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A horizontal cylinder with a concave cross-section partially submerged in a liquid at a
given position may permit multiple menisci around itself. The number and stabilities of
the menisci are analysed, and how the menisci change during the processes of gradually
hoisting and lowering the cylinder is explained by bifurcation theory. The restoring force
on the concave cylinder and the rebounding potential energy (defined as the work done by
the restoring force during the whole hoisting process to represent the potential rebounding
capacity of a cylinder on water) are also investigated. The results show that, when the
radius of the concave arc is smaller than the critical value, the concave cylinder at a
given position permits multiple possible menisci. The equilibria form fold bifurcations
with the position of the cylinder as the bifurcation parameter, and two successive fold
bifurcations can form a one-fold hysteresis loop. The force–distance curve representing the
relation between the restoring force and the position of the cylinder also has corresponding
hysteresis loops, where the restoring force will jump (i.e. change discontinuously) at the
bifurcation points. In contrast to a convex cylinder, a concave cylinder can have different
values of the restoring force at the same height because of multiple menisci, and the values
depend on whether it is hoisted or lowered. Under the condition of a fixed cross-sectional
area, the optimal cross-sectional shape is determined when the maximum rebounding
potential energy is reached, and it is close to the shape with the critical concave arc
angle for the existence of multiple possible menisci. The cross-sections with concave parts
are preferable to circular, laterally planed and corner-concave cross-sections. This paper
provides an effective method of enhancing the restoring force and potential rebounding
height of a robotic water strider insect or particles on the surface of water.
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1. Introduction

A small object partially submerged in a liquid can create interfacial deformations due
to surface tension. The deformed interface will result in capillary forces acting on the
small object. This phenomenon is common in nature and is also important in practical
applications, such as the behaviour of colloidal particles attached to liquid surfaces (Binks
2002; Bormashenko 2011), the formation of liquid lenses (Aveyard & Clint 1997), the
mutual interaction (attraction or repulsion) between floating bodies (Bhatnagar & Finn
2013; Ho, Pucci & Harris 2019) and the motion of water striders (Gao & Jiang 2004)
and interfacial machines/robots (Barbot et al. 2019; Basualdo et al. 2021). These examples
can be classified into two groups according to the Bond number Bo (which measures the
importance of gravity compared to surface tension): (i) for microscale bodies (Bo → 0),
the interfacial deformations result from imposed contact angle or contact line conditions;
and (ii) for mesoscale bodies (Bo ∼ 1), the interfacial deformations mainly result from
the weight and buoyancy of the bodies (Kralchevsky & Nagayama 2000). The former
focuses mainly on the equilibrium positions and orientations of (anisotropic) particles at
liquid interfaces, while the latter focuses on how capillary forces balance the weight of the
bodies.

Many static configurations have been investigated for understanding how surface tension
allows heavier-than-liquid particles to float (see Vella (2015a) for a review). One typical
example is a floating cylinder with a circular cross-section, which is usually used for
explaining the huge restoring forces provided by the superhydrophobic legs of water
striders (Gao & Jiang 2004; Liu, Feng & Wang 2007). It is easy to derive the force
condition of the floating circular cylinder in analytical form through force analysis
(Rapacchietta, Neumann & Omenyi 1977; Bhatnagar & Finn 2006; Vella, Lee & Kim
2006). Neglecting the weight in the force condition gives the restoring force as the
cylinder changes its vertical location, and also determines the maximal restoring force
corresponding to the largest density of the cylinder that can float in equilibrium. However,
the maximal restoring force of a hydrophobic cylinder is insensitive to its contact angle,
which implies that the load-bearing capacity of the strider’s legs does not significantly
benefit from its superhydrophobic property (Vella et al. 2006; Liu et al. 2007). Instead, the
superhydrophobicity of the cylinder can dramatically reduce the detachment work (i.e. the
energy required to lift the cylinder off the liquid surface) to promote the detachment of the
cylinder (Lee & Kim 2009).

Another important feature derived from the force condition is that there are two possible
equilibrium positions of a floating cylinder (Bhatnagar & Finn 2006). Assuming that two
equilibria exist, their stabilities can be examined either by force analysis or by energy
analysis (see e.g. Rapacchietta et al. 1977; Bhatnagar & Finn 2006; Chen & Siegel 2018).
The former provides a more intuitive but less rigorous interpretation of the stability. For
example, as the cylinder sinks further into the liquid, the decrease of the vertical force will
eventually cause the cylinder to sink, which corresponds to an unstable equilibrium. The
latter predicts the stability by the variation of the total energy of the system in the context
of the principle of virtual work. The two methods are equivalent to each other and provide
the same stability criterion.

Regarding a non-circular cylinder, its irregular shape can influence not only the force
condition, but also the moment condition, leading to a rotational stability problem. Liu
et al. (2007) studied the force conditions of cylinders with elliptical and polygonal
cross-sections, and showed that the strider’s non-circular legs induced by elastic
deformations create a greater restoring force than circular ones. For a free-floating
non-circular cylinder, its equilibrium orientations also play a significant role in the
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Surface tension on partially submerged concave cylinder

maximal restoring force. For example, the load-bearing capacity of a lying elliptical
cylinder (i.e. its major axis is parallel to the water line) is stronger than that of a standing
cylinder (i.e. its minor axis is parallel to the water line) with the same shape. However,
the rotational equilibrium of the standing cylinder is unstable, while the lying cylinder
is rotationally stable (Zhang, Zhou & Zhu 2018). This implies that the floating elliptical
cylinder will automatically adjust its orientation due to the total moment, and therefore
its load-bearing capacity is evaluated based on the configuration of the lying cylinder.
More generally, the rotational equilibria and their stabilities of a cylinder with an arbitrary
convex cross-section are investigated without gravity (Raphaël et al. 1992; Kemp & Siegel
2011).

Zhang et al. (2018) also studied cylinders with more irregular shapes by developing a
mathematical model for calculating the force profile and the moment profile of a cylinder
with an arbitrary cross-section. In this model, it is assumed that the cross-section of the
cylinder is non-concave to fluids so that the meniscus (if it exists) can be determined
uniquely by the cylinder’s position. Conversely, a concave cylinder may permit multiple
menisci. A concave part can lead to a jump (i.e. a discontinuous change) of contact line
(Jansons 1985, 1986). In reality, whether the body is convex or not has a crucial influence
on many floating phenomena. For instance, a hollow boat (Bo � 1) that has a concave
shape can float on water even though the density of its material is significantly larger
than that of water, whereas a convex body (Bo � 1) of the same material will sink into
the water as predicted by Archimedes’ principle. For mesoscale cylinders (Bo ∼ 1), the
concave shape may cause the instability of the meniscus on the concave part because the
concave solid support weakens the meniscus stability (see e.g. Bostwick & Steen 2015).
Based on the above observations, one may suspect that the menisci around a cylinder with
a concave shape may be multiple and some of them may be unstable.

Concave bodies at the fluid–fluid interfaces are common in nature, including some drift
ices, seeds, leaves, branches, etc. Dumbbell particles may be fabricated due to the oriented
assembly of anisotropic particles by capillary interactions (Lewandowski et al. 2009).
A soft solid can deform to concave shape with creasing patterns driven by capillarity (Mora
et al. 2010). Hegemann, Boltz & Kierfeld (2018) claimed that an elastic microcapsule
with two liquids coexisting inside it can be compressed into a dumbbell shape due to
the effect of liquid–liquid interfacial tension, but no further work on concave capsules
at liquid–liquid interfaces has been conducted. The equilibrium configurations of Janus
dumbbell and Janus spherocylinder or Janus ellipsoid at a fluid–fluid interface were
investigated based on energy minimization (Park & Lee 2012; Anzivino et al. 2019). The
dynamics of two fused equal spheres driven along an interface between two immiscible
fluids has been investigated asymptotically (Dörr & Hardt 2015). Furthermore, hysteresis
phenomena are common in numerous physical, mechanical, ecological and biological
systems. They reflect memory effects and process irreversibility. The question of how the
concavity of the cross-section of a cylinder affects the force condition and hysteresis of the
concave cylinder still remains unanswered.

The magnitude of the capillary force is an important factor determining the potential
rebounding height of a drop or a solid body at a liquid–gas interface, besides determining
the floating or sinking of a solid body (Vella 2015b). Water striders can jump on water by a
large enough restoring force, which is produced by initially lowering its superhydrophobic
legs to form a dimple. A large restoring force is needed for the jump on water (Vella 2015b).
Koh et al. (2015) experimentally investigated the take-off velocity and force of the strider’s
legs and built a robotic insect jumping on water with maximum momentum transfer. Yang
et al. (2017) found that water striders adjusted leg movement speed to optimize take-off
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velocity for their morphology. Kim et al. (2017) analysed the mechanics of jumping on
water. Chen et al. (2018) numerically simulated the entrapping and rebounding of an
impacting sphere at a liquid–gas interface. Galeano-Rios et al. (2021) studied the rebounds
of capillary-scale superhydrophobic spheres on water. Lowering a superhydrophobic solid
body to form a dimple on a water surface, as done by a water strider for jumping
on water, is to generate a large enough restoring force (corresponding to large enough
restoring potential energy) for rebound of the solid body. However, the magnitude of
the restoring force for rebounds is not certain to be equal to that of the restoring force
during the lowering stage, especially for a solid body with a concave shape. Accordingly,
the force magnitude for hoisting and lowering solid bodies is an important problem and
should be studied to determine the rebounding potential energy (defined as the work
done by the restoring force during the whole hoisting process of an object) determining
the potential rebounding height. Will the cross-section of a solid body influence the
rebounding potential energy? How does a concave shape change the restoring force as
hoisted?

In physics dominated by surface tension, there is possibly an optimal shape of
solid–liquid interface. De Souza et al. (2008), based on numerical simulations, found that
the adhesion force possibly is modestly enhanced by dividing a fixed volume of liquid
bridge between flat plates into many bridges between flat plates. By theoretical modelling,
Butler & Vella (2022) found that splitting a fixed volume of liquid bridge between rough
surfaces into many liquid bridges can significantly enhances the adhesion force by an order
of magnitude. Will an optimal shape of the cross-section of a cylinder be reached for the
maximum rebounding potential energy with a fixed volume of the cylinder under the effect
of surface tension?

In order to answer the above interesting questions, this paper conducts theoretical
research to determine the force condition of two typical concave cylinders (figure 1) with
concave cross-sections. Section 2 theoretically determines the multiple possible menisci
on two representative concave cylinders, and analyses the stabilities of the menisci. Section
3 investigates the hysteresis during the processes of hoisting and lowering the cylinder
and conducts an analysis of the forces on the cylinder. Section 4 studies the rebounding
potential energy and determines the optimal shape of the cross-section of a cylinder for
the maximum rebounding potential energy. Finally, § 5 draws the main conclusions.

2. Multiple possible menisci and their stabilities

When a cylinder is at a given position, the multiple possible menisci on it means the
existence of multiple solutions of the Young–Laplace equation. Among the multiple
possible menisci, only the stable menisci can physically exist. In this section, we will
investigate how concave shapes affect the number of menisci based on the two-dimensional
Young–Laplace equation, and determine the stabilities of the menisci in terms of the
geometrical arguments of the solid boundary.

2.1. Multiple possible menisci on concave cylinders
We consider a solid cylinder of density ρs with a concave cross-section partly submerged
into an infinite liquid having density ρl and surface tension σ in a downward gravity field
g. For the sake of simplicity, we choose to study the symmetric configurations in figure 1,
because the menisci on the two sides of the cylinder are independent of each other. Here,
two representative concave shapes are considered in this work: (i) the concavity of the
region fused by two equal upper and lower circles is caused by a corner, which is a vertex
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Figure 1. Schematics of horizontal cylinders with two representative concave cross-sections partly submerged
into an unbounded liquid: (a) the boundary of the cross-section is always convex to fluids (the curvature of the
solid boundary K̄ < 0) except at the two corners; and (b) the boundary has two concave parts (K̄ > 0) each
lying between two inflection points. There are three types of forces acting on the cylinder: the surface tension
force F T , the pressure force F P due to pressure p, and the weight F G. In (a), the concave shape with a corner at
an angle α ∈ (0,π) is produced by overlapping two equal circular regions with a radius of R, with the distance
D between the centre O of the lower circle and the centre O′ of the upper circle; while in (b), the concave shape
is produced by rounding the corners of the concave shape in (a) with two circles (red dashed curves) with a
radius of r, where γ is defined as the circular arc angle of the concave part and β is the azimuthal angle at
one junction of the concave and convex parts of the cylinder. In (a), the concave shape permits two possible
menisci when the cylinder is positioned at a specific height h, and both of them are stable but only one can
exist in reality. In (b), there are three possible menisci. The middle meniscus, which intersects the solid on
the concave part, is unstable, whereas the other two menisci are stable. It should be noted that the coordinate
system is fixed to the cylinder, and the water line (where the hydrostatic pressure p = 0) is located at y = −h,
so that the hydrostatic pressure is calculated by p = −y − h.

of angle α ∈ (0,π)where the slope of the boundary curve is discontinuous (figure 1a); and
(ii) the concavity of the region fused by two equal upper and lower circles and rounded by
another circle (its centre is located at the horizontal line of symmetry of the cross-section)
is caused by a concave part (figure 1b). We exclude two special situations, i.e. bubble
formation around the cylinder and drop attachment to the cylinder, when there are multiple
intersection points of the solid and the menisci. We scale all lengths by the capillary length
l = √

σ/ρg, pressure by ρgl, areas by l2, curvatures by l−1, and forces by σ , where ρ is
the density difference ρ = ρl − ρg between the liquid and the gas.

The origin of the Cartesian coordinates is located at the centre O of the lower circle
before it is fused. As shown in figure 1, the concave cylinder positioned at a specific
height h (i.e. the distance from the water line to the origin of the Cartesian coordinates)
may permit multiple possible menisci around itself. It is well known that all these
menisci on the partially submerged cylinder satisfy the two-dimensional dimensionless
Young–Laplace equation (Finn 1986; Bhatnagar & Finn 2016):

(
ux√

1 + u2
x

)
x

= u, (2.1)

where u(x) is the height of the meniscus from the water line located at y = −h (i.e. the
cylinder is positioned at height h from the water line and h is negative in the cases shown
in figure 1), and the subscript x refers to the derivative with respect to the coordinate x.
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Because the configuration is symmetric, we only consider its left side for simplicity.
Integrating (2.1) with the condition of menisci at infinity,

u → 0 and ux → 0 as x → −∞, (2.2a,b)

gives the meniscus shape (see e.g. Finn 1986; Bhatnagar & Finn 2006),

x − xc = 2
(

cos
ψ

2
− cos

ψc

2

)
+ ln

tan
ψ

4

tan
ψc

4

, u = 2 sin
ψ

2
, (2.3a,b)

where the subscript c indicates the contact line (the contact point in two dimensions), and
ψ is the inclination angle of the meniscus measured anticlockwise.

The boundary of the concave cylinder is expressed by a parametric function r(s) =
(x(s), y(s)), where s denotes the arclength of the boundary. It is assumed that the
parametrization is oriented clockwise so that the unit tangent vector of the boundary is
(cosϕ, sinϕ) = (x′(s), y′(s)), where the prime denotes the derivative with respect to s.
Thus, the signed curvature of the solid boundary K̄ = dϕ/ds < 0 for convex parts and
K̄ > 0 for concave parts (see figure 1b). Based on the Young–Dupré equation, all of the
multiple possible menisci must yield the geometry constraint at the contact lines,

ψc + θ = ϕc, uc − h = yc, (2.4a,b)

where ϕc = atan2(x′(s), y′(s)) is the inclination angle of the boundary of the cylinder at
the contact lines and is measured anticlockwise. Here, atan2(X, Y) is a special kind of
inverse tangent that takes into account the quadrant in which (X, Y) lies and its range is
(−π,π].

Thus, from (2.3b) and (2.4), we can formulate the equation for determining the
meniscus,

ϕ(s)− ψc(s; h)− θ = 0, (2.5)

where

ϕ(s) = atan2(x′(s), y′(s)) and ψc(s; h) = 2 arcsin
y(s)+ h

2
. (2.6a,b)

When (2.5) has multiple solutions for a certain value of h, there will be multiple possible
menisci on the cylinder positioned at the height h. Zhang et al. (2018) has shown that,
when the cylinder has a convex shape, the meniscus can be determined uniquely by its
height h. This conclusion can be easily explained by (2.5). When the cylinder has a
non-concave shape (i.e. the curvature of the solid boundary K̄ � 0), the function ϕ(s)
is a non-increasing function, and it is also easy to see that the function ψc(s; h) is a
non-decreasing function with a fixed value of h. Therefore, the left-hand side of (2.5),
f (s; h) = ϕ(s)− ψc(s; h)− θ , is a non-increasing function, and then (2.5) has a unique
solution (if it exists).

However, how the concavity of the cylinder leads to multiple possible menisci in the
displacement process of the cylinder is not clear. To intuitively analyse the menisci on the
concave cylinder in the displacement process, we will solve (2.5) with varying parameter
h for two typical concave cylinders (see figure 2).
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Figure 2. The inclination angle ϕc of the solid boundary at the contact line with respect to the height h for
(a) a concave cylinder with two corners and (b) each of concave cylinders with three different values of r.
Here, R = 1, D = 1.75 and θ = 5π/9. In (a), for some values of h, there are two possible menisci, respectively
corresponding to two values of ϕc, where the upper (lower) meniscus corresponds to a higher (lower) value
of ϕc. The inset in (b) shows an enlarged view of the −1.055 � h � −1.045 range. In (b), for r = 0.3613 and
1.0112, ϕc(h) assumes multiple distinct values for some values of h, whereas for r = 1.5583, ϕc(h) has a unique
value in its domain. Three typical configurations with different values of r and h = −1.047 are shown by the
insets, where the concave (convex) parts and the menisci meeting the concave (convex) parts are marked by red
(black) solid lines.

2.1.1. Concave shapes with corners
Figure 1(a) shows a symmetric concave cylinder with two equal corners, which can be
produced by gluing two equal truncated circular cylinders with a radius of R, with the
distance D between the centres of the two truncated cylinders. Therefore, the configuration
of the concave cylinder can be determined by the superposition of the configurations of the
two truncated cylinders. The meniscus on a circular cylinder with the radius R (figure 2c)
has been well studied (see e.g. Chen & Siegel 2018), where the relationship between ϕc
and the height h of the centre of the circular cylinder is given by

h = 2 sin
ϕc − θ

2
− R cosϕc for ϕc ∈ [0,π]. (2.7)

It is noted that (2.7) is also derived from (2.3b) and the geometric constraint (2.4). Thus,
(2.7) is equivalent to (2.5) for a circular cylinder. Because the right-hand side of (2.7),
h(ϕc), is a strictly increasing function, its inverse function ϕc(h) is also strictly increasing.
Therefore, the meniscus on a circular cylinder can be determined uniquely by the height h.

For the concave cylinder in figure 1(a), the relationship between ϕc and the height h is
given by

h = 2 sin
ϕc − θ

2
− R cosϕc for ϕc ∈

[α
2
,π
]
, (2.8a)

h = 2 sin
ϕc − θ

2
− R cosϕc − D for ϕc ∈

[
0,π − α

2

]
, (2.8b)
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where the angle of the corner is given by α = 2 arccos(D/(2R)). Equation (2.8) is derived
by considering the concave cylinder as two truncated circular cylinders, where (2.8a) and
(2.8b) correspond to the lower and upper truncated cylinders, respectively.

With the aid of (2.8), we can plot the multivalued function ϕc(h) for R = 1, D = 1.75
and θ = 5π/9, as shown in figure 2(a). The left and right curves in this panel are generated
by (2.8b) and (2.8a), respectively. When the two curves have a common domain at some
heights, the multivalued function ϕc(h) assumes two distinct values of ϕc in the common
domain, which implies that there will be two possible menisci on the concave cylinder (see
figure 2(a) for h = −1.047). To ensure the existence of the common domain, the angle
α of the corner must satisfy α < π. In other words, the condition α < π is a sufficient
condition for multiple possible menisci. We note that the condition α < π also leads to
the concavity of the cylinder. Therefore, the concave cylinder in figure 2(a) must have two
possible menisci for some values of h.

2.1.2. Concave shapes with concave parts
Figure 1(b) shows a symmetric concave cylinder with two equal concave parts, produced
by rounding the corners of the concave cylinder in figure 1(a) with two circles with a radius
of r. Therefore, when the menisci are on the convex parts of the cylinder, the relationship
between ϕc and the height h has the same mathematical form as in the case of figure 1(a),
given by

h = 2 sin
ϕc − θ

2
− R cosϕc for ϕc ∈ [β,π], (2.9a)

h = 2 sin
ϕc − θ

2
− R cosϕc − D for ϕc ∈ [0,π − β], (2.9b)

where the azimuthal angle at the lower junction of the concave and convex parts of the
cylinder is given by β = arccos(D/(2(R + r))). When the menisci are on the concave parts
with a constant curvature K̄ = 1/r, from (2.3b) and (2.4b), we can obtain the relationship
between ϕc and h for the concave parts as

h = 2 sin
ϕc − θ

2
+ r cosϕc − D

2
for ϕc ∈ [β,π − β]. (2.10)

With the aid of (2.9) and (2.10), we plot the function ϕc(h) for three different values
of r with R = 1, D = 1.75 and θ = 5π/9, as shown in figure 2(b). In the three cases
of r = 0.3613, r = 1.0112 and r = 1.5583, the changes in the number of menisci with
changing cylinder height are qualitatively different from each other, represented by the
function ϕc(h). For r = 0.3613, ϕc(h) has three distinct values for each value of h in some
region, where the sub-function ϕc(h) given by (2.10) is strictly increasing. For r = 1.5583,
ϕc(h) is single-valued, where (2.10) defines a strictly decreasing function ϕc(h). For an
intermediate value r = 1.0112, ϕc(h) has up to five distinct values for some values of h,
where (2.10) defines a multivalued function ϕc(h). When the above cylinders are placed at
a certain height h, each value of ϕc corresponds to a possible meniscus. For instance, the
concave cylinder with r = 1.0112 positioned at h = −1.047 permits five possible menisci
(see the middle inset of figure 2b), where three menisci are on the concave part.

The difference caused by different values of r mainly occurs in (2.10), which can
be distinguished by the derivative h′(ϕc). Consider h as a function of ϕc and then
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Surface tension on partially submerged concave cylinder

differentiating (2.10) with respect to ϕc gives

h′(ϕc) = cos
ϕc − θ

2
− r sinϕc for ϕc ∈ [β,π − β]. (2.11)

When h′(ϕc) < 0 is always satisfied on the concave part, the function ϕc(h) defined by
(2.9) and (2.10) is single-valued. This implies that the meniscus on this cylinder can be
determined uniquely by the cylinder height h, analogous to a convex cylinder. Therefore,
h′(ϕc) � 0 will be a criterion for determining whether the concave cylinder in figure 2(b)
permits multiple possible menisci. When h′(ϕc) > 0 is always satisfied, (2.9) and (2.10)
will have a common domain, leading to multiple values of ϕc, though the sub-function
ϕc(h) given by (2.10) is single-valued. When h′(ϕc) is allowed to change its sign on the
concave part, the sub-function ϕc(h) given by (2.10) is multiple-valued.

Based on the above observations, the critical radius of concave arc r∗ (corresponding
to the critical angle of the concave circular arc γ ∗, see figure 6a) for multiple possible
menisci can be found by solving

max(h′(ϕc)) = 0. (2.12)

For R = 1, D = 1.75 and θ = 5π/9, the critical value given by (2.12) is r∗ = 1.0919. This
indicates that only the concave cylinders with r < r∗ in figure 1(b) can permit multiple
possible menisci, consistent with the cases in figures 2(b) and 5.

It is interesting that, if h′ = 0 always holds on an interval of ψc, the corresponding
cylinder with an appropriate height will have infinitely many possible menisci on this
interval. The property that there exists an entire continuum of distinct menisci on a
special solid support has been exploited for several different configurations, e.g. the exotic
container (Concus & Finn 1991) and the exotic capillary tube (Wente 2011). As the name
suggests, the former is a container with a specific axisymmetric shape and with a certain
volume of liquid that admits infinitely many possible menisci in it. By contrast, the latter
is a specific axisymmetric capillary tube placed at an appropriate height in an infinite
liquid that also has the above ‘exotic’ property with a pressure constraint. In our case,
the boundary of the cylinder having the ‘exotic’ property can be seen as an exotic wall
analogous to the exotic capillary tube, the curvature of which satisfies h′ = 0. Its shape
can be obtained analytically (Zhang & Zhou 2020).

Generally, there are different capillary forces on the surface of a Janus particle, which
can cause the surface tension imbalance. The surface tension imbalance can induce the
twisting of a Janus cylinder (Oratis, Farmer & Bird 2017). The surface tension imbalance
also can induce self-powered locomotion of a hydrogel water strider (Zhu et al. 2021) or
an isotropic particle with different surface tension coefficients on its surface (for example,
a partially submerged cylinder having surface tension imbalance; see Janssens, Chaurasia
& Fried (2017)). Even if convex to the fluids, a Janus particle, half of which has a different
contact angle from the other half, possibly has a jump of contact line at its surface when
it moves through a fluid–fluid interface. We find that a jump of contact line occurs as a
Janus cylinder is gradually lowered or hoisted by keeping the upper part hydrophilic and
the lower part hydrophobic (figure 3a), which also should cause a change of rebounding
capacity. We will compare the effects of concave shapes and Janus convex feature on the
jump of contact lines and characteristics of multiple menisci (see figure 3).

2.2. Stabilities of multiple menisci
As shown in figure 3, the menisci around the cylinder are not unique and only stable
menisci can physically exist. The methods to determine the stability are generally based
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Figure 3. Multiple menisci (the first column) on (a) a Janus (convex) circular cylinder, (b) a concave cylinder
with corners, and (c,d) two concave cylinders with concave parts with different radii, (c) r = 0.3613 and (d) r =
1.0112. For the Janus circular cylinder, R = 1.5, and θu = 4π/9 for the upper part and θl = 5π/9 for the
lower part; while for the three concave cylinders, R = 1, D = 1.75 and θ = 5π/9. In the first column, the
concave (convex) parts and the stable menisci meeting the concave (convex) parts are marked by red (black)
solid lines, and the unstable menisci meeting the concave parts are marked by red dashed lines. The height
dependence of the geometric parameters: the intersection angle ω between the meniscus and the solid (the
second column), the difference K̄ − K̄∗ (the third column), and the difference χ̄1 − χ∗

1 (the last column),
where the intersection angle ω is given by (2.15), K̄ and K̄∗ are the signed curvatures of the solid and the
exotic cylinder given by (2.14) and (2.17), respectively, and χ̄1 and χ∗

1 are the new boundary parameter and
the critical value given by (2.21) and (2.20), respectively. Grey solid (dashed) lines represent the segments
for ω′( y) < 0 (ω′( y) > 0) corresponding to stable (unstable) menisci. Circles (solid points) are the unstable
(stable) solutions. Remarkably, a Janus circular cylinder with hydrophobic upper part and hydrophilic lower
part can only permit a unique meniscus for any value of h and may be pinned at the joint edge, which is
different from the case of (a) and similar to that of a uniform convex cylinder with sharp edge (Zhang et al.
2018). So the graphs for this case have not been given in this figure.
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Surface tension on partially submerged concave cylinder

on minimizing the system’s total energy functional: the equilibrium is stable when the
minimum of the second variation of the total energy over all admissible perturbations is
positive, and is unstable when it is negative (Slobozhanin & Alexander 2003). Two types
of constraint on the bulk, i.e. volume constraint and pressure constraint, can influence
the meniscus stability. The volume constraint means that the total volume (area in the
two-dimensional case) of the liquid is fixed, corresponding to volume perturbations. The
pressure constraint means that the reference pressure is held constant, corresponding
to pressure perturbations. The volume perturbations with pinned contact line (contact
point in the two-dimensional case) is the least dangerous for stability, while the pressure
perturbations with free contact line is the most dangerous (Bostwick & Steen 2015).

In this work, as the stability problem is two-dimensional, the only admissible
perturbation is in the plane and the corresponding total energy functional is considered.
Besides, the type of constraint is the pressure constraint (because of infinite liquid) with
a free contact point. Thus, the stability of an equilibrium meniscus can be given by
comparing the boundary parameter χ1 and its critical value χ1

∗, that is, the equilibrium
meniscus will be stable if χ1 > χ1

∗, and unstable if χ1 < χ1
∗ (Myshkis et al. 1987;

Slobozhanin & Alexander 2003), which can be derived from the associated eigenvalue
problem for the second variation of the total energy (see Appendix A). In the following,
the parameters related to the meniscus are defined at the contact point, and the subscript c
of these parameters is omitted for convenience.

The boundary parameter χ1 of the solid at the contact point is given by (see e.g.
Slobozhanin & Alexander 2003)

χ1 = K cos θ − K̄
sin θ

, (2.13)

where K = 2 sin(ψ/2) is the curvature of the liquid at the contact point, and the curvature
K̄ of the solid boundary x( y) can be written as

K̄ = − x′′( y)
(1 + (x′( y))2)3/2

, (2.14)

where K̄ < 0 (K̄ > 0) if the solid is convex (concave) to the liquid. The critical value χ1
∗

can be determined based on the exotic cylinder whose boundary parameter χe,1 is equal to
χ1

∗ (Zhang & Zhou 2020), and the process of obtaining χe,1 is presented as follows.
Giving the expression of the intersection angle ω between the meniscus and the solid

boundary as ω( y) = ϕ( y)− ψ( y), and substituting (2.6a,b) into it, we have

ω( y) = atan2(1, x′( y))− 2 arcsin
y + h

2
for y ∈ [max(−2, h − R),min(2, h + D + R)].

(2.15)

It is noted that the relation ω( y) = θ is satisfied at the contact point. The intersection
points of the curve denoting the function ω( y) and the straight line ω = θ are just the
contact points that correspond to the equilibrium menisci (figure 3).

The exotic cylinder permits an entire continuum of equilibrium menisci on it, i.e.
ω( y) = θ is always satisfied for an exotic cylinder. Differentiating ω( y) and setting
ω′( y) = 0 for the exotic cylinder, we obtain

ω′( y) ≡ − x′′

1 + x′2 − 2√
4 − ( y + h)2

= 0 (2.16)
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at the stationary points of ω( y). Comparing (2.14) and (2.16) gives the curvature of the
solid boundary at the stationary point,

K̄∗ = 2√
(1 + x′2)(4 − ( y + h)2)

, (2.17)

which is also an expression for the curvature of the exotic cylinder in two dimensions.
From (2.14), (2.16) and (2.17), we have

ω′( y) =
√

1 + x′2 (K̄ − K̄∗
). (2.18)

Substituting x′ = cotϕ and y = 2 sin(ψ/2)− h into (2.17), we obtain the curvature of the
exotic cylinder in two dimensions expressed in terms of ψ and θ as

K̄e = sin (ψ + θ)

cos
ψ

2

. (2.19)

Substituting K = 2 sin(ψ/2) and (2.19) into (2.13), the boundary parameter of the exotic
cylinder χe,1 (i.e. the critical value χ1

∗) is obtained as

χ1
∗( y) = − cosψ

cos
ψ

2

= ( y + h)2 − 2√
4 − ( y + h)2

, (2.20)

which is independent of θ , only depending on ψ (or y).
We could directly determine the stability of equilibrium menisci by comparing χ1

(calculated from (2.13)) and χ1
∗ (calculated from (2.20)) at the position satisfying ω( y) =

θ , but on account of the need for clarity of presentation, in this paper, we introduce a new
boundary parameter of the solid (similar to (2.13)) as

χ̄1( y) = K cosω − K̄
sinω

, (2.21)

which is equal to χ1 when ω( y) = θ . The new parameter χ̄1( y), which completely
depends on the function of the solid boundary x( y), can be calculated along the solid
boundary. By comparing χ̄1 and χ1

∗, the stabilities of the menisci can be determined, and
the solid boundary can be distinguished into different regions according to the stabilities
of the menisci (see figure 3). Because the range of the contact angle considered in this
problem is between 0 and π, only the range ω( y) ∈ (0,π) needs to be investigated here.
Therefore, from (2.15), (2.18), (2.20) and (2.21) we observe that χ̄1 < χ1

∗ and ω′( y) > 0
if K̄ > K̄∗, and that χ̄1 > χ1

∗ and ω′( y) < 0 if K̄ < K̄∗. Accordingly, the stabilities of the
menisci also can be determined by comparing K̄ and K̄∗ or by comparing ω′( y) and 0.

As formulated above, the equilibria and stabilities of the menisci are given in terms
of geometrical arguments. We also calculate directly the total energy of the system with
the contact point gradually changing and relate the positions of the equilibria of the
menisci and the stabilities of the equilibria to the energy. The positions of the minima
and maxima of the curve of the total energy with the y value of the contact point coincide
with the positions of the stable and unstable equilibria calculated by the method in terms
of geometrical arguments, respectively (see Appendix B).

To illustrate how to determine the number and stability of the menisci on different
concave cylinders by using the method based on geometrical arguments, let us consider
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Surface tension on partially submerged concave cylinder

representative simple examples: a concave cylinder with corners (the second inset in
figure 2a), and two concave cylinders each having concave parts with different radii
r = 0.3613 (the first inset in figure 2b) and r = 1.0112 (the second inset in figure 2b)
in comparison with a Janus (convex) circular cylinder with the hydrophilic upper part and
hydrophobic lower part (see figure 3). Here, the cases (the first and third insets in figure 2a
and the third inset in figure 2b) that only permit a unique meniscus (it must be stable) at a
height h have not been analysed.

Figure 3(c,d) shows that there are three (five) distinct menisci, all of which intersect
the solid at the contact angle θ = 5π/9. As discussed above, the curvature K̄ of the solid
boundary x( y) is compared to the critical curvature K̄∗ for determining the sign of ω′( y)
and the meniscus stability. In figure 3(b), the concave cylinder with corners permits two
possible menisci when the cylinder is positioned at a specific height (e.g. h = −1.047),
and both of them are stable because the solid boundary is convex to fluids, but only one
can exist in reality. This concave case with corners is generally analogous to a Janus convex
cylinder with hydrophilic upper part and hydrophobic lower part at h = 0.

In figures 3(c) and 3(d), the parts with ω′( y) > 0 and ω′( y) < 0 appear alternately.
There is at most one stable (or unstable) meniscus on one segment with ω′( y) < 0 (or
ω′( y) > 0) (i.e. between two neighbouring stationary points of ω( y)). Thus, the stable and
unstable menisci occur alternately. In this case, for a small value of r (e.g. r = 0.3613),
there are two stable menisci meeting the convex part and one unstable meniscus meeting
the concave part and staying between the two stable menisci, while for a large value of
r (e.g. r = 1.0112), there are two stable menisci meeting the convex part, two unstable
menisci meeting the concave part and lying between the two stable menisci, and one stable
meniscus meeting the concave part and lying between the two unstable menisci.

The above findings for the cases in figure 3 seem to suggest the general fact that, when
ω( y) is smooth, the stable and unstable menisci appear alternately on the solid surface
x( y) containing a concave part if the menisci are multiple.

3. Hysteresis effect and force analysis on a concave cylinder

The stable menisci of the multiple possible menisci on a cylinder at a given position
were determined in the previous section. However, only one of the stable menisci actually
exists in reality when vertically moving the cylinder. Hysteresis (i.e. the dependence of the
state of a system on its history) may exist when hoisting and lowering the cylinder. The
hysteresis plays an important role in determining which stable meniscus actually exists
during the processes of hoisting and lowering the cylinder. With the determination of the
existing meniscus, the forces on the cylinder can be obtained. In this section, we will study
the hysteresis effect to determine the existing meniscus and analyse the forces exerted on a
concave cylinder during the processes of gradually hoisting and lowering the cylinder,
and present the results in the form of bifurcation diagrams and force–distance curves
representing the relation between the restoring force and the position of the cylinder.

3.1. Hysteresis effect and determination of existing meniscus
Motivated by Huh & Mason (1974), who investigated an axisymmetric floating body
under surface tension effects, we consider an infinitesimal vertical displacement δh of the
cylinder in figure 1 (in the coordinate system fixed to the liquid), and then the function
for the solid surface is x( y − δh) for y ∈ [h − R + δh, h + R + D + δh]. As suggested
by Zhang et al. (2018), considering the above configuration in the coordinate system
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fixed to the solid (i.e. setting y = ỹ + δh and x = x̃ so that the pressure in the liquid is
p = −ỹ − δh) is more conducive to analysis, because the function for the solid surface
remains as x̃(ỹ) for ỹ ∈ [h − R, h + R + D].

In the following, the configuration will be investigated in the coordinate system fixed
to the solid and we will drop the tildes. In response to the infinitesimal displacement
δh, the meniscus will adjust itself slightly, and meanwhile the contact point (xc, yc) will
experience an infinitesimal displacement (δxc, δyc). The linear relation between (δxc, δyc)
and δh is given by (Zhang et al. 2018)[

K̄ cos
ψ

2
− sin(ψ + θ)

]
δyc = sin(ψ + θ)δh, (3.1a)

[
K̄ cos

ψ

2
− sin(ψ + θ)

]
δxc = cos(ψ + θ)δh. (3.1b)

This relation tells us that, if we have determined a stable meniscus on a part of the solid
boundary x( y) with K̄ < K̄∗, after an infinitesimal displacement δh the stable meniscus
will adjust itself slightly (according to (3.1)) to accommodate the solid surface because of
the pressure variation −δh. The same is true for an unstable meniscus on a solid part with
K̄ > K̄∗. Therefore, if the number of menisci does not change during the infinitesimal
change, which meniscus exists after an infinitesimal change can be determined by the
relation (3.1) and the former existing meniscus.

Then we investigate how the number of menisci changes with the cylinder height
h, which is related to the bifurcation theory (Seydel 2009). Considering a vertical
displacement −h of the water line in the coordinate system fixed to the solid, the pressure
is p = −y − h. Thus, the function for determining the equilibrium menisci is

f ( y, h) = ω( y, h)− θ. (3.2)

The equilibria will be found when f = 0. Differentiating (3.2) with respect to h gives

fh( y, h) = −(1 − (h + y)2/4)−1/2. (3.3)

From here onwards, the subscripts ‘y’ and ‘h’ denote differentiation. From § 2.2, we recall
that the meniscus is stable if fy < 0, and unstable if fy > 0. Similar to the dynamical system
with a fold bifurcation, two solutions are born or annihilate each other at the bifurcation
point ( yb, hb) where f ( yb, hb) = 0, fy( yb, hb) = 0, fh( yb, hb) �= 0 and fyy( yb, hb) �= 0 are
satisfied (Seydel 2009). With the help of (3.3) it can be easily seen that the inequality
fh( yb, hb) < 0 persists at any position on branches of extremals. Based on the properties
of fold bifurcations and with the inequality fh( yb, hb) < 0, we can derive that, if fyy > 0,
there are locally two solutions at the side, h > hb, of a bifurcation point and there is
no solution on the other side; and if fyy < 0, two solutions occur at the side h < hb
(see figure 4a,b). Figure 4(a,b) also shows that the two solutions y1 and y2 are stable
and unstable, respectively, with y1 < yb < y2 if fyy > 0 (with y1 > yb > y2 if fyy < 0).
Moreover, we also observe that the lower branch of extremals in a fold opening to the right
corresponding to fyy > 0 and the upper branch in a fold opening to the left corresponding
to fyy < 0 are stable, while the other branches are unstable. Therefore, the shape of a fold
in a bifurcation diagram can be used to predict the stabilities of the menisci.

For the configurations of the cylinders as shown in figure 1, there is a horizontal
symmetry axis y = D/2, and from (2.15), we obtain ω( y, h) = π − ω(−y + D,−h − D).
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Figure 4. Schematics of fold bifurcations of the contact points of menisci: (a,b) a simple fold and (c) two
successive simple folds. The solid line and dashed line denote stable and unstable solutions, respectively. In
(a,b), the solid points denote the bifurcation points ( yb, hb). In (c), blue (green) arrows denote that a cylinder
moves into (out from) the liquid, and dotted lines denotes the jump phenomena of menisci. The parts h ∈
[h2, h3] of branches form a sharp hysteresis loop.

Then, the relation can be given by

f ( y, h; θ) = −f (−y + D,−h − D;π − θ), (3.4)

which implies that, once an equilibrium meniscus on a cylinder with a contact angle θ
is found at a position (y, h), there must be an equilibrium meniscus on the cylinder with
the same geometry and the contact angle π − θ at the position (−y + D,−h − D) and the
liquid–cylinder system is symmetrical to the liquid–cylinder system with the parameters
(y, h; θ ) over the undisturbed water line. The equilibria and stabilities of the menisci on a
cylinder with the contact angle π − θ can also be derived from those of the menisci on the
cylinder with the contact angle θ that can be obtained with the bifurcation diagrams.

Fold bifurcations are usually associated with hysteresis effects. Characteristics for
hysteresis effects are jump phenomena, which take place at bifurcation points (Seydel
2009). Suppose that there are multiple stable menisci when the cylinder rises to a certain
height h ∈ (h2, h3); then the solutions of f ( y, h) = 0 for this configuration may form
a sharp hysteresis loop which consists of two successive simple folds, as shown in
figure 4(c). The jump phenomena of menisci can be explained as follows. Let us imagine
two opposite processes: hoisting the cylinder from h1 to h4 (green arrows) and lowering
the cylinder from h4 to h1 (blue arrows).

When the cylinder is placed at the height h1, the meniscus at the left side of the cylinder
is unique, which corresponds to a stable solution on the upper branch. Hoisting the cylinder
to h2, the meniscus varying with h adjusts itself according to (3.1). Then, a fold bifurcation
occurs at h2, and two solutions are born, one of which is unstable corresponding to the
middle branch and the other is stable corresponding to the lower branch. From h2 to h3,
the existing meniscus changes smoothly following the upper branch. Meanwhile, the upper
branch and the middle branch gradually approach each other and merge eventually at h3,
which is the second fold bifurcation. If we continue to hoist the cylinder, the contact point
of the meniscus will jump from the upper branch to the lower branch at the bifurcation
point. The jump phenomenon of the meniscus can cause transient phenomena, including
shock and oscillation. Discussions about transition phenomena are beyond the scope of
this paper.

Considering lowering the cylinder from h4 to h1, the change of the meniscus is similar to
that from h1 to h4, while the meniscus changes following the lower branch for h ∈ (h2, h3).

Therefore, the solutions for hoisting and lowering the cylinder form a sharp hysteresis
loop with h ∈ [h2, h3] in figure 4(c). The jump phenomena of the meniscus are also
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observed for the capillary action in an ink bottle which has smaller radii at the neck portion
and larger radii for the rest of the shape, known as the ‘ink-bottle’ effect (Aylmore 1974).

3.2. Forces on a cylinder
After determining the existing menisci, the forces acting on the cylinder can be
determined. There are three forces (see figure 1): the surface tension force F T exerted
by the surface tension at the contact points, the pressure force F P exerted by the pressure
of the liquid, and the weight F G. Let F S be the sum of F T , F P and F G. Because the
configuration considered is assumed to be symmetric, the horizontal components of F T
and F P are zero. It is noted that the horizontal component of F S is always zero whether
the configuration is symmetric or not, because the sum of the horizontal components of
F T and F P at one side is constant regardless of the meniscus shape (Mansfield, Sepangi &
Eastwood 1997; Keller 1998; Finn 2010). However, the horizontal resultant force will be
non-zero if considering a surface tension imbalance on the cylinder (Janssens et al. 2017).

Considering a vertical displacement −h of the water line for the configuration in
figure 1, the surface tension force, the pressure force and the weight are given by

F T = −2 sinψ ey, F P = −
∫
ΣW

pn dS and F G = −ρs

ρ
|Ω|ey, (3.5a–c)

respectively, where ΣW denotes the wetted surface of the cylinder, n is the unit normal to
the surface of the cylinder, directed into the liquid, ρs is the cylinder density and |Ω| is the
area of the cylinder cross-section Ω . Applying Green’s theorem, the integral of pressure
on the wetted surface can be rewritten as (Mansfield et al. 1997; Keller 1998)

−
∫
ΣW

pn dS =
∫
ΣW

( y + h)n dS = |ΩW |ey, (3.6)

where ΩW is the domain bounded above by the undisturbed water line y = −h, below by
ΣW , and laterally by two vertical line segments between the contact points and y = −h.
The above calculation of the pressure force is analogous to the buoyancy in Archimedes’
principle, which equals the weight of the displaced liquid.

Then, the vertical resultant force FvS is written as

FvS = FR + FG = −2 sinψ + |ΩW | − ρs

ρ
|Ω|, (3.7)

where FR = −2 sinψ + |ΩW | is the total restoring force arising from the surface tension
on the contact points and the hydrostatic pressure acting on the wetted surface.

3.3. Bifurcation diagrams and force–distance loops
As shown in figure 3, the number and the stabilities of the menisci on concave cylinders
and the conditions of the contact line jumping can be changed by varying the radius r.
In the following, the general relations in §§ 3.1 and 3.2 will be illustrated by explicit
calculations for concave cylinders with different cross-sectional shapes (see figure 5).
Representative parameters of the concave cylinders R = 1, D = 1.75 and θ = 5π/9 are
selected, for which the maximum possible bifurcation phases of the cases θ � π/2 appear.
As illuminated by (3.4), if an equilibrium meniscus exists on a cylinder with a contact
angle θ , there must be an equilibrium meniscus on the cylinder with the contact angle
π − θ and the liquid–cylinder system is symmetrical to the system with the contact
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Figure 5 (cntd). (a) All the phases for different values of r changing from 0 to ∞, and (b–i) bifurcation
diagrams corresponding to (2.14) for (b) the case r = 0 (the concave cylinder with two corners) and the cases
(c) r = 0.3613, (d) r = 1.0032, (e) r = 1.0112, ( f ) r = 1.0199, (g) r = 1.0273, (h) r = 1.0558 and (i) r =
1.5583, respectively representing phases 1–7 for the cylinder with concave parts (R = 1, D = 1.75 and θ =
5π/9). Solid (dashed) lines denote that the menisci are stable (unstable). In (a), γ+ is determined by solving
min(h′(ϕc)) = 0, and γ ∗ is determined by (2.12). In (b), there is not a fold bifurcation but jumping phenomena.
In (c,h), there are two fold bifurcations so that a one-fold hysteresis loop A can be formed and three menisci may
exist at some heights. In (d–g), there is a two-fold hysteresis loop B which consists of two one-fold hysteresis
loops. However, during the lowering and hoisting processes of the cylinder, the middle two bifurcation points
are bypassed in (d), and the lower one of the middle two bifurcation points is bypassed in (e). In (d–f ) at most
five menisci may exist at some heights, while in (g) at most three menisci may exist at some heights. In (i), there
is not a fold bifurcation or jumping phenomenon because the large value of r only permits a unique meniscus at
all values of h, which is analogous to a convex cylinder (Zhang et al. 2018). A typical one-fold hysteresis loop
A is highlighted by a yellow box in (c) and a typical two-fold hysteresis loop B is highlighted by a brown box in
(e). We note that the heights of all the bifurcation points in each of (d–h) have very small difference, different
from in (c). This is mainly attributed to too small horizontal domain of the concave part. By calculation, we find
that changing the shape of the concave part to enlarge its horizontal domain (for example, using the cylinder
cross-sectional shape with a given function of the solid boundary x( y) = 0.15 cos(2πy)) can lead to a large
difference in the heights of the bifurcation points as mentioned above. However, the change in the shape of the
concave part never influences the findings of this paper.

angle θ over the undisturbed water line. Accordingly, the cases θ < π/2 will not be
considered in this work. The range of the vertical displacement of the concave cylinders is
h ∈ [−4.276, 2.286] to ensure that the whole process of vertical translation (hoisting and
lowering) of the cylinder is included.

By numerically solving f ( y, h) = 0 with the solid boundary, we obtain the diagram of
all the phases for different values of r changing from 0 (cross-section with two corners)
to ∞ (laterally planed cross-section) and the bifurcation diagrams for the equilibrium
menisci for several values of r representing different phases, as shown in figure 5. We
note that a branch of bifurcation diagrams can also be obtained by integrating (3.1) with a
solution on this branch as initial conditions. Considering that the number of phases is too
many, we take the cases r = 0.3613 and r = 1.0112 as examples to analyse the one-fold
hysteresis loop and the two-fold hysteresis loop, respectively.

Figure 5(c) shows that there is only one curve segment in the bifurcation diagram which
has two fold bifurcations for the case r = 0.3613. The two fold bifurcations form a one-fold
hysteresis loop (the loop A is highlighted by the yellow box in figure 5c), where the two
bifurcation points are located at h = h3 and h2 in the order that they appear on the curve.
As discussed in § 3.1, the stabilities of menisci can be determined by the shape of the
fold bifurcation. We can see that there are three branches of extremals divided by the
bifurcation points, which take turns to be stable and unstable.

Different from the case r = 0.3613, for the case r = 1.0112, there is a two-fold hysteresis
loop B (highlighted by the brown box in figure 5e) when lowering the cylinder, while
there is a one-fold hysteresis loop when hoisting the cylinder. The two-fold hysteresis loop
B consists of two coupled one-fold hysteresis loops (see the yellow boxes in figure 5e),
which have a common region with h lying between h3 and the height of the lower one
of the middle two bifurcation points. In this region, there are at most five solutions of
f ( y, h) = 0. Additionally, regardless of lowering or hoisting the cylinder, the lower one
of the middle two bifurcation points is bypassed. From the above observations, it is not
hard to see that, for the case r = 1.0112, we can obtain arbitrary n-fold hysteresis loop by
adjusting the shape of the concave domain of the solid boundary x( y), for example, by
using a shape of multiple successive concavities at one side because of the periodicity of
concavity and convexity.
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Figure 6. Force–distance curves for the concave cylinders (R = 1, D = 1.75 and θ = 5π/9) with (a) two
corners (r = 0) and with (b,c) different shapes of concave parts for (b) r = 0.3613 and (c) r = 1.0112, which
correspond to figure 5(b,c,e), respectively. The force–distance curves also have hysteresis loops analogous
to the curves in figure 5(b,c,e) because of multiple menisci (see figure 3). Therefore, the force profile of
hoisting the cylinder (green arrows) is different from that of lowering the cylinder (blue arrows), where the
jump phenomena of FR occur at the bifurcation points (vertical arrows). Black lines and red lines denote
F′

R(h) < 0 and F′
R(h) > 0, respectively. The inset in (c) shows an enlarged view of the −1.056 � h � −1.031

range.

In contrast to a partially submerged cylinder with a convex cross-section, the
force–distance curve for a concave cross-section may form loops because of the hysteresis
loops in the bifurcation diagram. Figure 6 shows the total restoring forces FR varying
with h for the three representative cases as shown in figure 5(b,c,e). It is found that the
force–distance curves also have analogous hysteresis loops corresponding to the hysteresis
loops in the bifurcation diagrams. These force–distance loops imply that the force profile
of hoisting the cylinder (green arrows) is different from that of lowering the cylinder (blue
arrows), where the jump phenomena of FR occur at the bifurcation points (vertical arrows).
Thus, FR is not unique at the height within the loops because of multiple menisci (for
example, the cases h = −1.054 in figure 6).

When the total restoring force FR counteracts the weight FG, the equilibrium position
of the cylinder is found. The dimensionless density of the solid ρs is chosen to be 0.56 in
order to analyse the equilibrium positions. In our cases, the cylinder with two corners can
float in equilibrium at two heights h = −1.312 and h = −0.571 at FR = −FG = 3.4270
(figure 5b). For the case r = 0.3613, FR = −FG = 3.4611, and there are three equilibrium
positions, he ≈ −1.303 (on the upper branch of the hysteresis loop in figure 5c), −1.001
and −0.5831 (on the lower branch of the hysteresis loop in figure 5c), where the second
one corresponding to an unstable meniscus cannot exist in reality. For the case r = 1.0112,
FR = −FG = 3.5226, there are three equilibrium positions, he ≈ −1.286, −1.051 and
−0.6048, and the equilibrium positions can be reached when lowering the cylinder.

After determining the equilibrium positions, their stabilities can be investigated by the
sign of the slope of FR(h): the equilibrium will be stable if the slope FR

′(h) < 0, and
unstable if FR

′(h) > 0 (see e.g. Chen & Siegel 2018). In this case, all the equilibrium
positions are stable at FR = −FG = 3.5226. This case is the same as those for the solid
density range 0.5530 < ρs < 0.5934 (3.4785 < −Fg < 3.7325); whereas, for the solid
density range 0.5934 < ρs < 0.6825(3.7325 < −Fg < 4.2933), the equilibrium positions
are also stable but the middle equilibrium position is not reached when lowering or hoisting
the cylinder. At larger (0.6825 < ρs < 0.7454) or smaller (0.4516 < ρs < 0.5530) value
of solid density, the two lower and upper equilibria are stable but the middle equilibrium
is unstable. The features of the other phases in figure 5(d, f –h) also can be discussed by
using the above method.
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4. Optimal cross-section for maximum rebounding potential energy

By initially lowering a superhydrophobic body at a liquid–gas interface to form a dimple,
the rebounding of the body may happen as a water strider jumps on water. The restoring
force during jumping is important to determine the rebounding height. We therefore define
the rebounding potential energy as the work done by the restoring force during the process
of hoisting the cylinder from the lowest position to the highest position. The lowest and
the highest positions of the cylinder are determined when the menisci on the two sides of
the cylinder just touch each other. For the highest (lowest) position of each of the cylinders
shown in figure 1, the touching point of the two menisci coincides with the bottom (top)
point of the cylinder in a hydrophobic (hydrophilic) case.

Finding the optimal shape of cylinder under the condition of a constant cross-sectional
area causing the maximum rebounding potential energy is very useful for the design of
hollow cylinders for the superhydrophobic legs of robots jumping on water, which can
effectively help the enhancement of jumping capacity. In this work, a contact angle θ =
5π/9 that is not too large is taken as an example to study the optimal shape of cross-section
for the maximum rebounding potential energy, although larger contact angle can contribute
to larger value of rebounding potential energy.

We study the rebounding potential energy as a function of the angle of the concave
circular arc γ for different ratios D/R by keeping a constant cross-sectional area
(see figure 7a). For a fixed ratio D/R, with the angle of the concave circular arc γ
increasing, the rebounding potential energy initially increases, reaches a maximum and
then decreases. The maximum rebounding potential energy decreases with a decrease of
the ratio D/R. The angle γ of the cases with concave parts only can increase to a limited
value, which is nearly equal to the angle γ of the case with two corners. In view of the
higher rebounding potential energy, the concave cylinders studied here are much better
than the convex circular cylinder (i.e. D/R = 0), and the cases with concave parts have an
advantage over a laterally planed cross-section with two upper and lower circular arcs and
two approximate planes at the left and right two sides (γ ≈ 0) and a concave cross-section
with two corners (γ = (π − α)× 180◦/π).

Interestingly, as the ratio D/R increases, the curve of the optimal angle of the concave
circular arc γopt, at which the maximum rebounding potential energy is reached, is in
good agreement with the curve of the critical angle of the concave circular arc γ ∗
(corresponding to the critical condition of existence of multiple possible menisci), at
which (2.12) is satisfied. This indicates that, when the angle of the concave circular arc
γ decreases to the critical value γ ∗ for the existence of multiple possible menisci, the
approximate maximum rebounding potential energy is attained.

To explain why there is the largest rebounding potential energy at γopt, we compare the
FR–h curves for γ = γopt, γ = 90◦ and γ = 180◦ for D/R = 2, as shown in figure 7(b).
With γ decreasing from 180◦, through 90◦ to the angle γopt, the jump phenomenon of
the restoring force FR from a low value to a high value occurs earlier during the process
of gradually hoisting the cylinder, corresponding to a narrower hysteresis loop (wopt <

wπ/2 < wπ). This leads to larger rebounding potential energy. Other factors, such as the
changes of the lowest position and the highest position of the cylinder with γ varying and
the structure of the two-fold hysteresis loop (if it exists), could also play minor roles in
the magnitude of the rebounding potential energy. The other factors may be the reasons
why the maximum rebounding potential energy in this case for D/R = 2 corresponds to
phase 5 of bifurcation (see figures 5g and 7b) but does not correspond to one of the other
phases with very small widths of hysteresis loops, although the difference of rebounding
potential energy between them is small.

950 A15-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

81
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.813


Surface tension on partially submerged concave cylinder

h
–5 –4 –3 –2 –1

–4

–2

0

2

4

6

8

10

FR

γ (deg.)

ER

(a) (b)

150 1801209060300 0 1 2 3

D/R = 2,  γ = γopt

D/R = 2,  γ = 180°

D/R = 2, γ = 90°

wπ

wπ /2

4.5

2.5

3.5

4.0

3.0

–1.15 –1.13

wopt

20

21

22

23

24

25

D/R
0.5 1.0 1.5 2.0

0

20

40

60

γopt

γ ∗, (2.12)

γ
 (

d
eg

.)

D/R = 0, i.e. circular cylinder

γ = (π – α) × 180°/π,

i.e. cylinder with corners

D/R = 0.5

D/R = 0.25

D/R = 2

D/R = 1.5

D/R = 1

Figure 7. (a) Rebounding potential energy ER as a function of the angle of the concave circular arc γ at
contact angle θ = 5π/9 for different ratios D/R by keeping a constant cross-sectional area S = 2π, and
(b) force–distance curves for γ = γopt, 90◦ and 180◦. In (a), the dotted curve denotes the data corresponding
to the maximum rebounding potential energy, the dashed curve denotes the data for the concave cylinder with
two corners, and the dot-dashed line denotes the data for the circular cylinder. The inset compares the optimal
angle of the concave circular arc γopt, at which the maximum rebounding potential energy is reached, and
the critical angle of the concave circular arc γ ∗ (corresponding to the critical condition for the existence of
multiple possible menisci), at which (2.12) is satisfied, for different ratios D/R. In (b), the inset shows an
enlarged view of the −1.164 � h � −1.124 range, and wopt, wπ/2 and wπ denote the widths of the hysteresis
loop for γ = γopt, 90◦ and 180◦, respectively.

5. Conclusions

The equilibria and stabilities of the menisci on a horizontal cylinder with a concave
cross-section partially submerged in a liquid have been theoretically studied. Two kinds
of representative concave cylinders are considered: one with corners and another with
concave parts. The concave cylinder is found to permit multiple equilibrium menisci at
a height. For the concave cylinder with corners, a sufficient condition for the multiple
possible menisci is that the angle of the corner is smaller than π, there are at most two
menisci and all of the menisci are stable. While, for the concave cylinder with concave
parts, multiple possible menisci are permitted when the radius of the concave arc is
smaller than the critical value, and if they exist and the function of the intersection
angle between the meniscus and the solid is smooth, the stable and unstable menisci will
appear alternately on the solid surface. The equilibria and stabilities of the menisci on
a concave cylinder during the processes of hoisting and lowering the cylinder have been
explained by the bifurcation theory associated with the hysteresis effect. Two successive
fold bifurcations form a sharp hysteresis loop, which indicates that the processes of
hoisting the cylinder and lowering the cylinder are different. The menisci that exist during
these processes are determined by the hysteresis effects. Different bifurcation phases are
found which are dependent on the cross-sectional shapes of concave cylinders.

By explicit calculations, the force profiles of the hoisting and lowering processes are also
different from each other and can form hysteresis loops. The concave cylinder can have
different values of the restoring force at the same height due to multiple menisci while the
restoring force of a convex cylinder completely depends on its height. Among the different
shapes of cross-section of three types (convex, concave and laterally planed cross-sections)
with a fixed area (corresponding to a fixed volume of the cylinder), the optimal shape of
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cross-section is determined for the maximum value of rebounding potential energy, and
the optimal shape is found to be close to the shape with the critical concave arc angle for
the existence of multiple possible menisci. The existence of the maximum value of the
rebounding potential energy is attributed to much earlier upward jump of the restoring
force or much narrower hysteresis loop. This provides an effective method of enhancing
the restoring force and potential rebounding (jumping on water) height of a robotic water
strider insect with several superhydrophobic legs of hollow cylinders and particles on the
water surface.
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Appendix A

A method to determine the stability of a meniscus is to solve the eigenvalue problem for
the second variation of the total energy functional of the system. For the case with pressure
constraint and free contact point, the associated eigenvalue problem in two dimensions can
be described as (Myshkis et al. 1987; Zhang & Zhou 2020)

−φ′′
0 + (3 cosψ − 2)φ0 = λφ0 on the meniscus, (A1)

φ′
0 + χ1φ0 = 0 at the contact point, (A2)

where φ0 is a perturbation, λ is the eigenvalue and the boundary parameter χ1 is given by
(2.13). The eigenvalues of the Sturm–Liouville problem (A1) and (A2) are real and have
the relation: λ1 < λ2 < λ3 < · · · < λn < · · · → ∞. Here λ1 corresponds to the minimum
value of the second variation of the system’s total energy, implying that the equilibrium
of the meniscus will be stable if λ1 > 0, and unstable if λ1 < 0 (Myshkis et al. 1987;
Slobozhanin & Alexander 2003).

We can term a special boundary value χ1
∗ as the critical value satisfying λ1(χ1

∗) = 0.
As the eigenvalue λn is of modal monotonicity (Myshkis et al. 1987), i.e. λn monotonically
increases with χ1 for the fixed perturbation mode, it can be concluded that the equilibrium
meniscus will be stable if χ1 > χ1

∗, and unstable if χ1 < χ1
∗ (Myshkis et al. 1987;

Slobozhanin & Alexander 2003).

Appendix B

Because of the symmetry of this system, we only consider the left side of the configuration
for simplicity (see figure 8a). Setting the meniscus coinciding with the undisturbed water
line to be the reference configuration, we calculate the total energy change of the system as
the liquid moves from the undisturbed water line to the current meniscus. The total energy
change can be expressed in dimensionless form as

�E = (|Γm| − |Γwl|)+
∫

|�Ω̃|
u dx du − |�Σ | cos θ, (B1)
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Figure 8. (a) Schematic of a meniscus intersecting with the cylinder at a contact point, and (b) intersection
angle ω and total energy change �E (as the liquid moves from the undisturbed water line to the current
meniscus) as functions of the y value of the contact point for the concave cylinder with concave parts (R = 1,
D = 1.75, r = 1.0112 and θ = 5π/9) at h = −1.047. In (a), the dot-dashed line denotes the undisturbed water
line Γwl that meets the solid at the point q, and the solid line denotes the meniscus Γm that meets the solid at
the contact point. There are a change of water area �Ω̃ and a change of the solid’s wetting length �Σ as the
liquid moves from Γwl to Γm. The change �Ω̃ is divided into two parts (i.e. �Ω̃ l and �Ω̃r) by the dashed
vertical line that goes through the contact point. In (b), the grey curve denotes the function ω = ω( yc) where
the grey solid line segments represent stable (ω′ < 0) equilibria and the grey dashed line segments represent
unstable (ω′ > 0) equilibria. The green dotted horizontal line denotes the contact angle condition ω = θ . The
intersection points of the grey curve and the green dotted horizontal line are the equilibrium points satisfying
the contact angle condition, where the stable and unstable equilibria are marked by the black solid points and
the black circles, respectively. The red curve denotes the function�E = �E( yc), the extremum points of which
are marked by the red crosses.

where |Γm| is the length of the meniscus that meets the solid at the contact point, |Γwl|
is the length of the reference meniscus that coincides with the undisturbed water line and
meets the solid at the point q, and |�Ω̃| and |�Σ | are the changes of water area and the
solid’s wetting length, respectively. For the sake of convenient calculation, �Ω̃ is divided
into left and right parts: �Ω̃ l and �Ω̃r (see figure 8a). Substituting the shape equations
of meniscus (2.3a,b), the sum of the first and second terms, and the third term on the
right-hand side of (B1) can be given by, respectively,

|Γm| − |Γwl| =
∫ xc

−∞

(
1

cosψ
− 1

)
dx + xc − xq

= 2 − 2 cos
ψc

2
+ xc − xq (B2)

and ∫
|�Ω̃|

u dx dy = 1
2

∫ xc

−∞
u2 dx +

∫
|�Ω̃r|

u dx du

= 2 cos
ψc

2
− 4

3
cos3 ψc

2
− 2

3
+
∫

|�Ω̃r|
u dx du. (B3)

Substituting (B2), (B3) and the geometric function of the solid into (B1), �E can be
obtained.
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D. Tan, F. Zhang and X. Zhou

Taking the concave cylinder with concave parts (R = 1, D = 1.75, r = 1.0112 and θ =
5π/9) at h = −1.047 (i.e. the same case as used in figure 3d) as an example, we plot the
curve of the function �E = �E( yc) (red curve) and again, as a comparison, the curve of
the function ω = ω( yc) (grey curve) in figure 8(b). It is shown that the extrema (marked
by red crosses on the red solid curve) of the curve of�E( yc) correspond to the equilibrium
menisci (marked by black solid points and black circles on the grey curve), and therefore
the positions of the minima coincide with those of the stable equilibria (black solid points
on the grey solid line segments), and the positions of the maxima coincide with those of
the unstable equilibria (black circles on the grey dashed line segments).
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