN]]ρ = [[M]]ρ t [[N]]ρ,

[[M uN]]ρ = [[M]]ρ u [[N]]ρ.

Note that we use the same symbol to denote both a syntactic phrase and its

semantic meaning (for example, the symbol 0 in [[0]]ρ = 0). We assume that this

will not cause confusion. If a term M ∈ Λ is closed, then its interpretation is simply

written as [[M]], without referring to any environment, since environments do not

affect the interpretation of M.

We now describe how to perform syntactic calculations in Λ. First we define the

binary relation � between Λ terms. It is intended that, for M,N ∈ Λ, if M � N then

[[M]]ρ v [[N]]ρ for all environments ρ.

Definition 2.5

A binary relation R on language Λ is compatible if the following inference rules

apply for all F,G,H ∈ Λ and all L,M,N ∈ Λ2 .

• (application)

F R G

(FH) R (GH)

F R G

(HF) R (HG)
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• (abstraction)

F R G

(λ xσ . F) R (λ xσ . G)

• (t)

M R N

(L tM) R (L tN)

M R N

(M t L) R (N t L)

• (u)

M R N

(L uM) R (L uN)

M R N

(M u L) R (N u L)

Definition 2.6

The relation � on language Λ is the compatible, reflexive, and transitive relation

induced by the following axioms for all terms L,M,N ∈ Λ2 .

• (0 and 1)

0 �M, M � 1

• (t and u)

M � (M tN), (M uN) �M
• (idempotence)

(M tM) �M, M � (M uM)

• (commutativity)

(M tN) � (N tM), (M uN) � (N uM)

• (associativity)

(L t (M tN)) � ((L tM) tN)

((L tM) tN) � (L t (M tN))

(L u (M uN)) � ((L uM) uN)

((L uM) uN) � (L u (M uN))

Definition 2.7

Let M,N ∈ Λ. Then M ' N if M � N and N �M.

By using compatibility in defining the relation �, we have � well-defined for all Λ

terms, not just for Λ2 terms. Note that the definition of � contains some redundancy.

For example, not all of the four associativity axioms are needed once we have the

commutativity axioms. We include them for clarity, however. Also, by convention,

Λ terms that are α-congruent are identified as the same term. As a consequence, we

can prove λ x2 . 0 � λ y2 . y (which would be impossible if α-congruent terms were

not identified). It is proved by first showing λ x2 . 0 � λ x2 . x, then by α-congruence.

Relation � imposes a rather weak theory on Λ. For example, we cannot even

prove that 1 � (λ x2 . 1) 1, although it is certainly true by semantic reasoning. It is

clear that some reduction rules, β-reduction in the above case, will be needed if a

more complete theory is desirable. On the other hand, the simplicity of � has its

virtue. For example, it is easy to check whether two Λ terms satisfy the � relationship

or not, as shown in the following by Lemma 2.8.
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We will freely use notation like
⊔
i∈I Mi to describe the disjunction of a finite

number of terms Mi, where i ∈ I , I a finite index set, without explicitly stating

their permutations within the disjunction. Because associativity and commutativity

are incorporated in the definition of �, we know that all those various disjunctions

are equivalent under the ' relationship. By convention, we define
⊔
i∈∅Mi ≡ 0 and

ui∈∅Mi ≡ 1. It follows that
⊔
{M} ≡M and u{M} ≡M.

Lemma 2.8

Let E, F, G,H ∈ Λ, and let Mi,Nj ∈ Λ2 for i ∈ I and j ∈ J , where I and J are some

finite index sets. Then,

1. If F � G, then F and G have the same type.

2. EF � GH iff E � G and F � H .

3. λ x . F � λ x . G iff F � G.

4.
⊔
i∈I Mi �

⊔
j∈J Nj iff for all i ∈ I there is a j ∈ J such that Mi � Nj .

5. ui∈IMi � uj∈JNj iff for all j ∈ J there is a i ∈ I such that Mi � Nj .

Proof outline

For the first assertion, we notice that all the base cases for F � G, as described

in Definition 2.6, require F and G both to be of the same type. Furthermore,

the compability rules described in Definition 2.5 only introduce identical terms or

binding variables of the same type. This concludes that F and G have the same type.

We then prove the other four assertions all by induction. The induction is based

on the structure of the proof which leads to the � relationship between Λ terms. A

relationship like F � G can only be proved if

• F � G is an axiom described in Definition 2.6, or it is the reflexivity axiom

(i.e. F ≡ G); or

• some intermediate � relationships between Λ terms are proved first, and then

the proof for F � G are obtained from those intermediate results either by

using the compatibility inference rules (as described in Definition 2.5) or by

using the transitivity inference rule (i.e. F � G because F � H and H � G for

some H).

Therefore, the base cases for an induction are those proofs which only consist the

use of a single axiom. The induction hypothesis is that the assertion is true for the

proof leading to the intermediate results. What remains to be proved is that the

assertion is also true for the proof which incorporates the intermediate results by

using the applicable inference rules.

For example, suppose we want to prove the =⇒ part of the second assertion in

this lemma: EF � GH iff E � G and F � H . It suffices to show that if there is a

proof for EF � GH , then there are also proofs for both E � G and F � H . What

would a proof for EF � GH look like? There are two cases:

• EF � GH is simply proved by an axiom. The only applicable axiom in this

setting is the reflexivity axiom. That is, EF ≡ GH . It follows that E ≡ G and

F ≡ H . Then, by reflexivity, we have proofs for both E � G and F � H .
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• EF � GH is the result obtained by using one of those inference rules on

some intermediate results. The only applicable rules in this setting is the

application rule or the transitivity rule. Suppose that EF � GH follows from

the application rule. Then either E � G and F ≡ H , or E ≡ G and F � H .

In either case, by reflexivity, we know that there are proofs for both E � G

and F � H . On the other hand, suppose that EF � GH follows from the

transitivity rule. Then there is a term L ≡ MN such that both EF � L and

L � GH can be proved. Since we can prove EF � MN, then, by induction

hypothesis, there must be proofs for both E �M and F � N. Similarly, there

must be proofs for both M � G and N � H . By transitivity, it follows that we

can prove both E � G and F � H .

This completes the =⇒ part of the second assertion in this lemma. The proofs for

the =⇒ parts of the other assertions in this lemma are similar to the above. The

proofs for the ⇐= parts are straightforward.

A naive algorithm based on the above lemma can determine the � relationship

between two terms M and N in O(|M| |N|) time. We define in the following four

reduction relations for Λ terms, two of them are based on the relation �. In the

definition below, we use
∏

i∈I Ji to denote the Cartesian product of finite sets Ji, and

use p|i to denote the ith component of a tuple p ∈
∏

i∈I Ji.

Definition 2.9

The reduction relations β, t, u and d on language Λ are defined as follows.

β = {((λ x .M)N, M[x := N]) | M,N ∈ Λ}.
t = {(

⊔
i∈I
Mi,

⊔
i∈I−J

Mi) | ∅ 6= J ⊂ I, (∀j ∈ J)(∃i ∈ I − J)(Mj �Mi)}.

u = {(ui∈IMi, ui∈I−JMi) | ∅ 6= J ⊂ I, (∀j ∈ J)(∃i ∈ I − J)(Mi �Mj)}.

d = {(ui∈I
⊔
j∈Ji

Mi,j ,
⊔

p∈
∏

i∈I
Ji

ui∈I Mi,p|i) | |I| > 1, (∃i ∈ I)(|Ji| > 1)}.

A reduction relation r is a set consisting of some pairs (M,N), where M,N are Λ

term. A r reduction can be used to transforms a term C[M] (read ‘M in context C ’)

to C[N] if (M,N) ∈ r. Although we have defined a language Λ to represent elements

in higher-order domains, until the definition of the above four reduction relations,

we had not described how to perform calculation based on Λ.

Recall that we write
⊔
i∈I Mi to describe the disjunction of a finite number of

terms Mi, where i ∈ I , I a finite index set. Reduction relation t is used to eliminate

redundant terms in a disjunction, using the syntactically weaker relation �. That is,

we eliminate term Mj if there is a term i ∈ I − {j} such that Mj � Mi. Likewise,

reduction relation u eliminates redundant terms in a conjunction. Reduction relation

d distributes conjunction over disjunction. We aim to keep disjunctive normal forms.

There is no a priori reason why conjunctive normal forms are not used. An alternative

development can certainly prefer conjunctive normal forms over disjunctive normal

forms.
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Note that reduction relations t, u, and d are modulo associativity and commu-

tativity of t and u. Permutation of sub–terms in a disjunctive, or conjunctive, term

is considered insignificant. For example, we will view both (L uM) t (L u N) and

(N uL)t (LuM) denoting the same resulting term from a one-step d-reduction on

term L u (M tN), for L,M,N ∈ Λ2 .

Let r be a reduction relation on Λ. We use →r to denote the compatible closure

of r, and use →∗r to denote the reflexive and transitive closure of →r . We also use

rs to denote the reduction relation r ∪ s. The notations → and →∗ are, respectively,

shorthands for →βtud and →∗βtud. The standard definitions of r-redex and r-normal

form are used. We will use normal form as an abbreviation for β t ud-normal form.

A term M ∈ Λ is called strongly normalizable iff M is β t ud-strongly normalizable;

that is, there is no infinite β t ud-reduction sequence starting with M.

Proposition 2.10

Every term M ∈ Λ is strongly normalizable.

Proof

See Appendix A

Proposition 2.11

β t ud is Church–Rosser.

Proof

See Appendix B.

The above two propositions imply that, efficiency considerations aside, we need

not worry about reduction strategy when computing the normal form of a Λ term.

Proposition 2.12 (Soundness)

Let L,M,N ∈ Λ. Then,

1. M � N implies [[M]]ρ v [[N]]ρ, and

2. L→∗ M implies [[L]]ρ = [[M]]ρ

for all environments ρ.

Proof

By the definitions of � and →∗ and by a straightforward structural induction on

how M � N and M →∗ N are derived.

The above proposition means that the syntactically weaker relation � and the

reduction relation β t ud are faithful to the semantics of the language Λ. But is

the semantically weaker relationship between two Λ terms completely captured by

the syntactic notions of � and β t ud? If it is, then in order to determine the

semantic relationship for any two terms M,N ∈ Λ, we can simply calculate the

normal forms of M and N and then compare the two normal forms using the �
rules. Unfortunately, the answer is no.

Proposition 2.13 (Incompleteness)

There exist normal forms M,N ∈ Λ such that [[M]]ρ v [[N]]ρ for all environments

ρ, but M � N is not provable.
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Table 1. The valuation table of applying M ≡ λ f . λ x . (f 0) t ((f 1) u x) and

N ≡ λ f . λ x . f x to all elements d ∈ D2→2

d ∈ D2→2 [[M]] d [[N]] d

λ x2 . 0 λ x2 . 0 λ x2 . 0
λ x2 . x λ x2 . x λ x2 . x
λ x2 . 1 λ x2 . 1 λ x2 . 1

Note. The two sets of results agree on all three elements in domain D2→2, showing
[[λ f . λ x . (f 0) t ((f 1) u x)]] = [[λ f . λ x . f x]].

As a proof, let us consider the following two terms in language Λ(2→2)→2→2,

M ≡ λ f . λ x . (f 0) t ((f 1) u x),

N ≡ λ f . λ x . f x.

By Table 1, it is clear that [[M]] = [[N]]. However, neither M � N nor N � M is

provable according to rules in Definition 2.5 and 2.6.

Since the reduction relation β t ud , along with relation �, is incomplete with

respect to the semantics of the language Λ, we can either introduce new reduction

relations and new inference rules (for syntactic weakness) to achieve completeness

in language Λ, or we can define a sub-language of Λ such that β t ud and � is

complete in the sub-language. We define in the next section a sub-language of Λ,

called Λ0, such that β t ud and � is complete in Λ0. Furthermore, we will show

that language Λ0 is expressive enough to describe all the semantic elements in finite

domains Dσ , where σ ∈ Γ.

3 A complete sub-language Λ0 of Λ

We define a restricted language Λ0 of Λ, with the intention of making the syn-

tactically weaker relationship � among Λ0 terms complete, with respect to the

semantically weaker relationship v among their denotations. We often write a term

T in Λ as λ~x .M (that is, λ x1 . . . . λ xn .M), where M is not of the form λ y .N. We

call ~x the vector of T and M the body of T .

Definition 3.1

The sub-language Λ0
σ of Λσ is inductively defined for each type σ ∈ Γ as follows.

• 0, 1 ∈ Λ0
2 ; and

• λ~x .M ∈ Λ0
σ1→...→σn→2 if

— ~x consists of variables of types σ1, . . . , σn, and M contains no free variable

other than those from ~x,

— M ∈ Λ2 and it is in β t ud normal form
⊔
i∈Iuj∈JiMi,j , and

— each term Mi,j is either a bound variable of type 2 , or an application

of the form (xi e1 . . . em), where variable xi is in ~x and is of type

σi = τi1 → . . .→ τim → 2 , and term ek ∈ Λ0
τik

for each 1 ≤ k ≤ m.
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The motivation behind the above definition is to make language Λ0 as simple as

possible. Therefore, we let Λ0 include only those closed terms which are in normal

form and whose bodies are the disjunction of conjunctions of function applications,

with the function arguments being in Λ0 again. The bound variables of a Λ0 term

are never used as function arguments in the body; they are only used as function

names, applied to other Λ0 terms. We will later show that Λ0 is actually not a very

restricted language. In fact, it is expressive enough to describe all the elements in

the semantic domains Dσ, σ ∈ Γ. On the other hand, the simplicity of Λ0 helps in

showing that semantical weakness implies syntactical weakness in Λ0. Note that,

by induction, it can be shown that for any given type σ ∈ Γ, there are only finite

number of Λ0
σ terms. We will later use this property to show that there exists no

infinite approximation sequence during the least fixed point iteration.

Example 3.2

Assume that variable f has type 2 → 2 and variable x has type 2 . Then the

following are the only 10 terms in Λ0
(2→2 )→(2→2 ) (ignoring the variations introduced

by α-congruence and by associativity and commutativity of t and u):

λ f . λ x . 0, λ f . λ x . (f 0) u x,
λ f . λ x . (f 1) u x, λ f . λ x . f 0,

λ f . λ x . x, λ f . λ x . (f 0) t ((f 1) u x),

λ f . λ x . (f 0) t x, λ f . λ x . f 1,

λ f . λ x . (f 1) t x, λ f . λ x . 1.

The following five terms are not in Λ0
(2→2 )→(2→2 ):

λ f . f,

λ f . λ x . f x,

λ f . λ x . f (f 0),

λ f . λ x . (f 1) u ((f 0) t x),

λ f . λ x . x t x.

That is because the first term’s body is not of type 2 , the arguments in the second

term’s and the third term’s function applications are not in language Λ0
2 , and the

bodies of last two are not in β t ud normal form.

Since Λ0 is a subset of Λ, it inherits the soundness property from Λ. Λ0 also has

the following nice properties.

Proposition 3.3

Let M,N ∈ Λ0. The normal forms for MN, λ x .M, M tN, and M uN are all in Λ0.

Proof

By Definition 3.1, term λ x .M is in normal form if M is in normal form.

For terms M tN and M uN, t u d-reductions suffice to reduce them to normal

forms. For term Mτ→γNτ, use an induction on type expressions.

Proposition 3.4 (Definability)

For every element f ∈ Dσ, σ ∈ Γ, there is a term F ∈ Λ0
σ such that [[F]] = f.
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Proof

We perform an induction based on the structure of the type expression σ. The

proposition is true for the base case σ = 2. If σ = τ → γ, then, by induction

hypotheses, all elements in domains Dτ and Dγ are definable in languages Λ0
τ and

Λ0
γ respectively. It remains to be proved that all elements in Dσ can be defined in

language Λ0
σ .

The step function stepa,b in domain Dτ→γ , where a ∈ Dτ and b ∈ Dγ , is defined by

stepa,b x = if a vτ x then b else ⊥γ.

Furthermore, an element f ∈ Dτ→γ can be expressed as the least upper bound of a

set of step functions in Dτ→γ . That is, f =
⊔
i∈I stepai,bi for some index set I . This

standard construction can be found, for example, in Plotkin (1977). Since Dτ and

Dγ are finite, the index set I is finite.

Let type τ = τ1 → . . . τn → 2 and type γ = γ1 → . . . γm → 2. Then the step function

can be defined equivalently as

stepa,b x z1 . . . zm = if ((a y1 . . . yn) v2 (x y1 . . . yn)

for all y1 ∈ Dτ1
, . . . , yn ∈ Dτn)

then (b z1 . . . zm) else 0,

where z1 ∈ Dγ1
, . . . , zm ∈ Dγm . This is the same as

stepa,b x z1 . . . zm =

(u{(x y1 . . . yn) | y1 ∈ Dτ1
, . . . , yn ∈ Dτn , (a y1 . . . yn) = 1}) u (b z1 . . . zm).

Motivation for the above two reformulations is to bring the step function in a

form that is close to language Λ0. By the induction hypotheses, all elements in

domains Dτ1
, . . . , Dτn , and Dγ , are definable. Hence, the above step function can be

defined in language Λ0
σ as the normal form of the following term

λ x . λ z1 . . . . λ zm . (uy1∈Dτ1 ,...,yn∈Dτn ,(a y1 ...yn)=1 (x Y1 . . . Yn)) u (B z1 . . . zm),

where Yi ∈ Λ0
τi

with [[Yi]] = yi, and B ∈ Λ0
γ with [[B]] = b.

Because f can be expressed as
⊔
i∈I stepai,bi , and each of the function stepai,bi can

be defined by a Λ0
σ term λ x . λ z1 . . . . λ zm .Mi, f can be defined by the following term

F ,

F ≡ λ x . λ z1 . . . . λ zm .
⊔
i∈I Mi.

The normal form of F is in language Λ0
σ .

Example 3.5

There is a function y in domain D((2→2 )→(2→2 ))→(2→2 ) such that for all elements z in

domain D(2→2 )→(2→2 ), (y z) is the least fixed point of z. Can we find a term Y in

language Λ0
((2→2 )→(2→2 ))→(2→2 ) such that [[Y ]] = y?

Before calculating Y , let us first draw a diagram of domain D(2→2 )→(2→2 ).

The diagram in Figure 1 illustrates the ordering of the 10 elements in domain

D(2→2 )→(2→2 ). The functionalities of the 10 elements are also described as maps from

domain D2→2 to D2→2 in the illustration. We write the 3 elements in D2→2 as ⊥, ‖,

https://doi.org/10.1017/S0956796897002797 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002797


370 T.-R. Chuang and B. Goldberg

j

i

h

f

d

g

e

c

b

a

j
i
h
g
f
e
d
c
b
a

w
<
v

=
=
=
=
=
=
=
=
=
=

=
=
=

[v * w,
[v * <,
[v * v,
[v * <,
[v * v,
[v * <,
[v * v,
[v * v,
[v * v,
[v * v,

[0 * 1,
[0 * 0,
[0 * 0,

< * w,
< * w,
< * w,
< * <,
< * <,
< * <,
< * v,
< * <,
< * v,
< * v,

 1 * 1],
 1 * 1],
 1 * 0].

w * w],
w * w],
w * w],
w * w],
w * w],
w * <],
w * w],
w * <],
w * <],
w * v].

Fig. 1. The 10 elements in domain D(2→2)→(2→2).

Note. The three elements in domain D2→2 are denoted by ⊥, ‖, and >, with ⊥ v ‖ v >. The

10 elements in domain D(2→2)→(2→2) are denoted by a, b, c, d, e, f, g, h, i, and j. The lower an

element in the lattice, the less defined the element is.

and >, with the ordering ⊥ v2→2 ‖ v2→2 >. Note that they are definable in Λ0
2→2

by ⊥ = [[λ x . 0]], ‖ = [[λ x . x]], and > = [[λ x . 1]].

From Figure 1, we observe that the least fixed point function y can be described

by

y =
⊔
{stepe,‖, step i,>}.

This describes that, for element z ∈ D(2→2 )→(2→2 ), if e v z then the least fixed point

of z is greater than ‖, and if i v z then the least fixed point of z is greater than >,

otherwise the least fixed point of z is ⊥. By using Proposition 3.4, stepe,‖ and step i,>
can be defined by

stepe,‖ = [[λ z . λ x . (z (λ x . 0) 1) u x]],

step i,> = [[λ z . λ x . (z (λ x . 0) 1) u (z (λ x . x) 0)]],

where variable z is of type (2 → 2 )→ (2 → 2 ) and x is of type 2 .

The following is a step-by-step derivation for the above definition of stepe,‖. The

case for step i,> is similar.

stepe,‖

= λ z . if e v(2→2 )→(2→2 ) z then ‖ else ⊥
= λ z . λ x . if ((e f x) v2 (z f x) for all f ∈ D2→2 , x ∈ D2 ) then ‖ x else ⊥ x

= λ z . λ x . if (x v2 (z f x) for all f ∈ D2→2 , x ∈ D2 ) then x else 0

= λ z . λ x . if (1 v2 (z ⊥ 1) and 1 v2 (z ‖ 1) and 1 v2 (z > 1)) then x else 0

= λ z . λ x . if (1 v2 z ⊥ 1) then x else 0

https://doi.org/10.1017/S0956796897002797 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002797


A syntactic method for least fixed points 371

= λ z . λ x . (z ⊥ 1) u x
= [[λ z . λ x . (z (λ x . 0) 1) u x]]

The least fixed point function y can therefore be represented by a

Λ0
((2→2 )→(2→2 ))→(2→2 ) term Y , where

Y ≡ λ z . λ x . ((z (λ x . 0) 1) u x) t ((z (λ x . 0) 1) u (z (λ x . x) 0)).

As a side note, the 10 elements in domain D(2→2 )→(2→2 ) happen to be defined in

Example 3.2 by the 10 Λ0
(2→2 )→(2→2 ) terms.

Proposition 3.6 (Completeness)

Let M,N ∈ Λ0. Then, [[M]] v [[N]] implies M � N.

Proof outline

The idea is to show that if M � N is not provable, then [[M]] 6v [[N]]. Suppose that

terms M and N are of type σ = σ1 → . . .→ σn → 2 . Write M as λ~x .
⊔
i∈Iuj∈JiMi,j

and N as λ~x .
⊔
k∈Kul∈LkNk,l , where ~x is a vector of variables whose types are

σ1, . . . , σn.

We prove the proposition by an induction on type expression σ. The base case is

σ = 2 , in which the only two Λ0
2 term are 0 and 1, and the proposition is true. We

want to show that the proposition is true for type σ = σ1 → . . .→ σn → 2 , given it

is true for types σ1, . . . , σn.

Since M � N is not provable, there exists an index i ∈ I such that for all

indices k ∈ K , uj∈JiMi,j � ul∈LkNk,l is not provable. Based on the conjunctive term

uj∈JiMi,j , we will construct an environment ρ such that

[[
⊔
i∈Iuj∈JiMi,j]]ρ = 1 but [[

⊔
k∈Kul∈LkNk,l]]ρ = 0.

That is, [[M]] 6v [[N]]. This will complete the proof.

Given such an index i ∈ I , we now describe how to construct the environment

ρ. Let xh be one of the bound variables in ~x. Suppose that xh is of type 2 and

Mi,j ≡ xh for some j ∈ Ji, then we map xh to 1 in environment ρ. If xh never occurs

in the conjunctive term uj∈JiMi,j , then xh is mapped to 0. If variable xh is of type

σh = τh1
→ . . . τhm → 2 , then we define a set P ⊆ Dτh1 × . . .× Dτhm by

P = {〈[[e1]], . . . , [[em]]〉 | for some j ∈ Ji,Mi,j ≡ xh e1 . . . em},

and map xh to the following function in ρ,

λ y1 . . . . λ ym . if there exists p ∈ P such that p vτh1×...×τhm 〈y1, . . . , ym〉
then 1 else 0.

If xh never occurs in the conjunctive term uj∈JiMi,j , then xh is mapped to

λ y1 . . . . λ ym . 0.

It is easy to see that [[uj∈JiMi,j]]ρ = 1. Thus [[
⊔
i∈Iuj∈JiMi,j]]ρ = 1. It remains to

be shown that [[
⊔
k∈Kul∈LkNk,l]]ρ = 0. Since for the given index i ∈ I , uj∈JiMi,j �

ul∈LkNk,l is not provable for all indices k ∈ K , then, for each fixed k ∈ K , there

exists an index l ∈ Lk such that for all indices j ∈ Ji, Mi,j � Nk,l is not provable.

There are two cases for Nk,l .
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• Nk,l ≡ xh, where xh is in ~x and of type 2 . Thus xh must not occur in the

conjunctive term uj∈JiMi,j . Otherwise we could have proved Mi,j � Nk,l for

some j ∈ Ji, a contradiction. By the construction of ρ above, xh is mapped to

0. Hence, [[ul∈LkNk,l]]ρ = 0.

• Nk,l ≡ xh f1 . . . fm, where xh is in ~x and of type σh = τh1
→ . . . τhm → 2 ,

and f1 ∈ Λ0
τh1
, . . . , fm ∈ Λ0

τhm
. If xh never occurs in uj∈JiMi,j , then by the

construction of ρ, [[Nk,l]]ρ = 0. If xh does occur in uj∈JiMi,j as Mi,j ≡
xh e1 . . . em for some j ∈ Ji, where e1 ∈ Λ0

τh1
, . . . , em ∈ Λ0

τhm
. Then not

all of e1 � f1, . . . , em � fm are provable. Otherwise we could have proved

Mi,j � Nk,l for some j ∈ Ji, a contradiction. By the induction hypothesis, either

[[e1]] 6v [[f1]], . . ., or [[em]] 6v [[fm]]. That is, 〈[[e1]], . . . , [[em]]〉 6v 〈[[f1]], . . . , [[fm]]〉.
Then, by the construction of ρ above, [[Nk,l]]ρ = 0. Hence, [[ul∈LkNk,l]]ρ = 0.

In all cases, [[ul∈LkNk,l]]ρ = 0 for every k ∈ K . It follows [[
⊔
k∈Kul∈LkNk,l]]ρ = 0.

This completes the proof.

Example 3.7

Suppose we have the following two Λ0
((2→2 )→(2→2 ))→(2→2 ) terms, Y and Z , defined

by

Y ≡ λ z . λ x . ((z (λ x . 0) 1) u x) t ((z (λ x . 0) 1) u (z (λ x . x) 0)),

Z ≡ λ z . λ x . ((z (λ x . x) 1) u x) t (z (λ x . 0) 0).

It can be checked that neither Y � Z nor Z � Y is provable. Therefore, we should

be able to find elements z, z′ ∈ D(2→2 )→(2→2 ) and x, x′ ∈ D2 such that

[[Y ]] z x = 1 but [[Z]] z x = 0,

and

[[Y ]] z′ x′ = 0 but [[Z]] z′ x′ = 1.

This will show that both [[Y ]] 6v [[Z]] and [[Z]] 6v [[Y ]].

The conjunctive term (z (λ x . 0) 1) u (z (λ x . x) 0) in Y ’s body cannot be proved

to be syntactically weaker than either one of the two conjunctive terms in Z ’s body.

It follows that we can choose

z = λ f . λ x . if (〈[[λ x . 0]], 1〉 v 〈f, x〉 or 〈[[λ x . x]], 0〉 v 〈f, x〉) then 1 else 0,

x = 0,

to make [[Y ]] z x = 1 but [[Z]] z x = 0. Likewise, the witness of the unprovability of

Z � Y is the conjunctive term (z (λ x . x) 1) u x in Z ’s body. We then choose

z′ = λ f . λ x . if 〈[[λ x . x]], 1〉 v 〈f, x〉 then 1 else 0,

x′ = 1,

to make [[Y ]] z′ x′ = 0 but [[Z]] z′ x′ = 1.

Corollary 3.8

Let M,N ∈ Λ0. M ' N implies [[M]] = [[N]], and [[M]] = [[N]] implies M ' N.
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We show in Appendix B that M ' N implies that M and N reduce to the same

normal form (Lemma B.2). Because terms M and N in Corollary 3.8 are already

in normal forms (they are in Λ0), it follows that not only does [[M]] = [[N]] imply

M ' N, it also implies M ≡ N (modulo associativity and commutativity of t and

u).

Theorem 3.9
Let σ ∈ Γ. Then there is a least fixed point term Y ∈ Λ0

(σ→σ)→σ such that for all

terms F ∈ Λ0
σ→σ ,

1. [[Y F]] = fix [[F]], where fix ∈ D(σ→σ)→σ is the least fixed point function, and
2. Y F and F(Y F) reduce to the same normal form.

Proof
1. Because fix is a monotonic function for each type (σ → σ) → σ ∈ Γ, by

Definition 2.3, we have fix ∈ D(σ→σ)→σ . The existence of Y such that [[Y ]] = fix

is proved by Proposition 3.4. It follows that [[Y F]] = [[Y ]][[F]] = fix [[F]].
2. First of all, [[Y F]] = fix [[F]] = [[F]](fix [[F]]) = [[F]]([[Y F]]) = [[F(Y F)]].

On the other hand, Y F normalizes to a Λ0 term M with [[Y F]] = [[M]]

(Proposition 2.12 and 3.3). Similarly, F(Y F) normalizes to a Λ0 term N with

[[F(Y F)]] = [[N]]. That is, [[M]] = [[N]]. It follows that M ' N (Corollary 3.8),

which implies M ≡ N (Lemma B.2).

The above Theorem states that, not only does there exist a term Y whose

denotation is the least fixed point function fix (clause 1 in Theorem 3.9), but whose

computational characteristic also serves as a least fixed point term (clause 2 in

Theorem 3.9).

The above properties of language Λ0 enable us to syntactically calculate the least

fixed point of a term M ∈ Λ0
σ→σ . In fact, there are two ways to do it. The first

method uses Propositions 3.4 and Theorem 3.9 to find the least fixed point term

Y ∈ Λ0
(σ→σ)→σ for the given type σ ∈ Γ, then calculate the normal form of YM. This

normal form denotes the least fixed point of [[M]].

The second method uses an approximation sequence starting with Bσ ∈ Λ0
σ , where

[[Bσ]] = ⊥σ . The iteration successively calculates a term N(k) ∈ Λ0
σ , where N(0) = Bσ

and N(k+1) the normal form of MN(k), until it finds N(i+1) � N(i). Then term N(i)

is the least fixed point of M. The iteration is guaranteed to be terminated because,

for a given type σ ∈ Γ, there are only finite number of Λ0
σ terms. Furthermore, the

iteration will terminate as soon as possible because, by completeness (Proposition

3.6), [[N(i+1)]] v [[N(i)]] implies N(i+1) � N(i).

Example 3.10
Suppose we want to calculate the least fixed point of the following Λ0

(2→2 )→(2→2 )

term M, defined as

M ≡ λ f . λ x . (f 0) t ((f 1) u x).

By Proposition 3.4, we can find a least fixed point term Y in Λ0
((2→2 )→(2→2 ))→(2→2 ).

For example,

Y ≡ λ z . λ x . ((z (λ x . 0) 1) u x) t ((z (λ x . 0) 1) u (z (λ x . x) 0)),
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as defined in Example 3.5 is such a term. Furthermore, YM normalizes to λ x . 0,

which is the least fixed point of M.

We can also use a least fixed point approximation sequence starting with λ x . 0,

which denotes the least element in D2→2 . Then λ x . 0 is the least fixed point of M

because M (λ x . 0)→∗ λ x . 0.

Syntactic approaches to fixed point finding have been attempted before, see for

example Clack and Peyton Jones (1985) and Martin (1989), but with no success for

higher-order functions. The problem is that, if a naive approach is used, for a given

element in the higher-order function space, there would be many syntactic normal

forms denoting the element. But these terms are not comparable, syntactically, to

one another. This makes impossible an iterative process for finding the fixed point.

Our approach avoids this problem by using the restricted language Λ0 which is

expressive enough (Proposition 3.4) yet with syntactic comparison rules that are

complete with respect to the semantics (Proposition 3.6). Furthermore, there are

only a finite number of Λ0 terms for a given type (Definition 3.1), and terms in Λ0

are closed under the usual syntactic reductions (Proposition 3.3). Hence we are sure

that the fixed point iteration will converge, and the convergent term indeed denotes

the fixed point value.

4 Implementation issues

In this section, we briefly consider several implementation issues when using a

syntactic approach based on language Λ0 in computing least fixed points of the

abstract functions derived from functional programs. One immediate concern is that,

although the abstract semantics of a functional program can be easily described in

language Λ, it is not necessary so in language Λ0. In short, we must have a way to

translate a closed term in Λ into an equivalent term in Λ0 before we can compute its

least fixed point. We also describe how we can relax language Λ0 to a new language

Λ1 to greatly reduce the translation process. Language Λ1 is no longer complete.

However, we show that the syntactic approach can be adapted to compute least fixed

points on Λ1 too. We then consider the problem of embedding other distributive

finite domains into domains Dσ, σ ∈ Γ. We also mention an approximation technique

which speeds up the least fixed point iteration but computes less accurate results.

4.1 Translation from language Λ to language Λ0

We describe in the following a systematic way to translate a closed term in Λ

into a semantically equivalent term in Λ0. We first assume that a closed term

N ∈ Λ has been reduced to its normal form λ~x .M. Furthermore, by η equality (i.e.

[[M]] = [[λ xτ .Mx]] for M of type τ → γ) we can assume that N can be written

as λ~x .
⊔
i∈Iuj∈JiMi,j where each Mi,j is of type 2 . The problem is that for terms

Mi,j ≡ xi e1 . . . em, where variable xi is in ~x and of type σi = τi1 → . . . → τim → 2 ,

terms ek, 1 ≤ k ≤ m, are not necessary in Λ0
τik

.

However, function application itself is definable in language Λ0, and we can use
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this definition to turn each term Mi,j above into an equivalent term where each ek is

in Λ0
τik

. The translation proceeds until all the function applications in a term satisfy

the requirements of Λ0. We also perform β t ud-reduction during the translation

process.

Example 4.1

Suppose we have a term M in Λ(2→2→2 )→2→2→2 , defined as

M ≡ λ f . λ x . λ y . f (x u y) (x t y).

We want to translate M into a term in Λ0
(2→2→2 )→2→2→2 . First, we observe that the

function apply ∈ D(2→2 )→2→2 , where apply f x = f x for all f ∈ D2→2 and all

x ∈ D2 , can be defined in Λ0
(2→2 )→2→2 by

λ f . λ x . (f 0) t ((f 1) u x).

By the same principle, the function Apply ∈ D(2→2→2 )→2→2→2 can be defined in Λ0

by

λ f . λ x . λ y . (f 0 0) t ((f 1 0) u x) t ((f 0 1) u y) t ((f 1 1) u x u y).

Note that in the above two definitions, the function variable f is applied only to Λ0

terms but not to variables x or y.

Now, the following term M ′ has the same semantics as term M,

M ′ ≡ λ f . λ x . λ y . Apply f (x u y) (x t y).

After substituting the Λ0 definition of Apply and normalizing, we derive

M ′ →∗ λ f . λ x . λ y . (f 0 0) t ((f 1 1) u x u y),

which is semantically equivalent to M and in Λ0
(2→2→2 )→2→2→2 .

As shown by the above example, Λ0 terms like apply and Apply are used to make

function variables like f accept only Λ0 terms as arguments after the translation.

The entire translation process can be performed automatically if the apply functions

are supplied beforehand in Λ0
σ→σ terms for each type σ ∈ Γ. We simply repeat the

translation, each time by using apply functions of lower ranks, until the resultant

term is in language Λ0.

4.2 Relaxation of language Λ0 to language Λ1

We observe that, for a closed term M ∈ Λ in its normal form, a semantically

equivalent term M ′ ∈ Λ0 can be exponentially longer than M. See, for example,

function apply and Apply in Example 4.1. This makes the syntactic method somewhat

unattractive. Furthermore, much work is spent in translating term M into M ′. We

now define a language Λ1 to address this problem. Language Λ1 is a superset of Λ0,

looks more like usual functional languages (hence, needs less translation work), and

often provides shorter terms than those in Λ0.

Definition 4.2

The sub-language Λ1
σ of Λσ is inductively defined for each type σ ∈ Γ as follows.
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• 0, 1 ∈ Λ1
2 ; and

• λ~x .M ∈ Λ1
σ1→...→σn→2 if

— ~x consists of variables of types σ1, . . . , σn, and M contains no free variable

other than those from ~x,

— M ∈ Λ2 and it is in β t ud normal form
⊔
i∈Iuj∈JiMi,j , and

— each term Mi,j is either a bound variable of type 2 , or an application

of the form (xi e1 . . . em), where variable xi is in ~x and is of type

σi = τi1 → . . . → τim → 2 , and term ek is either a variable from ~x or is of

type Λ1
τik

for each 1 ≤ k ≤ m.

The only difference between Λ1 and Λ0 is that the bound variables of a Λ1 term

are allowed to appear as function arguments. In doing so, we lose the completeness

property. For example, the two terms λ f . λ x . f x and λ f . λ x . (f 0) t ((f 1) u x) are

in language Λ1
(2→2)→2→2, are semantically equivalent, but cannot be shown to be

syntactically equivalent under the ' relation.

However, note that, for a given type σ ∈ Γ, there are still a finite number of

terms in Λ1
σ , and for terms M,N ∈ Λ1, the normal form for MN is also in Λ1.

From these two important properties, we can show that the two methods described

in section 3 for computing the least fixed points still work. That is, when applying

Y ∈ Λ0
(σ→σ)→σ , the term for least fixed point finding, to a Λ1

σ→σ term M, the resulting

normal form will be a Λ1 term denoting the least fixed point of M. The iterative

method is guaranteed to converge as well because Λ1 is still sound and there are

only a finite number of Λ1
σ terms to iterate with. (However, since language Λ1 is no

longer complete, it may happen that the iteration oscillates between two semantically

equivalent but syntactically incomparable Λ0 terms. This problem can be solved by

comparing the current term of approximation to each of the previous terms, not just

the immediately previous term, in the iteration history to see if it has re-appeared.)

To show that terms in language Λ1 can be much shorter than terms in Λ0 and

much closer to the usual functional programs, let us consider, for example, the

higher-order if functional, which receives three arguments (the first is a boolean

condition, the remaining two are functions) and will return one of the two functions

depending on the boolean condition. The strictness property of this higher-order if

functional is in domain D2→σ→σ→σ with some type σ = τ1 → τ2 → . . . → τn → 2,

and can be defined in language Λ1
2→σ→σ→σ by

λ p . λ f . λ g . λ x1 . λ x2 . . . . λ xn . (p u (f x1 x2 . . . xn)) t (p u (g x1 x2 . . . xn)),

where p is of type 2, f and g of type σ = τ1 → τ2 → . . .→ τn → 2, and xi of type τi
for 1 ≤ i ≤ n. It is clear that the translation of the above term in language Λ0

2→σ→σ→σ
will be longer because we must translate (f x1 x2 . . . xn) and (g x1 x2 . . . xn) to

longer terms to satisfy the requirement of Λ0.

Example 4.3

The term F ≡ λ f . λ x . f x is in Λ1
(2→2 )→2→2 . By using the fixed point term Y defined

in Example 3.5, we arrive at λ x . 0 as the normal form of Y F , and thus as the least

fixed point of F . The approximation method also finds λ x . 0 as the least fixed point.
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Clack and Peyton Jones (1985) give a rather interesting example. It is a term H

in language Λ((2→2 )→2 )→(2→2 )→2 , defined as

H ≡ λ f . λ g . g (f g),

where variable f is of type (2 → 2 )→ 2 and g of type 2 → 2 . If we naively perform

an approximation sequence starting with B ≡ λ g . 0 to calculate the least fixed point

of H , we will get

HB →∗ λ g . g 0,

H(HB) →∗ λ g . g (g 0),

H(H(HB)) →∗ λ g . g (g (g 0)),

· · ·

and the sequence will not converge under relation �. However, if H is translated

(as described in Example 4.1) into a semantically equivalent term H1 in Λ1 as

H1 ≡ λ f . λ g . (g 0) t ((g 1) u (f g)).

The approximation sequence will reach λ g . g 0 as the least fixed point of H1.

We can also translate term H1 into a term H0 in language Λ0 as

H0 ≡ λ f . λ g . (g 0) t ((g 1) u (f (λ x . x))),

then calculate the least fixed point of H0.

4.3 Embedding of other finite domains

The finite domains Dσ, σ ∈ Γ, and its language Λ are very useful when, for example,

computing the strictness property of functional programs over flat basic domains,

because the basic abstract domain for strictness happens to be 2 = {0, 1}. But are

they flexible enough for other abstract domains based not on 2 ? For example, we

may like to have abstract domains based on domain 3 = {⊥, ‖,>}, with the ordering

⊥ v3 ‖ v3 >, and define abstract semantics of programs accordingly. Are domains

Dσ, σ ∈ Γ, along with language Λ, helpful in such situations?

Figure 1 provides a good hint. We can embed domain 3 into domain 2 → 2 by

the encoding ⊥ = [0 7→ 0, 1 7→ 0], ‖ = [0 7→ 0, 1 7→ 1], and > = [0 7→ 1, 1 7→ 1],

and define the three elements of 3 in language Λ0
2→2 accordingly as ⊥ = [[λ x . 0]],

‖ = [[λ x . x]], and > = [[λ x . 1]]. Least fixed point computations on the domains

of function spaces generated by 3 can then be carried out in Λ0 as usual. As

another example, we can also embed the boolean domain bool = {⊥, t, f}, with the

ordering ⊥ v t and ⊥ v f but neither f v t nor t v f, in domain 2 → 2 → 2

by ⊥ = [[λ x . λ y . x u y]], t = [[λ x . λ y . x]], and f = [[λ x . λ y . y]]. However, since

domains Dσ, σ ∈ Γ, are always distributive, only distributive finite domains can be

properly embedded in Dσ .

We might wish to perform least fixed point computations directly on domain 3 ,

and the function spaces generated by it, using a new language without the explicit

encoding of the three elements in language Λ0
2→2. For example, we might want
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to define a new language based only on the three constants ⊥, ‖,> and the two

operations t and u between them (without incorporating 0, 1 and their t and u
operations). Moreover, the inference rules for syntactically weaker and the reduction

rules for normalization are similarly adapted to perform computations on this new

language. However, it turns out that this is not a vital approach, at least if the syntax

and reduction rules on Λ are not greatly changed. As an example, Figure 1 shows

that there are 10 elements in domain 3 → 3 ; but the language Λ0
3→3, based on the

above idea, can only represent six of them: λ x .⊥, λ x . ‖, λ x .>, λ x . x, λ x . x t ‖,
and λ x . x u ‖. The new language is not able to express the element [⊥ 7→ ⊥, ‖ 7→
⊥, > 7→ ‖] in domain 3 → 3 , for example. The difficulty seems to arise from the fact

that the new language cannot even define the step functions (See Proposition 3.4).

4.4 Complexity and approximation

With respect to the efficiency of the proposed syntactic method, is it better than

simply using the frontier method? We believe it is better, especially if we use the

iterative method on language Λ1. We observe that a functional program often

has simple textual structure. That is, function applications in typical functional

programs often have bound variables as arguments. This makes the translation

from a functional program into a Λ1 term easy, and the length of the resultant

Λ1 term comparable to the length of the original program. The time spent in the

� relationship testing between two successive approximation is then comparable

to the cases in the frontier method. Furthermore, an approximation sequence in

the syntactic method usually reaches the least fixed point in fewer iterations than

an approximation sequence in the frontier method, because the former utilizes the

textual information from the program and performs symbolic simplification, while

the latter searches along the semantic domains, no matter what the given program

looks like.

Of course, whether a scheme for strictness analysis is ‘fast’ as compared to other

schemes will depend not only on the different approaches they take but also on the

particular implementations they adapt. We emphasizes here on a viable alternative

for strictness analysis based on a new syntactic approach, rather than on how fast

our implementation of the syntactic method is. Also notice that, in the worst case,

the syntactic method will, just as the frontier method, require exponential running

time (with respect to the program length) even for first-order functions. Wang

(1989) further shows that, for a special class of second-order functions excluding if

functionals, strictness analysis is already NP-hard.

An example involving an abstract domain of at least 106 elements is elaborated in

the next section, using the proposed syntactic method. This example was previously

used by Hunt (1989) to show that a naive frontier method is not effective when

dealing with abstract domain of considerable size. Using the proposed syntactic

method, we are able to compute least fixed points successfully.

Safe approximation schemes can also be developed based on the proposed syn-

tactic method. The approximation scheme will calculate less accurate fixed points,
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append [] ys = ys

append (x::xs) ys = x::(append xs ys)

foldr f [] y = y

foldr f (x::xs) y = f x (foldr f xs y)

cat xss = foldr append xss []

Fig. 2. The definitions of functions append, foldr, and cat.

but do it in fewer iterations. For example, a reduction rule like

(M uN)→uapprox
M,

when N �M is not provable, can be used to speed up the approximation sequence

to arrive at a less accurate approximation of the least fixed point.

5 Strictness analysis over non-flat domains: An example

In this section, we use the proposed syntactic method to solve a substantial problem.

The problem is to derive the strictness property of a functional program which

concatenates a list of lists into a single list. This function, named cat, is composed

from a right-associative foldr function and the usual append function. The whole

program text is in Figure 2.

The abstraction techniques for strictness analysis from Burn, Hankin, and Abram-

sky (1986) and Wadler (1987) are used to solve this problem. Recall that Burn, Han-

kin, and Abramsky define an abstraction of a domain as a lattice of its non-empty

Scott-closed subsets, where the Scott-closed subset are ordered by subset inclusion

in the lattice. For strictness analysis on a basic domain D, D is usually abstracted to

the domain with only two Scott-closed subsets: {⊥D} and D. This abstract domain

is usually written as 2 . Its two elements are defined as 02 = {⊥D} and 12 = D, with

the ordering 02 v 12 . (More precisely, we may say that element 02 has set {⊥D} as

its concretization, and 12 has set D as its concretization.) If an element d ∈ D has

abstraction d# = 02 , we know for sure that d is the undefined element in domain D.

If d# = 12 , then d can be any element in D. Note that 02 and 12 can be expressed

as 0 and 1 in language Λ0.

Similarly, Wadler defines an abstract domain 4 for domain list(D), which contains

all the lists whose elements are from domain D. The abstract domain 4 has four

elements: 04 , 14 , 24 , and 34 . They are defined as the following Scott–closed subsets

of list(D):

04 = {⊥list(D)},
14 = 04 ∪ {e ∈ list(D) | e has an undefined or infinite tail},
24 = 14 ∪ {e ∈ list(D) | e is of finite length but contains at least

one element from 02 },
34 = list(D),

with the ordering 04 v 14 v 24 v 34 . The abstract versions of the three primitive
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Table 2. The abstraction of the primitive functions hd, tl, and cons over the finite

domain 4

xs#

4 hd#

4→2 xs#

4 tl#

4→4 xs#

4 cons#

2→4→4 x
#

2 xs#

4

x
#

2 = 02 x
#

2 = 12

04 02 04 14 14
14 12 14 14 14
24 12 34 24 24
34 12 34 24 34

functions hd, tl, and cons on domain list(D) are described in Table 2. For example,

if xs#
4 = 24 – meaning that xs is the undefined list, or a list with an undefined or

infinite tail, or a finite-length list with at least one list element undefined – then

tl#
4→4 xs#

4 = 34 – meaning that the tail of xs can be any list.

An abstract domain 6 for domain list(list(D)) are also defined, with its abstract

elements as the following:

06 = {⊥list(list(D))},
16 = 06 ∪ {e ∈ list(list(D)) | e has an undefined or infinite tail},
26 = 16 ∪ {e ∈ list(list(D)) | e is of finite length but contains at least

one element from 04 },
36 = 26 ∪ {e ∈ list(list(D)) | e is of finite length but contains at least

one element from 14 },
46 = 36 ∪ {e ∈ list(list(D)) | e is of finite length but contains at least

one element from 24 },
56 = list(list(D)),

and with the ordering 06 v 16 v 26 v 36 v 46 v 56 . Table 3 contains the abstraction

of functions hd, tl, and cons over domain 6 .

Note that not only is domain 4 a distributive lattice, but it is also isomorphic to

domain (2 → 2 )→ 2 . This means that we can express the four elements in domain

4 as the following terms in language Λ0
(2→2)→2:

04 = [[λ x2→2 . 0]],

14 = [[λ x2→2 . x 0]],

24 = [[λ x2→2 . x 1]],

34 = [[λ x2→2 . 1]].

Furthermore, recall that, by completeness (Proposition 3.6), the syntactically weaker

relationship � in language Λ0
(2→2)→2 captures exactly the semantically weaker re-

lationship v in domain 4 . The strictness properties of the primitive functions hd,

tl, and cons can be defined in language Λ0 too. The same property also applies
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Table 3. The abstraction of the primitive functions hd, tl, and cons over the finite

domain 6.

xss#

6 hd#

6→4 xss#

6 tl#

6→6 xss#

6 cons#

4→6→6 xs#

4 xss#

6

xs#

4 = 04 xs#

4 = 14 xs#

4 = 24 xs#

4 = 34

06 04 06 16 16 16 16

16 34 16 16 16 16 16

26 34 56 26 26 26 26

36 34 56 26 36 36 36

46 34 56 26 36 46 46

56 34 56 26 36 46 56

to domain 6 , which can be embedded in domain (((2 → 2 ) → 2 ) → 2 ) → 2 . The

definitions of these semantic elements in language Λ0 are summarized in Table 4.

Given the definitions in Table 4, we then can compute the strictness properties

of functions append, foldr, and cat. Wadler’s technique takes pattern-matching on

input arguments into account when analyzing a functional program. Take function

append as an example. Suppose that the first argument to append is only as defined

as 24 (i.e. 24 v (x :: xs)# but 34 6v (x :: xs)#). What will be the strictness properties

for x and xs? By consulting the valuation table for cons# in Table 2 for entries 24 ,

we know that it suffices to consider either the case of 24 = cons# 02 34 , or the case

of 24 = cons# 12 24 . (The case for 24 = cons# 02 24 is covered by both of the above

two cases.) Therefore, the analysis must take both cases into consideration. That is,

the final result should be the least upper bound of the two cases. (See the if–clause

with condition 24 v x# in Equation (2) in Figure 3.) Note that this yields more

information than simply evaluating hd# 24 = 12 and tl# 24 = 34 to get the strictness

of x and xs, which tells us nothing at all in this particular case. The strictness of

append can then be expressed as Equation (2) in Figure 3.

If a semantic method is to be used, then the least fixed point semantics for append#

can now be evaluated by an approximation iteration starting with the least element

in domain 4 → 4 → 4 . Since we are interested in the syntactic method, instead we

write append# as the least fixed point of a Λ1 term, as Equation (3) in Figure 3. The

Λ1 terms is obtained by a simple translation from Equation (2) by substituting cons#

by its definition from Table 4, expanding the if statements (i.e., the step functions

in Proposition 3.4), and normalization. The least fixed point of this Λ1 term can be

calculated by an approximation sequence starting from λ x4 . λ y4 . λ z3 . 02 , the least

defined term in language Λ1
4→4→4 . The resulting least fixed point will be a Λ1 term.

Equation (4) in Figure 3 is its translation in the Λ0 language. It is the strictness

property of the append function.

The same process can apply to the foldr function, resulting in the Λ0 term in

Figure 4 as its strictness property. Substituting the definition of append# and foldr#
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Table 4. The definitions in language Λ0 of all the semantic elements in the finite

domains 2, 3, 4, 5, and 6

Element Term

in Λ0
2 in Λ0

3 in Λ0
4 in Λ0

5 in Λ0
6

0 02 λ x2 . 02 λ x3 . 02 λ x4 . 02 λ x5 . 02

1 12 λ x2 . x λ x3 . x 02 λ x4 . x 03 λ x5 . x 04

2 n/a λ x2 . 12 λ x3 . x 12 λ x4 . x 13 λ x5 . x 14

3 n/a n/a λ x3 . 12 λ x4 . x 23 λ x5 . x 24

4 n/a n/a n/a λ x4 . 12 λ x5 . x 34

5 n/a n/a n/a n/a λ x5 . 12

(a)

Element Term

hd#

4→2 λ x4 . x 23

tl#

4→4 λ x4 . λ y3 .
⊔
{u{x 23 , y 02 }, x 13 }

cons#

2→4→4 λ x2 . λ y4 . λ z3 .
⊔
{u{x, y 03 }, u{y 13 , z 12 }, z 02 }

hd#

6→4 λ x6 . λ y3 . x 45

tl#

6→6 λ x6 . λ y5 .
⊔
{u{x 45 , y 04 }, x 35 }

cons#

4→6→6
λ x4 . λ y6 . λ z5 .

⊔
{ u{x 03 , y 05 },
u{x 13 , y 15 , z 34 },
u{x 23 , y 25 , z 24 },
u{y 35 , z 14 },
z 04 }

(b)

Note. Part (a) shows the definitions of the elements in domains 2 , 3 , 4 , 5 , and 6 as terms
in language Λ0. Note that the languages and the terms are defined inductively by using the
following abbreviations: 2 ≡ 2, 3 ≡ 2 → 2 , 4 ≡ 3 → 2 , 5 ≡ 4 → 2 , and 6 ≡ 5 → 2 . All
the constants in the languages are subscripted by their types to avoid possible confusion. If
written in full, for example, the definition 36 ≡ λ x5 . x 24 ≡ λ x((2→2 )→2 )→2 . x (λ y2→2 . y 12 ).
The strictness properties of functions hd, tl, and cons are described in (b). Note that a
primitive function has different strictness properties over different abstract domains. Here 4
is the abstract domain for lists, and 6 is the abstract domain for lists of lists.

in the definition of cat# and normalizing the result (Equation (5) in Figure 5) yields

the strictness property of cat (Equation (6) in Figure 5). To see how accurate cat#

is, we can apply it to terms 06 , 16 , 26 , 36 , 46 , and 56 , resulting Table 5. The result is

as good as we can hope for, showing that Wadler’s abstraction mechanism for list

domains is quite accurate for this particular example.
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append#

4→4→4 x
#

4 y
#

4 = (2)

if 34 v x#

then
⊔
{y#, cons# 12 (append# 34 y

#)}
else if 24 v x#

then
⊔
{cons# 02 (append# 34 y

#), cons# 12 (append# 24 y
#)}

else if 14 v x#

then cons# 12 (append# 14 y
#)

else 04

append# = fix (λ f4→4→4 . λ x4 . λ y4 . λ z3 . (3)⊔
{ u{x 23 , f 14 y 03 },
u{x 23 , f 14 y 13 , z 12 },
u{x 23 , z 02 },
u{x 13 , f 34 y 13 , z 12 },
u{x 13 , f 24 y 03 },
u{x 03 , f 34 y 03 },
u{x 03 , y z}})

append# = λ x4 . λ y4 . λ z3 . (4)⊔
{ u{x 23 , z 02 },
u{x 13 , y 13 , z 12 },
u{x 03 , y 03 }}

Fig. 3. Strictness analysis for function append.

Note. Equation (2) describes the strictness property of append, according to its program text,

in which Wadler’s abstraction mechanism is used. Equation (3) expresses append’s strictness

property as the least fixed point of a Λ1 term. The least fixed point is then calculated by an

approximation sequence by using the syntactic calculus starting from term λ x4 . λ y4 . λ z3 . 02 ,

the least element in domain 4 → 4 → 4 . The result is then translated into a Λ0 term in

Equation (4).

All these results are calculated by a bare-bone Standard ML program which is

used to normalize a given Λ1 term in a naive way, and to evaluate the least fixed

point of a given Λ1 term by a syntactic approximation iteration. The strictness

property of program foldr, as described in figure 4, takes about 20 minutes to

calculate when running the least fixed point finding program under SML of New

Jersey (version 0.66) on a Sun 4/290 with 32 MB physical memory.
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foldr# = λ f4→4→4 . λ x6 . λ y4 . λ z3 .⊔
{ u{x 45 , z 02 , f 34 04 23 },
u{x 45 , z 12 , f 34 14 13 , f 34 04 23 },
u{x 45 , f 34 24 03 , f 34 14 13 , f 34 04 23 },
u{x 35 , f 04 24 23 , z 02 , y 13 },
u{x 35 , f 04 34 23 , z 02 , f 34 24 03 , y 13 },
u{x 35 , f 04 34 13 , z 12 , y 03 },
u{x 35 , f 04 34 23 , z 02 , y 03 },
u{x 35 , z 02 , f 04 14 23 , y 23 },
u{x 35 , z 12 , f 04 24 23 , f 34 14 13 , y 23 },
u{x 35 , z 12 , f 34 14 13 , f 04 34 23 , y 03 },
u{x 35 , z 12 , f 04 24 13 , y 13 },
u{x 35 , f 04 34 23 , f 34 24 03 , f 34 14 13 , y 23 },
u{x 35 , f 04 34 13 , f 34 24 03 , y 13 },
u{x 35 , f 04 34 03 , y 03 },
u{x 25 , f 14 24 23 , z 02 , y 13 },
u{x 25 , f 14 34 23 , z 02 , f 34 24 03 , y 13 },
u{x 25 , f 14 34 13 , z 12 , y 03 },
u{x 25 , f 14 34 23 , z 02 , y 03 },
u{x 25 , z 02 , f 14 14 23 , y 23 },
u{x 25 , z 12 , f 14 24 23 , f 34 14 13 , y 23 },
u{x 25 , z 12 , f 34 14 13 , f 14 34 23 , y 03 },
u{x 25 , z 12 , f 14 24 13 , y 13 },
u{x 25 , f 14 34 23 , f 34 24 03 , f 34 14 13 , y 23 },
u{x 25 , f 14 34 13 , f 34 24 03 , y 13 },
u{x 25 , f 14 34 03 , y 03 },
u{x 15 , f 24 24 23 , z 02 , y 13 },
u{x 15 , f 24 34 23 , z 02 , f 34 24 03 , y 13 },
u{x 15 , f 24 34 13 , z 12 , y 03 },
u{x 15 , f 24 34 23 , z 02 , y 03 },
u{x 15 , z 02 , f 24 14 23 , y 23 },
u{x 15 , z 12 , f 24 24 23 , f 34 14 13 , y 23 },
u{x 15 , z 12 , f 34 14 13 , f 24 34 23 , y 03 },
u{x 15 , z 12 , f 24 24 13 , y 13 },
u{x 15 , f 24 34 23 , f 34 24 03 , f 34 14 13 , y 23 },
u{x 15 , f 24 34 13 , f 34 24 03 , y 13 },
u{x 15 , f 24 34 03 , y 03 },
u{x 05 , z 12 , f 34 14 13 , y 23 },
u{x 05 , f 34 24 03 , f 34 14 13 , y 23 },
u{x 05 , f 34 24 03 , y 13 },
u{x 05 , y 03 },
u{x 05 , y 13 , z 12 },
u{x 05 , y 23 , z 02 }}

Fig. 4. The strictness property of function foldr, described in language Λ0.
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cat# xss# = foldr# append# xss# 34 (5)

cat# = λ x6 . λ y3 .
⊔
{ u{x 45 , y 02 }, (6)

u{x 15 , y 12 },
x 05 }

Fig. 5. Strictness analysis for function cat.

Note. Equation (5) describe the strictness property of cat, according to its program text. The

strictness of cat is then calculated by first substituting the definition of append# (in Figure 3),

foldr# (in Figure 4), and 34 (in Table 4) into Equation (5), then by normalizing the resulting

term. The result is Equation (6), which is the strictness property of function cat.

Table 5. The results of applying cat# to all the elements in the abstract domain 6

xxs# 06 16 26 36 46 56

cat# xxs# 04 14 14 14 24 34

Note. The results are obtained by calculating the normal forms of cat# xss#, where the
definition of cat# is from Equation (6) in Figure 5, and the definition of 06 , 16 , . . . , 56 is from
Table 4.
The results in the above table are interpreted in the following way. If the argument to the
cat function is an undefined list (xss# = 06 ), then the result is an undefined list. If the
argument is (at most) a list with an undefined/infinite tail, or is (at most) a finite list with
one of its element either being an undefined list or being a list with an undefined/infinite
tail (xss# = 16 , 26 , or 36 ), then the result is (at most) a list with an undefined/infinite tail.
If the argument is (at most) a finite list in which all elements are finite lists but one of them
contains an undefined element (xss# = 46 ), then the result is (at most) a finite list with one
of its elements undefined. If the argument is (at most) a finite list in which all elements are
finite lists with all elements defined (xss# = 56 ), then the result is (at most) a finite list with
all its elements defined.

6 Conclusion and comparison to other works

We have shown how to develop a syntactic approach, based on the language Λ0,

for finding least fixed points of higher-order functions over finite domains. This

syntactic method is sound and complete with respect to the semantics of least fixed

point computation on finite domains, and bears close relationship to the simply

typed λ-calculus.

It is interesting to compare the development here with the work of Abramsky

(1991) and Jensen (1990; 1991). Their work also provides a junction between se-

mantics and logics for functional programming languages. Their work is mostly

concerned with the dual relationship between domain theory and its axiomatic

logics; ours is concerned with least fixed points on finite domains and their cor-

responding calculus. While their work usually provides a decidable theory without
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giving an explicit proof strategy, the augmented, simply typed λ-calculus in our

approach provides a simple way to compute the desired results.

Recent work has shown progress in the development of fast strictness analyzers

for higher-order functions. See, for example, Ferguson and Hughes (1993), Han-

kin and Hunt (1992), Hankin and Le Métayer (1994), Nocker (1993) and Seward

(1993). Ferguson and Hughes formulate abstract interpretations as sequential al-

gorithms on concrete data structures (CDS). CDS are trees with labeled edges,

representing the states of computation. Hankin and Hunt provide techniques to

reduce the sizes of abstract domains such that least fixed points can be approx-

imated quickly. Hankin and Le Métayer, in work related to Jensen’s strictness

logic (1991), develop a type-based system for abstract interpretation. They also

propose a notation of lazy type to improve efficiency. Nocker performs strictness

analysis by term reduction in abstract domains, mimicking the effect of term re-

duction in the concrete domains. Elements of his abstract domains are graphs,

and the domains can be infinite. Seward defines an abstract lambda calculus for

expressing recursive domain equations, and uses term-rewriting to derive solutions.

Approximation techniques are used to derive strictness properties of higher-order

functions.

With the exception of Hankin and Hunt (1992), each of the papers mentioned

above, like ours, uses some kind of syntactic form to represent elements in an

abstract domain. Each also uses the respective reduction machinery to calculate

the abstract semantics of a program. Some of them, Nocker (1993) and Seward

(1993) for example, must depend on approximation schemes to ensure the analyses

will terminate. In this paper, in addition to proposing yet another framework of

abstract interpretation based on syntactic reduction, we have put considerable effort

in proving it to be sound and complete.

We would like to emphasize that our syntactic method is compositional, while

many of the recent works are not. Take the definition of cat function in section 5 as

an example. Our syntactic method analyzes the strictness of foldr and append from

their definitions, and these results are composed to derive the strictness of cat (just

as cat is composed from foldr and append). Once derived, the syntactic forms

for the strictness properties of cat, foldr, and append can be reused whenever

the three functions are applied in other contexts. Many recent strictness analyzers,

however, will calculate only the strictness of cat, and those parts of foldr and

append which are related to cat. (Think of it as inlining append into foldr to

make cat.) When foldr and append are used in other contexts, new analyses

will be performed again. Our compositional approach fits better in a modular

program development environment where the strictness property of a function,

like the type of the function, can be put into its interface file and be consulted

whenever it is needed. A non-compositional approach will need to export the

code of the function in order to perform strictness analysis in places where the

function is used. We also observe that several of the above recent strictness analyzers

have difficulty analysing higher-order functions, like foldr, by their definitions. On

contrary, our method is able to take foldr by itself and derives its complete strictness

property.
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A Strong normalization

We will use a technique from Dershowitz and Manna (1979), based on multiset

ordering, to show that every term in language Λ is strongly normalizable. A multiset

is a bag, where an element may occur more than once. The equality A = B for

two multisets A and B means that any element occurring n times in A also occurs

exactly n times in B, and vice versa. Also, A ] B is the multiset containing m + n

occurrences of any element occurring m times in A and n times in B.

LetM(S) denote the set of all finite multisets with elements taken from the set S .

If S is a partially ordered set with irreflexive ordering <S , then define an irreflexive

ordering <M(S) for M(S) such that

A <M(S) B iff there exists multisets X,Y ∈ M(S), where ∅ 6= X ⊆ B, such that A =

(B −X) ] Y , and for all y ∈ Y there exists a x ∈ X such that y <S x.

It is shown by Dershowitz and Manna that M(S) is a partially ordered set with

(irreflexive) ordering <M(S) if S is with <S . Also, <M(S) is well-founded iff <S is.

That is, if there is no infinite descending chain in S under ordering <S , then there

is no infinite descending chain in M(S) under ordering <M(S) either.

For example, M(N ), the set of all finite multisets of natural numbers, is partially

ordered by <M(N), where <N is defined as <. Furthermore, since there is no infinite

decreasing sequence for a given natural number, we know that there is also no

infinite descending sequence, using relation <M(N), for a given element in M(N ).

Proposition A.1

Every term M ∈ Λ is strongly normalizable.

Proof

It is well known that the simply typed λ-calculus is strongly normalizable (see, for

example, Girard, Taylor & Lafont (1989)). Language Λ differs from simply typed

λ-calculus in that it introduces new terms and new reduction rules for ground

type 2 . It suffices to show that all the newly introduced terms are β t ud strongly

normalizable to complete the proof. There are four classes of new terms: 0, 1,MtN,
and MuN, where M,N ∈ Λ2 . It is clear that both 0 and 1 are strongly normalizable.

It remains to show that both
⊔
i∈I Mi and ui∈IMi are strongly normalizable if each

Mi is.

Let ν(M) be the maximal number of steps needed to reduce a term M to a normal

form. That is,

ν(M) = 0, if M is a normal form

ν(M) = maxi∈I ν(Ni) + 1, if M → Ni for i ∈ I.

It is clear that M is strongly normalizable iff ν(M) is finite, and whenever M →M ′,
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we have ν(M ′) < ν(M). For a disjunctive term
⊔
i∈I Mi, define multiset–valued

function µ by

µ(
⊔
i∈I Mi) = {ν(Mi) | i ∈ I}.

It is clear that µ(
⊔
i∈I Mi) ∈ M(N ) if each Mi is strongly normalizable. We show

that, by a multiset induction on value of function µ,
⊔
i∈I Mi is indeed strongly

normalizable if each Mi is.

There are two possible ways in which a term
⊔
i∈I Mi can be one-step reduced.

•
⊔
i∈I Mi →t

⊔
i∈I−J Mj ,

where ∅ 6= J ⊂ I . This is a one-step t-reduction at the top level of the

disjunction.

Then, it is clear that µ(
⊔
i∈I−J Mi) <M(N) µ(

⊔
i∈I Mi).

•
⊔
i∈I Mi →

⊔
i∈I M

′
i,

where there exists a k ∈ I such that Mk → M ′k , and for all i ∈ I − {k},
M ′i ≡Mi. This is a one-step reduction in the sub–term Mk .

It is clear that ν(M ′k) < ν(Mk), and ν(M ′i) = ν(Mi) for i ∈ I − {k}. If M ′k
is not a disjunctive term, then it follows that µ(

⊔
i∈I M

′
i) <M(N) µ(

⊔
i∈I Mi). If

M ′k ≡
⊔
j∈J Nj is a disjunctive term itself, then ν(Nj) ≤ ν(M ′k) < ν(Mk) for

each j ∈ J . Thus,

µ(
⊔
i∈I
M ′i) = {ν(Mi) | i ∈ I − {k}} ] {ν(Nj) | j ∈ J} <M(N) µ(

⊔
i∈I
Mi).

In both cases, the value of µ(
⊔
i∈I Mi) decreases whenever

⊔
i∈I Mi is one-step

reduced. Since there is no infinite descending sequence in M(N ), it follows that⊔
i∈I Mi strongly normalizes if each Mi does.

For a conjunctive term ui∈IMi, its strong normalization proof is similar to the

disjunction case above, but is slightly more complicated due to d-reduction.† Let us

define ξ(M) to be the maximal number of t symbol in the terms reducible from M.

That is,

ξ(M) = max {number of t symbol in M ′ | M →∗ M ′}.

† We can no longer use a multiset induction based on the function µ defined by

µ(ui∈IMi) = {ν(Mi) | i ∈ I}.
The induction will fail.
A conjunctive term likeui∈I

⊔
j∈Ji

Mi,j can be reduced to
⊔

p∈
∏

i∈I
Ji
ui∈I Mi,p|i by a one–step

d–reduction. It is possible that for some tuple p ∈
∏

i∈I Ji, we have ν(Mi,p|i) = ν(
⊔

i∈Ji
Mi,j)

for all i ∈ I . This occurs when both Mi,p|i and
⊔

i∈Ji
Mi,j are in normal form, for example.

This means that

µ(ui∈IMi,p|i) 6<M(N) µ(ui∈I

⊔
i∈Ji

Mi,j),

and the induction fails.
As an example, consider the reduction x u (a t b) →d (x u a) t (x u b), where x, a, b are
variables. Because terms x, (a u b), (x u a), and (x u b) are all normal forms, we then would
have

µ(x u (a t b)) = {0, 0} 6<M(N) {0, 0} = µ(x u a),
and

µ(x u (a t b)) = {0, 0} 6<M(N) {0, 0} = µ(x u b).
The induction fails.
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It is clear that if M is strongly normalizable then ξ(M) is finite, and whenever

M → M ′, we have ξ(M ′) ≤ ξ(M). Furthermore, for an index set I with |I| > 1, we

have ξ(Mi) < ξ(
⊔
i∈I Mi) for all i ∈ I . We then define a multiset-valued function µ

for conjunctive term ui∈IMi by

µ(ui∈IMi) = {ν(Mi) | i ∈ I} ] {ξ(Mi) | i ∈ I}.

Similar to the two cases in disjunctive terms, it is clear that when a conjunctive

term ui∈IMi is one-step reduced either by a u-reduction at the top level or by a

one-step reduction in sub-term Mi, the function value µ is decreased according to

ordering <M(N). Now, for a one-step d-reduction at the top level,

• ui∈I ⊔j∈Ji Mi,j →d

⊔
p∈
∏

i∈I
Ji
ui∈I Mi,p|i,

where |I| > 1, and for some i ∈ I, |Ji| > 1.

Then, for all tuples p ∈
∏

i∈I Ji and all i ∈ I , ξ(Mi,p|i) ≤ ξ(
⊔
j∈Ji Mi,j) and

ν(Mi,p|i) ≤ ν(
⊔
j∈Ji Mi,j). Furthermore, since there is an index set Ji with |Ji| > 1

for some i ∈ I , there is an index i ∈ I such that ξ(Mi,p|i) < ξ(
⊔
j∈Ji Mi,j).

To summarize, we have for all tuple p ∈
∏

i∈I Ji

µ(ui∈IMi,p|i) <M(N) µ(ui∈I ⊔j∈Ji Mi,j).

It follows that for all p, ui∈IMi,p|i is strongly normalizable. By the result from

the case for disjunctive terms,
⊔
p∈
∏

i∈I
Ji
ui∈I Mi,p|i strongly normalizes.

We conclude that conjunctive terms are strongly normalizable.

This completes the proof that all Λ terms are strongly normalizable.

B Church–Rosser

We first prove several technical lemmas before showing that βtud is Church–Rosser.

Lemma B.1

Let M,N ∈ Λ and M � N. If M → M ′, then there exists a term N ′ such that

N →∗ N ′ and M ′ � N ′. Conversely, if N → N ′, then there exists a term M ′ such

that M →∗ M ′ and M ′ � N ′.

Proof

We show that if M → M ′, then there exists a term N ′ such that N →∗ N ′ and

M ′ � N ′. The proof for its dual case is similar.

We use a case-by-case analysis. For example, if M →M ′ is via an r-reduction in a

sub-term of M, then we will show that, at most, an r-reduction in the corresponding

sub-term of N will reduce N to N ′ such that M ′ � N ′. We show the case for

d-reduction. The other three cases for β, t, and u reductions are similar.

Without loss of generality, we can assume that M ≡ ui∈I ⊔j∈Ji Mi,j and M ′ ≡⊔
p∈
∏

i∈I
Ji
ui∈I Mi,p|i. Also, N can be written as uk∈K ⊔l∈Lk Nk,l and reduced to term⊔

q∈
∏

k∈K
Lk
uk∈K Nk,q|k by at most one d-reduction. Our goal is to show that⊔

p∈
∏

i∈I
Ji
ui∈I Mi,p|i �

⊔
q∈
∏

k∈K
Lk
uk∈K Nk,q|k (7)
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if

ui∈I ⊔j∈Ji Mi,j � uk∈K ⊔l∈Lk Nk,l . (8)

By Lemma 2.8, relationship (8) implies

(∀k ∈ K)(∃i ∈ I)(∀j ∈ Ji)(∃l ∈ Lk)(Mi,j � Nk,l).

We then can assume that there exists a total function f : K → I and, for each i ∈ I
and each k ∈ K , a total function gi ,k : Ji → Lk such that

(∀k ∈ K)(∀j ∈ Jf(k))(Mf(k),j � Nk,gf(k),k(j)). (9)

From f, we define its inverse image function f −1 : I → 2K such that

f−1(i) = {k ∈ K | f(k) = i}.

Note that
⋃
i∈I f

−1(i) = K because f is total.

By predicate (9) and Lemma 2.8, it follows that for all i ∈ I and for all j ∈ Ji,

Mi,j � uk∈f−1(i)Nk,gi,k(j)

because

Mi,j � Nk,gi,k(j)

for all k ∈ K with f(k) = i. Then for all tuples p ∈
∏

i∈I Ji,

ui∈IMi,p|i � ui∈Iuk∈f−1(i)Nk,gi,k(p|i)

because

Mi,p|i � uk∈f−1(i)Nk,gi,k(p|i)

for all i ∈ I . Furthermore,

ui∈Iuk∈f−1(i)Nk,gi,k(p|i) � uk∈KNk,gf(k),k(p|f(k))

because f is total. It follows that

ui∈IMi,p|i � uk∈KNk,gf(k),k(p|f(k)) (10)

for all tuples p ∈
∏

i∈I Ji.

Now, define a function m from the Cartesian product
∏

i∈I Ji to the Cartesian

product
∏

k∈K Lk such that for all tuples p ∈
∏

i∈I Ji and indices k ∈ K

m(p)|k = gf(k),k(p|f(k)).

Function m is well defined because f, g, and | are all well defined. From (10) and m,

we have for all p ∈
∏

i∈I Ji,

ui∈IMi,p|i � uk∈KNk,m(p)|k,

which implies

(∀p ∈
∏

i∈I Ji)(∃q ∈
∏

k∈K Lk)(ui∈IMi,p|i � uk∈KNk,q|k).

By Lemma 2.8, the above predicate proves relationship (7).

This completes the proof.
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Lemma B.2

Let M,N ∈ Λ. If M ' N, then there exists a term L ∈ Λ such that both M →∗ L
and N →∗ L.

Proof

The proof is by an induction on the structures of terms M and N. The induction

bases occur when both M and N are either 0, 1, or an identical variable. Then,

M ' N implies M ≡ N, which establishes the induction bases.

By Lemma 2.8, it suffices to show that, if
⊔
i∈I Mi '

⊔
j∈J Nj then they can be

reduced to a common term, and if ui∈IMi ' uj∈JNj then they can also be reduced

to a common term, where I, J are index sets and Mi,Nj ∈ Λ2 . We show the case for

disjunction. The case for conjunction is similar.

The term
⊔
i∈I Mi can be reduced to

⊔
i∈I ′Mi by a t-reduction such that for all

p, q ∈ I ′ neither Mp � Mq nor Mq � Mp. That is, we keep only the maximal terms

in the disjunction. By a similar reduction,
⊔
j∈J Nj reduces to

⊔
j∈J ′ Nj . It is clear

that
⊔
i∈I ′Mi '

⊔
j∈J ′ Nj . Furthermore, for each i ∈ I ′ there is only one j ∈ J ′ such

that Mi ' Nj , and vice verse. By the induction hypothesis, Mi and Nj reduce to

a common term. It then follows that
⊔
i∈I ′Mi and

⊔
j∈J ′ Nj can be reduced to a

common term.

A reduction relation r is locally confluent iff for terms L,M,M ′, whenever L→r M

and L→r M
′, there exists a term N such that M →∗r N and M ′ →∗r N.

Lemma B.3

β u td is locally confluent.

Proof

Suppose that a term L is one-step reduced to terms M and N respectively by a

reduction of one of two non-overlapping redexes in term L, then M and N can be

reduced to a common term by one more reduction at each of their other redexes.

The reductions are locally confluent in these cases. What remains to be shown are

the cases when the redexes overlap.

We show local confluence for reductions on overlapping redexes by a case-by-case

analysis. We show two cases, where a t-redex contains other redexes, and where a

d-redex contains other redexes. The cases for u and β are not shown here because

the former is similar to the case for t, and the latter is straightforward.

A t-redex
⊔
i∈I Mi can be one-step reduced

• to term
⊔
i∈I−J Mi by a t-reduction, or

• to another term
⊔
i∈I−J ′Mi, where J 6= J ′, by a t-reduction, or

• to term
⊔
i∈I M

′
i with a one-step reduction in sub-term Mk → M ′k, k ∈ I;

otherwise Mi ≡M ′i for i 6= k.

The first two cases are easy because
⊔
i∈I−J Mi '

⊔
i∈I−J ′Mi; hence, by Lemma

B.2, the two terms can be reduced to the same term. It suffices to show that
⊔
i∈I−J Mi

and
⊔
i∈I M

′
i reduce to a common term to complete the case for the t-redex. There

are two sub-cases, depending whether k is in the set I − J or not, when Mk → M ′k
in term

⊔
i∈I M

′
i. Suppose that k ∈ I − J . Then for all j ∈ J such that Mj �Mk , let
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Mj →∗ M ′′j and M ′′j � M ′k (Lemma B.1). Otherwise, let M ′′i ≡ M ′i for all other

i ∈ I . It follows that both
⊔
i∈I−J Mi →∗

⊔
i∈I−J M

′′
i and

⊔
i∈I M

′
i →∗

⊔
i∈I−J M

′′
i. On

the other hand, suppose k ∈ J . Then for i ∈ I−J such that Mk �Mi, let Mi →∗ M ′′i
and M ′k � M ′′i (Lemma B.1). Furthermore, for those j ∈ J and Mj � Mi, also let

Mj →∗ M ′′j and M ′′j �M ′′i. Otherwise, let M ′′i ≡M ′i for all other i ∈ I . It follows

that both
⊔
i∈I−J Mi and

⊔
i∈I M

′
i reduce to

⊔
i∈I−J M

′′
i.

The case for d–redex is slightly more complicated. A redex ui∈I ⊔j∈Ji Mi,j can be

one-step reduced

• to term ui∈I ′ ⊔j∈Ji Mi,j , where I ′ ⊂ I , by a u-reduction, or

• to term ui∈I ⊔j∈J ′ i Mi,j , where J ′k ⊂ Jk for some k ∈ I , and J ′i = Ji for i 6= k,

by a t–reduction, or

• to term
⊔
p∈
∏

i∈I
Ji
ui∈I Mi,p|i by a d-reduction, or

• to term ui∈I ⊔j∈Ji M
′
i,j with a one-step reduction in sub–term Mk,l → M ′k,l ,

where k ∈ I and l ∈ Jk; otherwise, Mi,j ≡M ′i,j for i 6= k or j 6= l.

It turns out that both ui∈I ′ ⊔j∈Ji Mi,j and ui∈I ⊔j∈J ′ i Mi,j can be reduced to term

ui∈I ′ ⊔j∈J ′ i Mi,j . Furthermore,

ui∈I ′ ⊔j∈Ji Mi,j →
⊔
p∈
∏

i∈I′
Ji
ui∈I Mi,p|i '

⊔
p∈
∏

i∈I
Ji
ui∈I Mi,p|i

and

ui∈I ⊔j∈J ′ i Mi,j →
⊔
p∈
∏

i∈I
J ′ i
ui∈I Mi,p|i '

⊔
p∈
∏

i∈I
Ji
ui∈I Mi,p|i.

This shows the confluence of the first three cases in the above list. It remains to

show that that last case is confluent with the first three. But the confluence of

ui∈I ⊔j∈Ji M
′
i,j with ui∈I ′ ⊔j∈Ji Mi,j and ui∈I ⊔j∈J ′ i Mi,j are covered in the cases

for u and t, respectively. Finally, it can be shown both
⊔
p∈
∏

i∈I
Ji
ui∈I Mi,p|i and

ui∈I ⊔j∈Ji M
′
i,j can be reduced to

⊔
p∈
∏

i∈I
Ji
ui∈IM ′i,p|i. This completes the proof.

We now prove the main result.

Proposition B.4

β t ud is Church–Rosser.

Proof

Since βtud is strongly normalizing (Proposition 2.10) and locally confluent (Lemma

B.3), it follows that it is confluent, which implies Church–Rosser.
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