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Abs t r ac t . We discuss the winding of a force-free axisymmetric magnetic field rooted on 
a heavy conductor on z = 0. In quadrupolar symmetry the field expands in the half-space 
z > 0 and the toroidal flux concentrates on a conical surface. After a mean twist of 208°, 
the conical layer hosts large toroidal current loops with reversal of the magnetic flux on 
either side. The evolution of the field structure is described by scale-free static solutions 
B ~ r~ ' p + 2 ' , with p taking values between 0 and 2. The large expansion factor of the field 
structure is suggestive of flaring originating on the solar photosphere. 

Key words: mhd - Solar flares 

1. Prob lemat ic 

Shearing motions in the highly conducting photosphere drag the foot-points 
of emerging field lines. As a result mechanical energy is invested in the 
force-free field in the atmosphere above. There the dilute plasma freezes 
around the lines of force. We picture the photosphere as an infinite, heavy 
conducting sheet on z — 0 where a discus of diameter 2a located at the 
centre rotates about the z-axis giving rise to shear. Let the (axisymmetric) 
magnetic flux 3> emerging through na2 reconnect on z = 0 in the region 
R > a. The foot-points of the field are rooted on z = 0 so what happens now 
that the disc rotates? For slow rotation the field assumes static equilibrium 
configurations. Provided only the field vanishes high above z = 0, the field 
components will satisfy (Aly 1984; Lynden-Bell 1994) 

/ B2dV = [ B2
R + B2

0dV . 
Jv Jv 

Since BR and Bz are fixed on z = 0 they cannot increase there, however as 
the surface na2 is rotated the toroidal flux increases. This suggests tha t in 
order to satisfy the above integral the whole structure expands in R and z 
with flux-freezing. On z = 0 there can be no expansion so after some twist 
the field structure becomes approximately of quadrupolar symmetry, while 
the length a brings no useful unit of measure. We therefore look for scale-free 
axisymmetric solutions to the problem with four-fold symmetry. 
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2. Equat ions 

We follow Lynden-Bell &; Boily (1994) with a slight change of notation. Since 
B — W • B — VB = 0 we write the axisymmetric B — VB 

B-VB = B-W<f> x B-WV + RB4>B-W<t> = B-VBL + B^, (1) 

where <f> is the azimuth and both \I> and B^ are functions of the cylindrical 
radius R and z. \I/ is taken to be 

* ( r , t f ) = a " * r - P / ( / i ) , (2) 

with / (JU) a dimensionless function of fi = cosO and p a free parameter. 
For a force-free field we may write B — W X B — VB = a B — VB, with 
a = a(R, z). In spherical polar coordinates / must satisfy 

[p(P+i)f+(i - W) r{p+2)/p = - K*)> * - ^ ^ f j ^ • (3) 

Since the left-hand side is a function of fi alone and the right-hand side 
is a function of *&(R, z) we equate both to a dimensionless constant (= — C) 
and obtain two equalities: 

p(p + 1 ) / + (1 - / , 2 ) / " = -C f^+Wr, (4) 

I( f lp$)2/P d ( y 2 = + C ^ + 2 ) / " . (5) 
2 dW 

Eq. (5) is integrated subject to B^ —> 0 when r —>• oo so B^ —> B^i^f) is 
known where ^ is given by (2) with / the solution of (4). 

Because / is an angular function, we modify the shape of the boundary 
into a half-sphere of radius a. Now all the flux emerges through the cap 
/^i < // < 1, with ii\ an unknown angle. Since the field decays rapidly with 
R the bulk of the flux will reconnect in the vicinity of R = a. No length will 
appear in the boundary condition if we impose that all lines reconnect at 
the base of the sphere, on 0 < (J, < fi\. Thus outside r — a the flux through 
z = 0 vanishes, giving the boundary condition Bg = f — 0 when fi = 0. 
Since Be/, = 0 down the pole we require ^ = / = 0 where fi = 1. 

The function /(/*) maximises at / i i ; we use our freedom in C so that 
/ ( / i i ) = 1. In terms of the old flux $ , the flux through the spherical cap at 
r = a is $ ' = 27r$. Our task consists in solving for / in the differential (4) 
and discover the set of eigenvalues C(p) with p decreasing from 2 to 0. The 
field components in r > a are given by 

a?® 
B-VB = —^ 

rp+2 - A * V 1 - A* 
(6) 
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3. Quadrupolar solut ions 

Initially the quadrupolar field is meridional so B<j, = C = 0 with p = 2. 
For these values of C and p, (4) admits a unique solution satisfying all 

boundary conditions , / ( / i ) = ^ p / i ( l — LI2) which maximises at fi\ = 1/yS 
where / = 1. The solution for B — VB follows from substituting for / in (6). 
Solutions with p < 2 have C ^ 0 and give rise to toroidal flux B<p. Wha t 
is the corresponding number of turns? Because the field lines are rooted on 
r = a, each revolution of the cap LI\ < n < 1 with respect to the base 
LI < [ii increases the toroidal flux by one unit of <£'. Thus we define the 
flux-weighted mean twist N as the ratio of toroidal to meridional fluxes, 

"=£=•-!= * ' 2?r$ 
J2/™ B^rdr d0 = 

JO J a 

C U /•! /(P+l)/P d/Z 

.p(p+l)J Jo 1-fJ-2 2^ 
(7) 

From (7), an increase in C conjointly with a decrease of p contributes to 
augment iV. We remark that in the original problem with foot-points rooted 
on the surface, all field lines would necessarily go through the same number 
of turn N. Here the boundary conditions do not forbid movements of the 
foot-points on r = a, which are recovered a posteriori from the solution / . 

3.1. LIMITING SOLUTION: p ->• 0 

When p —> 0 and since m a x { / } = 1, (4) reduces to / " = 0 away from LI = LI\, 
where / = 1. Near the maximum we need solve (1 - n\)f" = - C / ( " + 2 ) / P . 
The solution to this equation satisfying / = 0 at /i = 0 or 1 is 

/(/*) = ! - P 

P+l 
COsh ( y [1 - 2/i]) (8) 

and / = 1 at m = 1/2. In the above ( C ) 2 = 4 ( p + l ) C / ( 3 p ) . Substituting 
(8) in (7) we obtain a mean turn ./V = l / ( p + l ) v 3 and therefore N = l/-\/3 
when p = 0. The field configuration is deduced from (6). As p is reduced the 
field lines expand and become more radial (Fig. 1 of Lynden-Bell & Boily 
1994). With p small the toroidal flux is tiny except where / ~ 1, where / is 
given by (8). Thus all the twist is confined to a conical surface at fit —> 1/2, 
or 6 -> 60°. 

3.2. S IMILARITY P R O F I L E 

The solution with p = 0 has the interesting property tha t all field lines turn 
by the same amount. The angle turned through d<f> expressed as function of 
(j, — cos 0 is 

v P+l l - / i 2 ^ 
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For p small the integrand is heavily weighted at fi = / i i . Thus most of the 
twist d<f> occurs there. Since all field lines must go through // = fx\ this will 
be true for all of them. Integrating with the help of (8) we find <f> = 2TVN 

for p = 0, tha t is, all field lines make JV turn, as in the original problem 
with foot-points rooted on z = 0. This result does not hold for other values 
of p since now the range dfi for which f1'p is appreciable depends on the 
latitudes of the foot-points on r = a, which by definition are different for 
different field lines. 

4 . S u m m a r y 

Shear flows on the photosphere generate torques acting on an otherwise 
static field at equilibrium and cause it to expand by large factors. Thus the 
characteristic size of the shearing pattern is not important to the large-scale 
structure of the field. We idealised this situation and looked for scale-free 
power-law solutions to the magnetostatic equations in axisymmetry when 
flux lines emerge from a half-sphere of radius a. However in solving for 
the field structure the constraint that the foot-points be frozen on r = a 
was relaxed. Thus in the initial configuration, the separatrix of outgoing 
and incoming flux lines is at /ii = l / \ / 3 or 54.7°, whereas in the final 
configuration the separatrix is found at /ti = 1/2, or 60°. Nevertheless the 
solutions are in good agreement with numerical solutions which enforce the 
boundary condition of frozen foot-points on z = 0 (e.g. Sturrock & Barnes 
1972a,b). 

The derivation of scale-free solutions is readily generalised to other cases. 
The most important of these is perhaps the dipolar field (Aly 1994; Boily 
1994, PhD Dissertation, Cambridge). Dipolar solutions with 0 < p < 1 exist 
which discharge in the plane z = 0 after a mean turn N = 1/2. 

The p —>• 0 solution discussed herein was first worked out by one of us 
(Lynden-Bell 1994). Further details are in Lynden-Bell & Boily (1994). This 
article was prepared with a Kluwer L^TgX style file. 
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