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Inertial effects on the flow near a moving contact
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The wetting or dewetting of a solid substrate by a liquid involves the motion of the contact
line between the two phases. One of the parameters that govern the dynamics of the flow
near a moving contact line is the local Reynolds number, ρ. At sufficient proximity to
the moving contact line, where ρ � 1, the flow is dominated by viscous forces over
inertia. However, further away from the contact line, or at higher speeds of motion,
inertia is also expected to be influential. In such cases, the current contact line models,
which assume Stokes flow and neglect inertia entirely, would be inaccurate in describing
the hydrodynamic flow fields. Hence, to account for inertia, here we perform a regular
perturbation expansion in ρ, of the streamfunction near the Stokes solution. We, however,
find that the leading-order inertial correction thus obtained is singular at a critical contact
angle of 0.715π. We resolve this spurious mathematical singularity by incorporating the
eigenfunction terms, which physically represent flows due to disturbances originating far
from the contact line. In particular, we propose a stick slip on the solid boundary – arising
from local surface heterogeneities – as the mechanism that generates these disturbance
flows. The resulting singularity-free, inertia-corrected streamfunction shows significant
deviation from the Stokes solution in the visco-inertial regime (ρ ∼ 1). Furthermore, we
quantify the effect of inertia by analysing its contribution to the velocity at the liquid
interface. We also provide the leading-order inertial correction to the dynamic contact
angles predicted by the classical Cox–Voinov model; while inertia has considerable effect
on the hydrodynamic flow fields, we find that it has little to no influence on the dynamic
contact angles.
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1. Introduction

A contact line, within the limits of the continuum approximation, is the intersection
between a liquid interface and a solid, and it separates the dry region of the solid from
the wet. A contact line can be static or dynamic depending on whether it is pinned to
the solid surface or moves relative to it. Cases of moving contact lines are ubiquitous
in nature. The motion, or the spreading, of drops on a surface, movement of a meniscus
inside a tube and dipping of a solid surface into a liquid are a few examples involving this
phenomenon. An understanding of the flow near a moving contact line finds importance
in many industrial processes like paint coating, oil recovery, ink-jet printing and chemical
etching of surfaces, to name a few. The angle that the moving liquid boundary makes with
the solid (within the liquid phase) is known as the dynamic contact angle – denoted here by
α – and is different in magnitude from its stationary counterpart αs. These dynamic contact
angles could be advancing (αa) or receding (αr), depending respectively on whether the
contact line wets or de-wets the solid surface. Because the solid phase resists wetting, αa
are generally obtuse and are larger than αr. It has been observed that the dynamic contact
angles depend on the capillary number Ca = μ|U|/γ , where μ is the dynamic viscosity of
the liquid, U is the velocity of the moving contact line and γ is the liquid surface tension.
To describe this relation, many contact line models – which are all surprisingly polynomial
relations between α and Ca – such as the de Gennes (de Gennes 1985), Cox–Voinov
(Voinov 1976; Cox 1986) and even a simple linear relation (Blake & Ruschak 1997) have
been developed. All these models have been seen to agree well with experiments, and none
can be instructively chosen over the other (Le Grand, Daerr & Limat 2005).

At low speeds, a moving contact line remains straight. In such cases, the flow near
the contact line during the wetting or dewetting process is essentially two-dimensional.
Then, the liquid and the solid interfaces would effectively form a wedge, with the contact
line at the corner, as shown in figure 1. The viscous stresses within the wedge have been
shown to scale as 1/r, where r is the radial distance from the contact line (Huh & Scriven
1971). Note that the stress diverges at r = 0, i.e. at the contact line, and to prevent this, it
needs to be balanced either by an equivalent external pressure that maintains the flat liquid
interface, or by having a deformable liquid interface that compensates with the capillary
pressure from an infinite curvature (Huh & Scriven 1971; Shikhmurzaev 2008). In the latter
case, for very small capillary numbers (Ca � 1), the curvature of the deformed interface is
negligible except at extremely small distances from the contact line. Thus, it is reasonable
to assume the liquid interface to be flat, and then model the region near the contact line
as a rigid–free wedge, where the flow is forced by the relative motion of the solid. Many
other mechanisms have also been proposed to balance the stress singularity at the contact
line (see Dussan 1979; Shikhmurzaev 2008; Bonn et al. 2009; Snoeijer & Andreotti 2013,
and the references therein). A commonly suggested method to overcome the tangential
stress singularity is to introduce a region of perfect slip on the solid surface in close
proximity of the contact line (Huh & Scriven 1971; Dussan 1976). The flow fields in such
slip models render the free surface to be non-materialistic, i.e. a particle at the interface
never reaches the contact line because of its zero velocity; the contact line effectively
behaves as an obstacle to the flow (Shikhmurzaev 2008). Experiments, however, suggest
otherwise, where a rolling motion is observed, with the fluid being accelerated near the
contact line (Dussan & Davis 1974; Chen, Ramé & Garoff 1996).

At sufficient proximity to the contact line, the flow is dominated by viscous forces,
and it is reasonable to make the assumption of a Stokes flow. The streamfunction for
the Stokes flow within a generic two-phase wedge was provided by Moffatt (1964a),
which included specific cases where the boundaries moved relative to each other. For a
moving three-phase contact line, Huh & Scriven (1971) analysed the flow dynamics on
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Figure 1. Schematic of the polar coordinate system used for analysing the moving contact line problem. The
contact line is at the point O. The liquid interface is at θ = 0 and the solid surface is at θ = −α, where α is
the contact angle. Here, the velocity of the solid, U > 0 represents an advancing contact line, and U < 0 a
receding contact line. Streamlines are shown by constant ψ .

both sides of the fluid–liquid interface, identifying self-similar feature of the flow field
and highlighted the significant influence of even a thin film of the slender phase on the
interface velocity and viscous dissipation. The case of flow between stationary boundaries
of flat plates, i.e. a rigid–rigid wedge with homogeneous boundary conditions, where the
flow originates from far-field disturbances, was carried out by Lugt & Schwiderski (1965),
and later extended to include the dynamics of two fluids by Anderson & Davis (1993). In
the case of disturbance flow between stationary solid boundaries, the flow near the corner
exhibited an interesting feature: the presence of an infinite sequence of eddies which decay
in strength towards the corner (Moffatt 1964a,b; Taneda 1979). The presence of these
eddies have also been predicted for three-dimensional flows near a conical trench (Shankar
1998; Sano & Hashimoto 1980).

There is no intrinsic length scale for the moving contact line problem. One can, however,
define a characteristic length ν/|U| at which the inertial and viscous dissipation are equal
in magnitude; here ν is the kinematic viscosity of the liquid. The dimensionless distance
is hence defined by the local Reynolds number ρ = r/(ν/|U|). Close to the contact
line, where ρ � 1, the assumption of Stokes flow is perfectly valid. However, when the
value of ρ is appreciably large, the Stokes solution will not be sufficient to describe the
flow accurately. Hence, in the case of fast motion of liquids over surfaces, like in the
case of fast motion of drops studied by Puthenveettil, Senthilkumar & Hopfinger (2013),
inertia is expected to influence the flow dynamics significantly. Previous experimental and
numerical studies have also looked at the influence of inertia on the apparent dynamic
contact angles and flow field of a moving contact line at the scale of the physical
phenomenon (Sui & Spelt 2013; Stoev, Ramé & Garoff 1999; Savelski et al. 1995; Fuentes
& Cerro 2007). However, a coherent analytical description of the influence of inertia,
extending from the viscous (typically sub-microscopic) to the visco-inertial regime of
a moving contact line, is yet unavailable. In this article, we analytically determine the
inertial corrections to the Stokes flow near a steadily moving contact line. Finding such
inertia-corrected flow field near a rapidly moving contact line is also important to answer
the still unresolved question of whether inertia affects the dynamic contact angles (Limat
2014).

Inertial corrections to Stokes flow near a corner have so far been available only for
the case of a rigid–rigid wedge by Hancock, Lewis & Moffatt (1981), who considered
the similarity solutions of the streamfunction as an infinite perturbation series in powers
of ρ, with each term of the series being an inertial correction to the previous. The
dominant inertial correction term in their analysis contained a singularity at a critical
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corner angle α = π. Such singularities are not uncommon in other self-similar solutions
of the biharmonic equation near corners, in problems of fluid mechanics and elasticity
(Williams 1952; Sternberg & Koiteri 1958; Moffatt & Duffy 1980; Dempsey 1981). The
singularities are, however, spurious, and have been resolved on a case-by-case basis by
determining modified expansions, often involving power-logarithmic terms, at the critical
corner angle specific to the problem. In the case of flow in a rigid–rigid wedge considered
by Hancock et al. (1981), the singularity at α = π was nullified by an appropriate choice
of the eigenfunction terms that arise from the homogeneous boundary value problem.
However, the question of existence and resolution of singularities in a rigid–free wedge is
still open and shall also be explored in this article.

In the present work, we provide a theoretical analysis of the effect of inertia on
the hydrodynamic flow fields near a fast-moving contact line where the flow is still
dominated by viscosity. To this end, we provide a locally self-similar inertial correction
to the streamfunction for Stokes flow. We assume a flat liquid interface, which is a first
approximation in the limit of very small capillary number (Ca � 1), as discussed earlier.
We strictly adhere to the no-slip boundary condition on the entirety of the solid surface as
this allows us to make unbiased prediction of the influence of inertia at the length scales l
associated with the different contact line models.

The paper is organised as follows. After recapitulating the well-known similarity
solution for Stokes flow in § 2, we obtain the inertial-correction streamfunctions in § 3.
This is done by perturbing the Stokes flow streamfunction with the local Reynolds
number, and then iteratively solving for the higher-order terms – which are the inertial
corrections – in the Navier–Stokes equations. The homogeneous solution to the Stokes
flow problem, i.e. flow between stationary boundaries due to far-field disturbances, are
eigenfunctions, and are determined in § 4. In particular, we assume the disturbance
flow to originate due to stick slip on the solid surface far away from the contact line.
In § 5, we show that the leading-order inertial correction term is singular at a critical
contact angle, α = 0.715π. Similar to the case of rigid–rigid corner described earlier, this
mathematical singularity is also resolved using the eigenfunction solutions. The resulting
singularity-free, inertia-corrected flow fields are discussed in § 6.1. Inertial effects on the
free-surface velocity for both advancing and receding contact lines are then discussed in
detail in § 6.2, with a small-angle approximation provided in § 6.2.1. Finally, the influence
of inertia on the contact angles is studied by looking at the leading-order inertial correction
for the Cox–Voinov model in § 6.3, before concluding in § 7.

2. Stokes flow near a moving contact line

Consider the case of a moving contact line formed by the relative motion of a flat liquid
interface over a rigid solid. The free surface of the liquid would then form a wedge
with the solid surface, with the contact line at the corner, as shown in figure 1. The
flow near the contact line can then be approximated as a two-dimensional flow in the
rigid–free wedge (Moffatt 1964a; Huh & Scriven 1971; Anderson & Davis 1993). We
consider a frame of reference that is centred at the contact line. The solid surface thus
moves relative to it with a velocity U. A positive value of U indicates an advancing
contact line, and likewise, a negative value indicates a receding contact line. We shall
use U as the characteristic velocity for the present problem. The dynamic contact angle
is denoted here by α. As mentioned in the previous section, we define the dimensionless
distance from the contact line in terms of the local Reynolds number of the flow, ρ =
r|U|/ν. For flows close to the contact line, ρ � 1, and the Stokes approximation holds
well.
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Inertial effects near a moving contact line

The dimensionless streamfunction for Stokes flow ψ1, non-dimensionalised by ν, obeys
the two-dimensional (2-D) biharmonic equation

∇4ψ1(ρ, θ) = 0, (2.1)

with ∇2 = 1/ρ ∂/∂ρ + ∂2/∂ρ2 + 1/ρ2∂2/∂θ2. Equation (2.1) admits a general solution
of the form ψ1 = ρnfn(θ), where n is any real number. For bounded velocity at the contact
line (ρ = 0), we have the condition n � 1. The exact value of n is determined from the
relevant boundary conditions for the problem. In the present case, the boundary conditions
are: no slip at the solid surface,

−∂ψ1

∂ρ

∣∣∣∣
θ=−α

= 0 and
1
ρ

∂ψ1

∂θ

∣∣∣∣
θ=−α

= ±1, (2.2a,b)

no-penetration and zero-shear-stress conditions on the free surface, given respectively by

−∂ψ1

∂ρ

∣∣∣∣
θ=0

= 0 and
(

−∂
2ψ1

∂ρ2 + 1
ρ2
∂2ψ1

∂θ2 + 1
ρ

∂ψ1

∂ρ

)∣∣∣∣
θ=0

= 0. (2.3a,b)

Note that in the above equations, the velocities were made dimensionless using the
characteristic velocity, |U|. The positive value in the right-hand side of (2.2a,b) is used
when it is an advancing contact line while the negative value is used in case of a receding
contact line. The form of the boundary conditions (2.2a,b)–(2.3a,b) suggest a self-similar
solution of the form (Moffatt 1964a; Moffatt & Duffy 1980; Batchelor 2000)

ψ1(ρ, θ) = ρf1(θ). (2.4)

Substituting (2.4) in the governing biharmonic equation (2.1) gives

f1(θ)+ 2 f ′′
1 (θ)+ f ′′′′

1 (θ) = 0, (2.5)

where each ′ denotes the derivative of the function. Solving for f1(θ) gives the general
form of the function as (Moffatt 1964a; Leal 2007)

f1(θ) = A cos θ + B sin θ + Cθ cos θ + Dθ sin θ. (2.6)

The coefficients A, B, C and D are to be determined from the boundary conditions of the
problem. Replacing f1(θ) in (2.4) with the expression derived in (2.6), and subsequently
using it in the boundary conditions, (2.2a,b) and (2.3a,b), gives the coefficients, which are
functions of α, as (Moffatt 1964a; Leal 2007)

A = 0, B(α) = ± 2α cosα
2α − sin 2α

, C(α) = ∓ 2 sinα
2α − sin 2α

, and D = 0. (2.7a–d)

The signs (±) of B and C depend on the whether the contact line is advancing or receding,
respectively. Using (2.6) and (2.7a–d), the streamfunction for Stokes flow (2.4) becomes

ψ1(ρ, θ) = ρf1(θ) = ±ρ(2α cosα sin θ − 2θ cos θ sinα)
2α − sin 2α

. (2.8)
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3. Inertial corrections to the Stokes flow

The exact solution of the flow field is described by the 2-D steady Navier–Stokes equation,
written in streamfunction form as

∇4ψ = 1
ρ

(
∂ψ

∂θ

∂ (∇2ψ)

∂ρ
− ∂ψ

∂ρ

∂(∇2ψ)

∂θ

)
. (3.1)

The terms in the left- and the right-hand sides of (3.1) represent the viscous and the inertial
dissipation, respectively. In the case of Stokes flow, one can neglect the right-hand side to
recover the biharmonic equation (2.1). The Navier–Stokes equation (3.1) is linear in its
highest-order derivatives, and so, its exact solution can be constructed in a linear fashion
by writing it as a series expansion of the fundamental Stokes solutions. Thus, it is possible
to construct the streamfunction ψ in (3.1) as a Taylor series expansion in terms of the local
Reynolds number ρ, of the form

ψ(ρ, θ) =
∞∑

n=1

ψn(ρ, θ) where ψn(ρ, θ) = ρn fn(θ), (3.2)

which converges when ρ � 1 (Lugt & Schwiderski 1965; Hancock et al. 1981; Batchelor
2000). The self-consistency of the expression in (3.2) can be justified by noting that when
it is applied in (3.1), the viscous terms are O(ρn−4) while the inertial terms are of much
smaller strength O(ρ2n−4). Thus, each successive term in the series (3.2) can be regarded
as an inertial correction to the previous (Hancock et al. 1981; Fuentes & Cerro 2007).
We now use (3.2) in (3.1), and collect terms of the same order of magnitude in ρn. At the
leading order, when n = 1, we get back the ordinary differential equation for f1(θ) in (2.5),
i.e. we retrieve the solution in the Stokes limit (2.6). When n � 2, we can write a general
expression of the resulting ordinary differential equation as(

d2

dθ2 + n2

)(
d2

dθ2 + (n − 2)2
)

fn(θ)

=
∑

i+j=n

(
(j − 2)f ′

i (θ)− ifi(θ)
d

dθ

)(
d2

dθ2 + j2
)

fj(θ), (3.3)

which can be solved for iteratively. When we use n = 2 in (3.3) we get

4 f ′′
2 (θ)+ f ′′′′

2 (θ) = −2 f1(θ)f ′
1(θ)− f ′

1(θ)f
′′
1 (θ)− f1(θ)f ′′′

1 (θ). (3.4)

Substituting f1(θ) from (2.6) in (3.4), and solving for f2(θ), we get the first
inertial-correction term ψ2 = ρ2f2(θ), with

f2(θ) = P + Qθ + R cos 2θ + S sin 2θ + Eθ cos 2θ + Hθ2 sin 2θ. (3.5)

The coefficients in (3.5), in their functional form, are

E(α) = 4B(α)C(α)− 3C(α)2

32
, and H(α) = −C(α)2

16
, (3.6a,b)

with B and C given in (2.7a–d). Expressions for P, Q, R and S can be obtained from the
velocity and free-shear boundary conditions at this order of magnitude, O(ρ). The no-slip
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condition on the solid surface gives

−∂ψ2

∂ρ

∣∣∣∣
θ=−α

= 0 =⇒ f2(−α) = 0 (3.7)

and
1
ρ

∂ψ2

∂θ

∣∣∣∣
θ=−α

= 0 =⇒ f ′
2(−α) = 0. (3.8)

Note that the solid has a constant dimensionless velocity ±1, and has no perturbation of
the order of magnitude of the inertial correction, O(ρ). The no-penetration condition, i.e.
zero normal velocity on the free surface gives

−∂ψ2

∂ρ

∣∣∣∣
θ=0

= 0 =⇒ f2(0) = 0. (3.9)

The zero-shear-stress boundary condition on the free surface gives(
−∂

2ψ2

∂ρ2 + 1
ρ2
∂2ψ2

∂θ2 + 1
ρ

∂ψ2

∂ρ

)∣∣∣∣
θ=0

= 0 =⇒ f ′′
2 (0)− f2(0) = 0. (3.10)

Applying the boundary conditions (3.9) and (3.10) in (3.5) gives P = 0 and R = 0. Then,
applying the no-slip boundary conditions of (3.7) and (3.8) in (3.5) gives

Q(α) = M(α) sin 2α
2α cos 2α − sin 2α

and S(α) = S1(α)+ S2(α), (3.11a,b)

where

S1(α) = −αM(α)
2α cos 2α − sin 2α

and S2(α) = −E(α)α cos 2α − H(α)α2 sin 2α
sin 2α

,

(3.12a,b)
with M(α) given by

M(α) = (−2α sin 2α + cos 2α)E(α)+ (2α2 cos 2α + 2α sin 2α)H(α)+ 2S2(α) cos 2α.
(3.13)

The factorisation S = S1 + S2 in (3.11a,b) was performed in order to collect terms of
the common denominators together. Finally, substituting the coefficients from (3.6a,b),
(3.11a,b) and (3.12a,b) in (3.5), and simplifying yields

f2(θ) = S1(α)

α
(α sin 2θ − θ sin 2α)+ E(α)θ cos 2θ + H(α)θ2 sin 2θ + S2(α) sin 2θ.

(3.14)
The dimensionless streamfunction of the leading-order inertial correction is then obtained
by using (3.14) in (3.2), for n = 2, as

ψ2(ρ, θ) = ρ2 f2(θ) = ρ2
(

S1(α)

α
(α sin 2θ − θ sin 2α)

+ E(α)θ cos 2θ + H(α)θ2 sin 2θ + S2(α) sin 2θ
)
. (3.15)

Thus, the dimensionless streamfunction (3.2), comprising of only the Stokes and the
dominant inertial-correction terms, is ψ = ψ1 + ψ2, where ψ1, given in (2.8), is the
Stokes term and ψ2, given in (3.15), is the leading-order inertial correction.
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4. Contribution from the eigenfunctions

The solution of the biharmonic equation, i.e. the streamfunction for Stokes flow (2.8),
satisfies the boundary conditions in the Stokes limit, but is, however, incomplete. It
requires to be supplemented with the general solution that satisfies the homogeneous
boundary conditions (Hancock et al. 1981). Physically, such eigenfunction solutions
represent Stokes flows near a stationary corner, created by disturbances that originate
far away from it. These ‘disturbance’ flows are generally expressed as a combination
of all the possible asymmetric and symmetric flows near the corner (Moffatt 1964a;
Lugt & Schwiderski 1965). They are not commonly included in the Stokes solution
(2.8) because their relative contribution to the flow field is asymptotically negligible in
comparison. However, compared with the inertial-correction terms, their contributions
are not negligible (Hancock et al. 1981). The dimensionless streamfunction for such
disturbance flows, with ρ � 1, is given by the series (Moffatt 1964a; Hancock et al. 1981)

ψe(ρ, θ) = Re

( ∞∑
m=1

ψem(ρ, θ)

)
with ψem(ρ, θ) = Amρ

λmgm(θ), (4.1)

where Am are arbitrary constants, and the complex eigenvalues λm are such that 1 <
Re(λ1) � Re(λ2) � . . .with Re indicating the real part. The corresponding eigenfunctions
gm(θ) have the well-known form (Moffatt 1964a; Hancock et al. 1981; Anderson & Davis
1993; Shankar 1998)

gm(θ) = sin λmθ sin(λm − 2)α − sin λmα sin(λm − 2)θ, where λm /= 2. (4.2)

We shall discuss the special case of λm = 2 in § 5.1. Equation (4.2) corresponds to
symmetric flows between two rigid plates at θ = ±α and hence satisfies free-shear
condition along θ = 0, i.e. the liquid interface in our problem; the asymmetric modes,
however, do not meet the no-penetration condition at θ = 0 and are hence discarded
here (cf. Anderson & Davis 1993). The eigenvalues, λm, are determined by applying the
homogeneous boundary conditions on gm(θ) in (4.2). Thus, using

gm(0) = 0, g′′
m(0)− gm(0) = 0 (4.3a,b)

and
gm(−α) = 0, g′

m(−α) = 0, (4.4a,b)

one can show that the eigenvalues form the roots of a function (Dean & Montagnon 1949;
Williams 1952; Moffatt 1964a; Moffatt & Duffy 1980)

W(λ) = sin(2(λ− 1)α)− (λ− 1) sin 2α, (4.5)

i.e. W(λm) = 0. The real and imaginary parts of the first few roots are plotted in figure 2.
It can be seen in figure 2 that for α < α1 = 0.442π, all the roots λm, with m � 1, are
complex. The complex nature of the eigenvalues have been shown to physically imply
the presence of an infinite sequence of eddies near the stationary corner (Moffatt 1964a;
Taneda 1979).

Next, an expression for the arbitrary constant Am in (4.1) could have been obtained
using the property of biorthogonality of eigenfunctions if the far-field boundary conditions
were specified (Liu & Joseph 1978; Shankar 2003). But, since they are unknown in the
present problem, we resort to modelling this as a disturbance flow created by a stick slip
at the solid surface far from the contact line (see Appendix A for details). This is a natural
assumption for the origin of disturbance flows, as every surface contains inhomogeneities
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Figure 2. Variation of the real (solid lines) and imaginary (dashed lines) parts of the complex eigenvalues λ1,
λ2 and λ3 with the contact angle. Circle markers show the locations of double roots of the function W(λ). The
triangular marker shows λ1 = 2 at α = α0 = 0.715π. Note especially that λ1 is real when α � α1; λ2 is real
when α1 � α � α2 and α � α3.

such as geometrical irregularities, or regions of impurities like lubricants or entrapped air
which can act as local regions of slip (de Gennes 1985; Cox 1983; David & Neumann
2010; Sui, Ding & Spelt 2014). Entrapped microscopic bubbles are observed especially
in fast-moving contact lines, both in simulations and experiments (Marchand et al. 2012;
Chan et al. 2013; Jian et al. 2018). Here, we find that the streamfunction of the disturbance
flow created by a region of slip far from the contact line, given in (A13), is indeed identical
to the general expression given in (4.1). Therefore, comparing these two equations gives
the expression of the coefficient Am as

Am = Cλm−1
m

(λm − 1)W ′(λm)
, (4.6)

where W ′(λ) is the derivative of (4.5), given in (A11), and Cm is a coefficient which is yet
to be determined. Using (4.2) and (4.6) in (4.1), the expression for the eigenfunction terms
is finally obtained as

ψem(ρ, θ) = Cλm−1
m ρλm(sin (λm − 2)α sin λmθ − sin λmα sin (λm − 2)θ)

(λm − 1)(2α cos(2(λm − 1)α)− sin 2α)
. (4.7)

An expression of the form in (4.7) is commonly seen in stationary corner flow problems
such as forced corner flows and Jeffery–Hamel problem (Moffatt & Duffy 1980). The
choice of Cm is, however, still arbitrary at the moment, but we shall see in § 5 how this
apparent freedom allows for a proper choice that eliminates some spurious singularities
that arise in the streamfunction solution.

The complete streamfunction, which satisfies the Navier–Stokes equation, is now
obtained by combining the Stokes solution (2.8), the inertial correction (3.2) and the
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eigenfunction solutions (4.1) as

Ψ (ρ, θ) = ψ(ρ, θ)+ ψe(ρ, θ) =
∞∑

n=1

ψn(ρ, θ)+ Re

( ∞∑
m=1

ψem(ρ, θ)

)
. (4.8)

Rewriting the terms in (4.8) using (3.2) and (4.1) gives

Ψ (ρ, θ) =
∞∑

n=1

ρn fn(θ)+ Re

( ∞∑
m=1

Amρ
λmgm(θ)

)
. (4.9)

By comparing the order of magnitude of the terms in (4.9) when ρ � 1, it can be seen
that the first N terms of ψ dominate over ψem only when N < Re(λm) � N + 1. This
would imply that, when Re(λ1) � 3, which corresponds to α � 0.5π (see figure 2), the
first eigenfunction term ψe1 , of O(ρλ1), is non-negligible compared with the leading-order
inertial correctionψ2 which is of O(ρ2), and should not be discarded. Nonetheless, as long
as α < 0.715π (= α0; see figure 2), we have λm > 2, and so all eigenfunctions ψem are
subdominant compared with ψ2 . However, when α = α0, λ1 = 2 and the eigenfunction
ψe1 is of the same order of magnitude as ψ2. For values of α � α0, ψe1 dominates over
all the inertial-correction terms; the principal correction to the Stokes solution, in this
case, is from the first eigenfunction term, i.e. the Stokes flows are influenced primarily
by the disturbance flows rather than inertia. Note from figure 2 that the first eigenvalue,
λ1, is always greater than 1 within α � π (Lugt & Schwiderski 1965). This makes the
corresponding leading-order eigenfunction ψe1 , and hence all the eigenfunction terms,
subdominant compared with the streamfunction for Stokes flow, ψ1 in the expansion
(4.9). This means that the Moffatt eddies, which are created by the disturbance flows,
are suppressed by the dominant Stokes flow in a moving contact line that satisfies the
no-slip boundary conditions. On the contrary, when using a slip boundary condition near
a moving contact line, these eddies have been found to have significant influence on the
Stokes flow (Kirkinis & Davis 2014).

For the present analysis, we limit the influence of inertial correction to the leading-order
alone. Thus, we truncate the complete streamfunction expansion (4.8) beyond the first few
leading-order terms, i.e.

Ψ ≈ ψ1 + ψ2 + Re(ψe1 + ψe2), (4.10)

where ψ1 is the Stokes solution (2.8), ψ2 the leading-order inertial correction (3.15),
and ψe1 and ψe2 , given by (4.7) for m = 1 and 2 respectively, are the first and second
eigenfunctions. Note thatψe2 has also been included here because it is of the same order of
magnitude as ψe1 when α � α1 = 0.442π, as their eigenvalues are equal in this domain,
as seen in figure 2. However, by this argument, ψe3 (and by extension, all higher-order
terms) also needs to be included, as there is also a region 0.55π < α < 0.91π where the
eigenvalues λ2 and λ3 are equal. Nonetheless, we have chosen to neglect its contribution,
as all the higher-order terms are anyway insignificant compared with the leading-order
term ψe1 when α > 0.5π.

5. Singularities in the streamfunctions and their resolution

The leading-order inertial correction, ψ2 in (3.15) is seen to diverge to infinity when α =
α0 = 0.715π because α0 is a root of the denominator of one of its coefficients, S1 (in

924 A36-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

58
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.582


Inertial effects near a moving contact line

(3.12a,b)). In other words, ψ2 is singular because

2α0 cos 2α0 − sin 2α0 = 0. (5.1)

In fact, the streamfunction expansion in (3.2), and hence Ψ in (4.10), becomes incorrect
even when α /=α0 if the asymptotic series, with ρ � 1, is non-uniform, i.e. when S1 is
of the order of magnitude of 1/ρ. Similar singularities have been previously reported in
solutions of the biharmonic equation in problems of fluid flows and elasticity, and each of
them have been resolved individually, either analytically or numerically (see Sternberg &
Koiteri 1958; Moffatt & Duffy 1980). Following the approach of Hancock et al. (1981),
we propose to resolve the described singularity in ψ2 by making an appropriate choice of
the coefficient C1 in the first eigenfunction ψe1 in (4.7) so that the singular terms in ψ2 are
nullified by ψe1 when they are evaluated in unison.

5.1. Solution at the critical angle α = α0

Let the contact angle α be in close neighbourhood of α0, i.e. α = α0 ± ε, with ε → 0. The
leading-order inertial-correction term in (3.15) then becomes

ψ2 = ρ2
( ±M(α0)

4εα0 sin 2α0
(α0 sin 2θ − θ sin 2α0)+ E(α0)θ cos 2θ + H(α0)θ

2 sin 2θ

+ S2(α0) sin 2θ + O(ε)
)
. (5.2)

Notice the singular term that arises in (5.2) when ε = 0, i.e. when α = α0.
In a manner similar to deriving (5.2), we shall now determine the expression for ψe1(θ)

in the neighbourhood of α0. The eigenvalue λ1 is determined after substituting α = α0 ± ε

in (4.5) as

λ1 ≈ 2 ∓ ε

α0
. (5.3)

From figure 2, note that λ1 does not have any complex part in the neighbourhood of α0.
Substituting λ1 from (5.3) in the expressions for gm(θ) (4.2) and Am (4.6), gives, for m = 1,

g1(θ) = ∓ ε

α0
(α0 sin 2θ − θ sin 2α0) , (5.4)

and

A1 = C1
1∓ε/α0

4ε2(1 ± ε/α0) sin 2α0
, (5.5)

respectively. Note that (5.1) was used to simplify the above expressions. Finally, using (5.4)
and (5.5) in the expression for the eigenfunction in (4.7) gives the first eigenfunction near
the contact angle α = α0 ± ε as

Re(ψe1) = ρ2∓ε/α0C∓ε/α0
1

4α0 sin 2α0

(
∓(α0 sin 2θ − θ sin 2α0)

ε

+ 2θ(cos 2θ + cos 2α0)− 2 sin 2θ)
)
. (5.6)

Note that (5.6) is also singular at the same rate as (5.2), i.e. ε−1 as ε → 0. By assigning
C1 = M(α0) ≈ 0.0692, and considering the streamfunctions ψ2 and ψe1 together, i.e.
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adding (5.2) and (5.6), we get

ψ2 + Re(ψe1) = ±ρ
2M(α0)

(
1 − (ρ M(α0))

∓ε/α0
)

4εα0 sin 2α0
(α0 sin 2θ − θ sin 2α0)

+ ρ2(sin 2θ − θ cos 2α0)E(α0)

+ ρ2[((θ2 − 1) sin 2θ + θ(cos 2θ + cos 2α0))H(α0)

+ S2(α0) sin 2θ ] + O(ε). (5.7)

Finally, evaluating (5.7) in the limit ε → 0 gives a non-singular expression for the
combined streamfunction as ψ2 + Re(ψe1) = ρ2 ln ρ f̃ (θ)+ ρ2 f̆ (θ), where

f̃ (θ) = (α0 sin 2θ − θ sin 2α0)M(α0)

4α02 sin 2α0
, (5.8)

f̆ (θ) = (α0 sin 2θ − θ sin 2α0)M(α0)

4α02 sin 2α0
ln(M(α0))+ (sin 2θ − θ cos 2α0)E(α0)

+ [(θ2 − 1) sin 2θ + θ(cos 2θ + cos 2α0)]H(α0)+ S2(α0) sin 2θ. (5.9)

Thus, we see that with this choice of C1 = M(α0), the combined function ψ2 + Re(ψe1)

– which exists in the complete streamfunction (4.10) – is no longer singular at the critical
angle α = α0. Moreover, note that the expression for the complete streamfunction in this
case would not be the simple power series expansion of (4.9), but rather an asymptotic
expansion of the form

Ψ (ρ, θ)|α=α0 = ρf1(θ)+ ρ2 ln ρ f̃ (θ)+ ρ2 f̆ (θ)+ O(ρ3), (5.10)

where the non-singular functions f̃ (θ) and f̆ (θ) are given in (5.8) and (5.9), respectively. It
is interesting to note that this fixed value of C1 ≈ 0.0692 is quite close to the numerically
obtained value of the coefficient (C1 = 0.092) given by Sprittles & Shikhmurzaev (2009)
for a contact line with slip boundary condition. It may be noted that we have chosen C1
to be a constant here, i.e. independent of α, only for convenience. Nevertheless, since
ψ2 is dominant over all ψem when α < α0, no significant difference arises by choosing a
different expression for Cm, as long as the eigenfunction does not diverge in this range of
contact angles (see Appendix B, figure 10).

5.2. Additional singularities in the eigenfunctions
The coefficient Am in (4.6), which appear in the general expression for the eigenfunctions
given by (4.1), has W ′(λm) in its denominator. The function W ′(λm), given by (A11), has
roots at certain contact angles, shown by α1, α2 . . . in figure 2. Thus, it might appear
that the eigenfunctions are singular at these specified angles as well. For example, in
the present analysis, where we take into account the contributions from the first two
eigenfunction terms, ψe1 and ψe2 , we encounter a singularity in the terms at α = α1 ≈
0.442π. However, after noting that λ1 and λ2 are the double poles of (4.5) with λ1 =
λ2 = 3.78 when α = α1 (see figure 2), i.e. both W(λ1,2) = 0 and W ′(λ1,2) = 0 at these
contact angles, we consequently use the residual theorem to overcome these spurious
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singularities (see Appendix A). As derived in (A14) the correct, non-singular expression
of the eigenfunctions at α = α1 is in fact

ψe1(= ψe2)

= ρλ1Cλ1−1
1

4α2
1 sin(2(λ1 − 1)α1)

[ln(ρC1) (sin (λ1 − 2)α1 sin λ1θ − sin λ1α1 sin (λ1 − 2)θ)

+ α1 (cos (λ1 − 2)α1 sin λ1θ − cos λ1α1 sin (λ1 − 2)θ)

+θ (sin (λ1 − 2)α1 cos λ1θ − sin λ1α1 cos (λ1 − 2)θ)] , (5.11)

with λ1 = 3.78. As before, the arbitrary constants are chosen as C1 = C2 = M(α0). The
singularity-free expression of the complete streamfunction, in this case, takes the form

Ψ (ρ, θ)|α=α1 = ρf1(θ)+ ρ2f2(θ)+ O(ρ3)+ ρ3.78 ln ρ g̃(θ)+ ρ3.78 ğ(θ), (5.12)

where the functions g̃(θ) and ğ(θ) may be easily inferred from (5.11). Since α1 < 0.5π,
the leading-order contributions from the eigenfunction terms are much smaller than the
inertial-correction terms, as expected. The same procedure may be implemented to resolve
singularities that occur in all of the eigenfunctions at the remaining double roots of (4.5).

At first glance, it might appear to be a happy coincidence that at the critical
contact angle, the leading-order inertial term and the first eigenfunction term are of
the same asymptotic order, are both singular, and their combination magically yields
a non-singular, non-zero streamfunction. Botella & Peyret (2001) argued the corollary,
that the singularities in the streamfunctions arise because the leading-order inertial and
eigenfunction terms are asymptotically of the same order of magnitude, i.e. O(ρλ1) =
O(ρ2), at this critical contact angle. These terms are then forced to simultaneously satisfy
the Stokes (by eigenfunction) as well as the Navier–Stokes (by leading-order inertial term)
equations, which results in singular solutions. To avoid the singularity, they suggested the
use of a power-logarithmic streamfunction expansion instead, which we have re-obtained
in (5.10) from first principles. Similar modified expansions of the streamfunction for other
corner flow problems, at their respective critical corner angles, have also been determined
previously (Moffatt & Duffy 1980; Hancock et al. 1981; Sinclair 2010; Nitsche & Bernal
2018). Some of these authors have used the power-logarithmic series as the general
solution of the biharmonic equation, and have obtained the conditions under which the log
terms have non-zero coefficients viz. when the eigenvalues transition from complex to real
and vice-versa (see figure 2). This transition happens when the eigenvalues are integers
or double roots (Dempsey & Sinclair 1979; Botella & Peyret 2001; Paggi & Carpinteri
2008). Thus, the modified expansion is reminiscent of that determined using the method
of Frobenius (see for e.g. Teschl 2012, chapter 4). Drawing from these studies, we suspect
that the power series expansion of the streamfunction in the present problem (in (4.9))
also requires modification when the eigenvalues are either (i) integers, i.e. λm = n, or (ii)
double roots (λm = λn) of (4.5) for some integers m and n. A limit analysis of § 5.1 can be
used to determine the correct expansion in the former case, while in the latter case, one can
use the method of residues, as in § 5.2. Since we consider only the leading-order inertial
correction, we do not venture into identifying and resolving singularities in higher-order
inertial and eigenfunction terms.

6. Results and discussion

By substituting the Stokes solution ψ1 from (2.8), the first inertial correction ψ2 from
(3.15) and the relevant eigenfunctions ψe1,2 from (4.7) in (4.10), we obtain the general
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expression for the inertia-corrected streamfunction as

Ψ (ρ, θ) = ψ1(ρ, θ)+ ψ2(ρ, θ)+ Re(ψe1(ρ, θ)+ ψe2(ρ, θ))

= ρ f1(θ)+ ρ2 f2(θ)+ Re(A1ρ
λ1g1(θ)+ A2ρ

λ2g2(θ)), when α /=αn, (6.1)

with n = 0, 1, 2 . . .. It is assumed here that the local Reynolds number ρ � 1, and the
higher-order inertial corrections and eigenfunctions have been neglected. In (6.1), the
functions f1(θ) and f2(θ) are obtained from (2.6) and (3.14) respectively. The eigenvalues
λ1 and λ2 are obtained using (4.5) (see also: figure 2). The corresponding eigenfunctions
g1(θ) and g2(θ) are obtained from (4.2), and the coefficients A1 and A2 are obtained from
(4.6). The implicit arbitrary coefficients (within A1 and A2) are chosen as C1 = C2 =
M(α0), as detailed in the previous section. It was noted in § 5 that the expansion in (6.1) is
not valid at the critical contact angles αn where n = 0, 1, 2 . . . (also see figure 2); methods
to derive special streamfunction expansions in these cases – such as when α = α0 in (5.10),
and when α = α1 in (5.12) – have also been detailed in the previous section. Nonetheless,
(6.1) numerically converges to the values of these special functions at the critical contact
angles.

Figure 3 shows the magnitude of the streamfunctions for Stokes flow, leading-order
inertial correction and the eigenfunction terms for two different dynamic contact angles;
note that the terms are, respectively, of decreasing order of magnitude in strength. It
is also interesting to note that while the streamfunction for Stokes flow reverses sign
between receding and advancing contact lines, there is no change in sign of the inertial and
eigenfunction terms, implying that these terms have opposite effects on the Stokes flow
depending on whether the contact line is advancing or receding. While (6.1) converges
asymptotically for ρ � 1, the actual radius of convergence, ρc, can be much larger. The
order of magnitude of the streamfunctions in figure 3 hints the convergence of the series
even when ρ ∼ O(1). The value of ρc depends on the contact angle. We have determined
ρc numerically for various contact angles in Appendix D; ρc can be as large as 20 for
α � 1 and is seen to decrease with increase in α. For the example shown in figure 3, the
streamfunction solution converges numerically within ρc ≈ 5 for α = 0.4π and ρc ≈ 2 for
α = 0.6π; the present solutions are also valid for ρ within the visco-inertial regime, i.e.
ρ ∼ O(1).

We remind the readers that the first eigenfunction term ψe1 dominates over all the
inertial-correction terms when the contact angle α > α0, and hence, the exact value of
ψe1 needs to be known to determine the flow field accurately for this range of contact
angles. However, the choice of fixing the arbitrary coefficient C1 = M(α0) in ψe1 was
simply so as to remove the singularity in ψ2 when α = α0; the exact functional form
of C1 depends on the precise details of the far-field disturbance, and is unknown in
the present problem. This prevents an accurate determination of the correction to the
Stokes flow for contact angles beyond α0. Nonetheless, when α � α0, a different choice
of C1 seems to change the solution only marginally (see Appendix C). We hence limit
our analysis to α � α0. One can also anticipate that at some small distance l � ν/|U|
from the contact line, additional contact line physics, which may modify the boundary
conditions, comes into play so as to resolve the stress singularities at the contact line;
typically, l is around a few nanometres. This sets the lower limit of our analysis. Thus,
the following results in this section would be valid in the region l|U|/ν � ρ � ρc,
and contact angles 0 � α � α0(= 0.715π). Additionally, if we have a deformable liquid
interface, the inertial correction outweighs the correction introduced by the deformed
interface only when ρ/| ln ρ| � Ca, and this sets another lower bound for our analysis
(see Appendix E).
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Figure 3. Comparison of the strength of the streamfunctions of the Stokes flow ψ1 (left), the first inertial
correction ψ2 (centre) and the eigenfunctions ψe1 and ψe2 (right) for (a) a receding contact line with α = 0.4π,
and (b) an advancing contact line with α = 0.6π.

6.1. Streamlines and flow field
The streamfunction for the Stokes flow and the leading-order inertial correction are given
by (2.8) and (3.15) respectively. For a given contact angle, the corresponding velocity fields
are then

u1(ρ, θ) = f ′
1(θ)er − f1(θ)eθ (6.2)

and
u2(ρ, θ) = ρf ′

2(θ)er − 2ρf2(θ)eθ , (6.3)

respectively. Here, er, eθ represent unit vectors in radial and angular directions,
respectively. Additionally, for a given eigenvalue λm, the eigen streamfunction is given
by (4.7), and the corresponding velocity field of this disturbance flow is thus

uem = Re
(

Am(λm)ρ
λm−1g′

m(θ)er − Am(λm)λmρ
λm−1gm(θ)eθ

)
, λm /= 2. (6.4)

The inertia-corrected flow field is then obtained by superposition of the fields in
(6.2)–(6.4), i.e. u = u1 + u2 +∑

m=1,2 uem , where, as before, only the first two terms of
the eigenfunction contribution are taken into account.

Figure 4(a–d) shows the magnitude of this corrected velocity field and streamlines
of (6.1) near advancing and receding contact lines, for a few choices of contact angles;
the Stokes flow streamlines are also shown for comparison. The contact angles chosen
in figures 4(b) and 4(c) correspond to that observed in experiments of Puthenveettil
et al. (2013) for water and mercury drops, respectively, on glass. Figure 4(d) shows the
inertia-corrected flow field near an advancing contact line having the critical contact
angle α = α0, determined using (5.10); the streamlines are smooth and continuous and
are devoid of any singularities. As seen in these figures, the inertia-corrected streamlines
deviate from the Stokes streamlines significantly more in the bulk of the fluid than near
the boundaries. It can moreover be observed that inertia forces the incoming flow further
towards the contact line. For an advancing contact line, this results in the focusing of
the streamlines towards the contact line. On the contrary, for a receding contact line,
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Figure 4. Flow field near (a) an advancing contact line and (b) a receding contact line having an acute contact
angle α = 0.4π, which is close to the static receding contact angle of water. Flow field near advancing contact
lines having obtuse contact angles (c) α = 0.6π, which is close to the static advancing contact line of water,
and (d) the critical contact angle, α = α0 = 0.715π. Dashed lines represent the streamlines of Stokes flow,
ψ1, and solid lines are the inertia-corrected streamlines, Ψ (as in (6.1)). Colour map shows the magnitude of
velocity of the inertia-corrected flow field.

the focusing of streamlines occur away from the contact line and this produces slightly
larger velocities in the bulk fluid compared with that in the case of an advancing contact
line.

6.2. Free-surface velocity
Contact line models, such as the interface-relaxation model that satisfies the conservation
laws at the contact line, propose that the dynamic contact angles depend on the velocity
of the liquid at the free surface (Shikhmurzaev 1993). Such a possibility makes the
understanding of the effect inertia on the free-surface velocity particularly important as
it gives us an indirect way to assess its influence on the dynamic contact angles. The
free-surface velocity in our analysis is the radial flow velocity at θ = 0. In the case of
Stokes flow, the free-surface velocity, denoted by ũs, is obtained from (2.8) as

ũs

|U| = 1
ρ

∂ψ1

∂θ

∣∣∣∣
θ=0

= B(α)+ C(α) = ±2(α cosα − sinα)
2α − sin 2α

. (6.5)

Note from this well-known expression that the free-surface velocity for Stokes flow is
independent of the dimensionless distance ρ from the contact line. The free-surface
velocity, inclusive of the leading-order inertial correction, denoted here by ũ, is obtained
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from (6.1) as

ũ
|U| = 1

ρ

∂Ψ

∂θ

∣∣∣∣
θ=0

= B(α)+ C(α)+ ρ

((
2α − sin 2α

α

)
S1(α)+ 2S2(α)+ E(α)

)

+
2∑

m=1

(ρCm)
λm−1

(
λm sin(λm − 2)α − (λm − 2) sin λmα

(λm − 1)(2α cos 2(λm − 1)α − sin 2α)

)
,

(6.6)

when α /=αn with n = 0, 1, 2 . . ., and where the coefficients C1 = C2 = M(α0). Thus,
we see that, unlike the case of Stokes flow in (6.5), the free-surface velocity for the
inertia-corrected flow in (6.6) is not independent of ρ. At the critical contact angles, such
as when α = α0 and α = α1, separate non-singular expressions for ũ are presented in
Appendix C. In these special cases, ũ shows a logarithmic variance with ρ.

Figure 5(a) shows the variation of the free-surface velocity with the contact angle, given
by the singularity-free solution in (6.6). Note, however, that if we omit the eigenfunction
terms in the expression, the velocity (shown by the dotted line) begins to diverge when α �
0.5π, and is singular at α = 0.715π. From the singularity-free solution, we can observe
that, within the limits of our analysis, the free-surface velocity at a given dimensionless
distance ρ from the contact line increases with increase in contact angle α for both
advancing and receding contact lines. The magnitude of the Stokes free-surface velocity
is independent of whether the contact line is advancing or receding. But when inertia is
taken into account, we find that the free-surface velocity at any given ρ, is lower than the
Stokes estimate for an advancing contact line, while it is higher than the Stokes estimate for
a receding contact line. Also note that the magnitude of the inertial correction increases
with increase in contact angle; the inertial correction is only marginal for acute contact
angles. Figure 5(b) compares the inertia-corrected free-surface velocity, ũ, with the Stokes
value, ũs. We see that |ũ/ũs| increases with increase in ρ, as expected. At moderate values
of ρ ∼ 1, the inertial effects on the free-surface velocity are noteworthy. For example, at
ρ = 1 for obtuse contact angles, the inertial correction to the Stokes free-surface velocity
can be as large as 10 %–15 % of the Stokes’ value. Figure 5(b) also shows that inertia
would indeed be negligible as we approach the contact line, at length scales ρ → 0, where
additional contact line physics play the dominant role in determining the contact angle. A
quantitative study at the length scales at which this would occur is made later in § 6.2.2.
For small contact angles (α � 1), since the eigenfunction terms in (6.6) are insignificant,
the dominance of the leading-order inertial correction results in the linear variation of
ũ/ũs with ρ, as seen in figure 5(b). However, when α � 0.5π, the behaviour is non-trivial
and depends on the strength of the eigenfunction terms. It is also compelling to note from
(6.6) that the leading-order inertial correction to the free-surface velocity is zero when
α = π, which shows that inertia has no effect on perfectly non-wetting flows (see also:
figure 5a). We shall now look at the small-angle cases and obtain a simpler expression for
the free-surface velocity.

6.2.1. Small-angle approximation
For small contact angles α � 1, the eigenfunction terms are negligibly small and can be
discarded in (6.6). We notice that the remaining two terms in (6.6) viz. the Stokes and
the leading-order inertial-correction terms contain simple trigonometric functions of α,
which can be easily expressed in their power series form. This procedure, coupled with the
small angle approximation (α � 1), allows one to express the dimensionless free-surface
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Figure 5. (a) Variation of the free-surface velocity with the contact angle for an advancing (blue) and a
receding (orange) contact line at various dimensionless distances from contact line, ρ. Dotted lines represent
the solution at ρ = 1, inclusive of the first inertial correction, but without the eigenfunction contributions,
and hence, it is singular at α ≈ 0.715π. Shaded region is beyond the limit of our singularity-free solution.
(b) Variation of free-surface velocity with ρ for various contact angles for both advancing (blue) and receding
(orange) contact lines.

velocity as a simple algebraic function of α and ρ,

ũ
|U| = ∓1

2

(
1 + α2

10
+ 19α4

4200

)
+ 3ρ

280

(
α2 + α4

5

)
+ O(α6), (6.7)

where the ∓ are for advancing and receding contact lines respectively. A comparison of
the approximation in (6.7) with the full solution in (6.6) is shown in figure 6. We see
that the error introduced by using the approximation (6.7) is extremely small when α �
0.5π. Moreover, the α6 scaling of the error is observed even for fairly large values of
α and even at moderately large ρ = 1, implying that the eigenfunction terms are only
at most of this order of magnitude, and are indeed insignificant in this case, which is
consistent with the asymptotics. Hence, even though (6.7) has been formulated for small
α, it can be seen from figure 6 that the approximation is remarkably accurate even for large
values, with the maximum error being less than 1 % even when α = 0.5π. The expression
in (6.7) can be rewritten as, (ũ − ũs)/|U| ≈ 3ρα2/280. In other words, at the leading
order, the inertial correction for the free-surface velocity has a quadratic dependence on
the contact angle. This indeed implies that when α � 1, inertia has very little effect on
the free-surface velocity. In fact, one can also infer that a completely wetting flow, with
α = 0, has absolutely no influence of inertia at any distance from the contact line.

6.2.2. The practical scenario
So far in our analysis, the choice of the dynamic contact angle α has been independent of
U, as can be seen in figure 5, where ρ and α vary independently. However, in reality, it has
been observed in experiments that α depends uniquely on U and the wetting properties
of the fluid (Le Grand et al. 2005; Puthenveettil et al. 2013); figure 5(b) would then
make physical sense only when U is fixed and r is varying so as to vary ρ. On the
other hand, experiments on contact angle variation involve taking measurements of α at
a fixed r by varying U; typically r ∼ 10–100 μm, depending on the camera resolution.
Same is the case with the various contact angle models, such as linear (Blake & Ruschak
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Figure 6. The relative error in the free-surface velocity calculated using the small α approximation (6.7) for
advancing (blue) and receding (orange) contact lines at local Reynolds number ρ = 1. Solid lines represent
the error when compared with the full solution (6.6), whereas the dotted line is the error compared with (6.6)
without its eigenfunction terms. Inset shows the absolute values of the free-surface velocity determined using
the full solution in (6.6) and the approximation in (6.7).

1997), de Gennes (de Gennes 1985), Cox–Voinov (Voinov 1976; Cox 1986) and interface
formation(Shikhmurzaev 1993), which predict the variation of α as a function of the
algebraic capillary number CaA = μU/γ at the distance, say r = l, at which additional
contact line physics becomes important; l varies from 3 to 10 nm for various models.
Here, CaA takes into account the direction of motion of the contact line so that CaA > 0 for
advancing contact lines and CaA < 0 for receding contact lines. We dedicate this section
to study the effect of inertia in the actual physical situation where α is uniquely decided
by U for a given wetting combination. In particular, we shall study the effect of inertia
on the free-surface velocity at a fixed distance of r = 10 μm – the highest measurement
resolution in experiments till date – where α is decided by a linear contact angle model for
a given CaA.

We consider the case of contact lines formed by sliding water drops of density
D = 103 kg m−3, dynamic viscosity μ = 10−3 Pa s and surface tension γ = 72 ×
10−3 N m−1, corresponding to the experimental studies of Puthenveettil et al. (2013).
For such a case, the advancing and the receding contact angles respectively obey the linear
relations given by

αa − αsa = 58.53 CaA, and αr − αsr = 108.23 CaA, (6.8a,b)

where the subscripts a and r indicate the advancing and receding cases, respectively; the
static advancing and receding contact angles are αsa = 0.6π and αsr = 0.4π for water.
Equivalently, the Cox–Voinov model gives the relation α3

a,r − α3
s = 560 CaA. We find

the dynamic contact angles determined by either of these models to be nearly identical.
In the present analysis, we shall limit the maximum capillary number to |CaAmax | =
μUmax/γ = 2.5 × 10−3, which is below the critical capillary number (≈ 4 × 10−3) at
which a 2-D contact line of water first destabilises (Winkels et al. 2011; Puthenveettil et al.
2013); the corresponding maximum contact line velocity is Umax = 0.18 ms−1. At CaAmax ,
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Figure 7. (a) The estimated free-surface velocity of water at a distance of r = 10 μm from the advancing
(Adv. CL) and receding contact lines (Rec. CL) for various algebraic capillary numbers with the local Reynolds
number, ρ � 2. (b) The relative correction introduced by the leading-order inertia term at r = 10 μm, and at
distances crucial for contact line physics viz. r = 10 nm and r = 27 |U| nm.

αa ≈ 0.65π, well within the α � 0.715π limit of our analysis. At a distance r = 10 μm
from the contact line, the maximum local Reynolds number is ρmax = DUmaxr/μ = 2
which is also within the radius of convergence ρc of our analysis (see table 2). Moreover,
if we allow for interface deformation, the effect of interface curvature on the Stokes
flow would be negligible compared with the inertial correction when ρ/| ln ρ| � Ca (see
Appendix E). For Ca = 2.5 × 10−3, this corresponds to r � 60 nm. This suggests that at
r = 10 μm, our flat-interface assumption holds well.

Figure 7(a), compares the dimensionless inertia-corrected free-surface velocity to the
corresponding Stokes value, at r = 10 μm from the contact line, for various CaA and
accounts for the variation of α with U through the linear contact angle model of (6.8a,b).
For an advancing contact line, we see that the dimensionless Stokes free-surface velocity
ũs/U increases with increase in CaA; in the case of a receding contact line ũs/U decreases
with CaA. Contrasting with the Stokes flow prediction, there is a steady decrease in
the dimensionless inertia-corrected free-surface velocity ũ/U with increase in CaA for
an advancing contact line; this is because the increase in the free-surface velocity with
the capillary number is weaker than the decrease introduced by inertia at this particular
distance from the advancing contact line! For a receding contact line of water, we see that
the ũ/U increases with increase in |CaA| when CaA → 0, but soon starts to decrease at
larger magnitudes, finally following the trend of Stokes flow. There is then an asymmetry
in the variation of ũ/U with CaA for the advancing and the receding contact lines. This
can be understood by noting that the inertial effects on the free surface are more prominent
at larger contact angles (see figure 5b); since the advancing contact angle of water is
larger than the receding contact angle, it experiences more influence of inertia. We remind
that the behaviour of the free-surface velocity described above are when r = 10 μm; for
much smaller distances, the inertial effects would be proportionally smaller. One can
quantitatively perceive the correction introduced by inertia on the free-surface velocity
from figure 7(b). For an advancing contact line, the reduction in the free-surface velocity
due to inertia at r = 10 μm can be as large as around 10 % at the largest capillary number
CaAmax considered here. For a receding contact line, at the same capillary number and
distance from the contact line, the increase is lower, but can be as large as 5 %. These
corrections are not insignificant both qualitatively and quantitatively, and would append
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the free-surface velocity predictions made in Puthenveettil et al. (2013) where they have
used only the Stokes solution.

It is known that the contact angle is decided by the contact line physics at nano-scales
(Snoeijer & Andreotti 2008). One can then argue that if the inertia-corrected free-surface
velocity at this length scale is significantly different from that predicted using Stokes
flow, then inertia will have considerable influence on the contact angle. Thus, here, we
shall first make a preliminary examination of the influence of inertia in contact angle
models by determining the magnitude of inertial correction to the free-surface velocity
at the distance r = l below which contact line physics takes over, i.e. lower bound of our
analysis; a detailed analysis of the inertial correction to the contact angle predicted by the
Cox–Voinov model is carried out in § 6.3. Typically, l is around a few nanometres (Bonn
et al. 2009; Snoeijer & Andreotti 2013). For example, the Cox–Voinov and the de Gennes’
models introduce slip on the solid surface at a slip length l = ls ∼ 10 nm. In the interface
formation model, the contact angle physics in terms of the surface tension relaxation
occurs below a length of l = lτ = |U|τ , with τ being the surface tension relaxation time,
which typically varies between 27 ns for water and 450 ns for silicone oil (Shikhmurzaev
1993). Figure 7(b) shows the relative inertial correction to Stokes free-surface velocity at
ls = 10 nm, and at the interface formation length lτ = 27 |U| nm for water. The maximum
relative inertial corrections in either of the cases, at ρ = 2, is only ∼0.01 %, which is
negligibly small. While we conclude in Appendix E that at these distances from the contact
line, the interface curvature can significantly modifying the local flow field we, however,
note that the inertial correction is expected to remain of the same order of magnitude. Even
for the highest Reynolds number achieved so far in experiments, namely for mercury drops
moving at U = 0.2 m s−1 having Reynolds number of 20 000 at the length scale of a drop
by Puthenveettil et al. (2013), the corresponding local Reynolds number at the interface
formation length (lτ = 48 nm) is only ρ = 0.084. Since we have shown that the relative
inertial correction to the free-surface velocity is proportional to ρ, one can deduce that the
influence of inertia at this length scale would be insignificant.

6.3. Inertial effects on the interfacial stresses and contact angle models
The analysis presented so far assumed a flat liquid interface. This assumption, however,
provides only a partial local solution for the stream function as the normal stress balance
at the interface is either not met, or only met artificially. Here, we shall determine the
interface deformation that would occur, at the leading order in capillary number, for
the surface tension to balance the normal stresses acting at the interface. First, we shall
determine the stresses acting on the liquid interface. To facilitate reading, we present the
leading-order inertial correction separate from the eigenfunction contributions.

6.3.1. Leading-order inertial correction
The Stokes velocity field u1 is given in (6.2); the inertial correction to this field u2 is given
in (6.3). The combined inertia-corrected field is simply, ui = u1 + u2. The corresponding
pressure field pi(ρ, θ), is determined by integrating the Navier–Stokes equation ∇pi =
∇2ui − (ui · ∇)ui. At the interface (θ = 0), we obtain

pi(ρ, 0) = 2C(α)
ρ

+ (4Q(α)− B(α)C(α)) ln ρ + B(α)2

4
+ O(ρ), (6.9)

after assuming zero datum hydrostatic pressure. Note that, by ignoring the O(ρ) and
higher-order terms, we essentially consider only the weak-inertial correction involving
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leading-order convective acceleration, i.e. (u1 · ∇)u1, and is consistent with our analysis
for streamfunction in § 3. The viscous stresses normal to the free surface is then obtained
from the strain rate tensor, E i = 1/2(∇ui + (∇ui)

T), as

Eθθ (ρ, 0) = E i(ρ, 0) : eθeθ = −f ′
2(0). (6.10)

Thus, the expression for the total normal stress on the flat free surface, given by σi =
−pi(ρ, 0)+ 2Eθθ (ρ, 0), is obtained using (6.9) and (6.10) as

σi = −2C(α)
ρ

− (4Q(α)− B(α)C(α)) ln ρ − B(α)2

4
− 2(E(α)+ Q(α)+ 2S(α))+ O(ρ).

(6.11)
The first term in (6.11) is the pressure on the interface created by the Stokes flow, and
scales as ρ−1; the rest of the terms are the leading-order inertial correction. Note from
(6.11) that, at the leading order, the inertial correction to local stress scales logarithmically
with ρ.

6.3.2. Eigenfunction contribution
The eigen streamfunction terms satisfy the Stokes equations and the homogeneous
boundary conditions. Referring to the discussion in in § 6.1, the velocity field of this
disturbance flow is given by the superposition of uem (m = 1, 2, . . .) given in (6.4). As
is the case with Stokes flow, the pressure field is obtained by integrating ∇pem = ∇2uem ,
which gives

pem(ρ, 0) = Re
(−4(λ2

m − 3λm + 2)A(λm)

(λm − 2)
ρλm−2 sin(λmα)

)
, when λm /= 2. (6.12)

The normal stress at the free surface due to the disturbance flow is given by σem = −pem +
2(Eθθ )em , where

(Eθθ )em = Re
(
(λm − 1)A(λm)ρ

λm−2((λm − 2) sin(λmα)− λm sin((λm − 2)α))
)
,

(6.13)

when λm /= 2.
Note that the eigenfunction contribution to the normal stress scales as ∼ ρλm−2; it

is asymptotically non-negligible compared with the leading-order inertial correction for
obtuse contact angles, where λm � 3.

Finally, the total normal stress at the liquid interface is obtained from the Stokes and
inertial (6.11), and the eigenfunction terms as

σ(ρ) = σi(ρ)+
∑

m=1,2

σem(ρ)+ O(ρ). (6.14)

As before, only the first two eigenfunction terms have been taken into account as they
are sufficient for the present analysis. They can be neglected when α < π/2. In the
special case of λm = 2, which is when the contact angle is α = α0 = 0.715π, the modified
streamfunction expansion (5.10) is used to obtain the explicit expression for the total
normal stress at the interface as

|σ(ρ)|α=α0 = ∓0.571
ρ

− 0.007(ln ρ)2 − 0.148 ln ρ − 0.167 + O(ρ). (6.15)

The local curvature that would have been introduced on the liquid surface is κ(ρ) =
−Ca σ(ρ), which is shown in figure 8. Here, Ca = μ|U|/γ is the capillary number. At the
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Figure 8. The expected curvature of the interface when Ca = 10−3 for various contact angles. Black curves
represent the curvature due to Stokes flow; it is identical for both advancing and receding contact lines. The
orange curves represent receding contact lines while the blue curves represent advancing contact lines when
inertia is included, determined using (6.14).

leading order, interface curvature is due to the Stokes flow, and is κs(ρ) = 2Ca C(α)/ρ.
We see from figure 8 that inertia can either enhance or suppress the viscous bending, but
only by a very small margin. For a more detailed analysis of the variation of apparent
contact angles and the interface curvature due to inertia, we direct the readers to the
experiments of Stoev et al. (1999).

6.3.3. Correction to the Cox–Voinov solution
Experiments involving fast-moving contact lines have shown that the apparent contact
angles are not influenced significantly by inertia, and that one can reliably use the
classical contact angle models mentioned in § 6.2.2 – which are based on the Stokes flow
assumption – even for large Ca (Puthenveettil et al. 2013). In this section, we shall try
to analytically understand this observation by incorporating the inertial correction in the
Cox–Voinov model. The shape of the interface, in terms of the apparent contact angle
α(r), is dictated by the normal stress acting on the interface, σ ∗

i , and obeys (Voinov 1976)

γ
dα
dr

= σ ∗
i (r). (6.16)

The normal stress at the interface, inclusive of the leading-order inertial correction, is
given in (6.11). It can be written in its dimensional form as

σ ∗
i (r) = −2μ|U|C(α)

r
− DU2(4Q(α)− B(α)C(α)) ln r + O(1). (6.17)

Here, μ is the dynamic viscosity, and D is the density of the liquid. Note that we have
ignored the eigenfunction terms, as we shall only consider the case of small contact angles
(α � 1), where the eigenfunction terms are negligible. Nonetheless, it can be shown a
posteriori that the small-angle approximation yields accurate results for α even up to
3π/4. Like in § 6.2.1, we use the small-angle approximation of the coefficients in (6.17) to
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simplify the expression, and then substitute it in (6.16) to obtain the variation of contact
angle as

dα
dr

= ±3Ca
α2r

+ 6
35

We1 ln r, (6.18)

after omission of the higher-order terms; the ± is for advancing and receding contact
lines, respectively. Here, We1 = DU2/γ is the Weber number having a unit characteristic
length. The second term in the right side of (6.18), which is independent of α, is the
truncated leading-order inertial contribution. In the absence of this inertial-correction
term, one can analytically integrate (6.18) to retrieve the classical Cox–Voinov solution:
α3 − α3

l = ±9Ca ln(r/l), where αl is the contact angle at the continuum limit of contact
line l, below which additional contact line physics need to be incorporated (Voinov 1976;
Cox 1986). However, no analytical solution can be determined for α from (6.18); one can
nonetheless obtain a numerical solution.

As an example, we choose the physical conditions investigated in § 6.2.2 for water
(μ = 10−3 Pa s, γ = 72 × 10−3 N m−1, D = 103 kg m−3) with the contact line having a
velocity |U| = 0.18 m s−1, corresponding to Ca = 2.5 × 10−3 and We1 = 450. The true
advancing contact angle is chosen as αl = 0.6π, and the true receding contact angle is
chosen as αl = 0.4π, measured at l = 10 nm. The comparison of the numerical solution
of (6.18) with the Cox–Voinov solution is shown in figure 9(a). Approaching r = 10 μm,
the correction to the Cox–Voinov scaling is numerically as large as the solution itself,
which signals the limit of the asymptotic analysis in (6.18). This limit is consistent with
our analysis of the inertial correction of the streamfunction because at this distance from
the contact line, the local Reynolds number ρ ≈ 2 – the numerical limit of our analysis
for large contact angles (see Appendix D, table 2). Nonetheless, we can see in figure 9(b)
that even at r = 10 μm, the correction to the actual contact angle α is only marginal. This
supports and emphasises our conclusion that inertia has very little role in modifying the
contact angles even in the visco-inertial regime. Furthermore, we expect only negligible
inertial correction to the Tanner’s law as it is applicable when α → 0, where we have
shown that the inertial effects are insignificant. Qualitatively, we find from figure 9(b) that
inertia decreases the apparent contact angles at relatively large distance from the contact
line. This lowering of the apparent contact angle due to inertia is in accordance with the
experimental observations of Stoev et al. (1999) as well as numerical simulations (Sui &
Spelt 2013).

7. Summary and conclusions

In this article, we have presented the hydrodynamic effects of inertia near a moving contact
line. To this end, we modelled the flow near the moving contact line as that formed by a flat
liquid interface moving relative to a solid substrate. We wrote the streamfunction solution
as a series expansion in powers of the local Reynolds number, ρ, in (3.2); the first two
terms of the power series are then the Stokes and the leading-order inertial-correction
terms, respectively. Using appropriate boundary conditions, self-similar expressions for
the Stokes and the inertial-correction streamfunctions were hence determined in (2.8) and
(3.15), respectively. The series expansion is expected to converge asymptotically when
ρ � 1. Nonetheless, a numerical convergence that extends into the visco-inertial regime
(i.e. ρ ∼ 1)) was observed in our computations.

Although it is perfectly reasonable to write a general power series expansion for
the streamfunction, some of the terms of the expansion were found to be singular
at certain critical contact angles. For example, when the contact angle α = 0.715π,
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Figure 9. Variation of the apparent contact angle α with radial distance r from the contact line for the
system described in § 6.3.3 (Ca = 2.5 × 10−3,We1 = 450). (a) Cox–Voinov scaling (dashed lines) and its
modification due to inertia (solid lines) for advancing (blue) and receding (orange) contact lines. When r = l,
the apparent contact angle converges to the actual microscopic values: αl = 0.6π for advancing contact line and
αl = 0.4π for receding contact line; here, we have chosen l = 10 nm. (b) Actual modification of the apparent
contact angle due to inertia. The maximum local Reynolds number is ρ ≈ 2 when r = 10 μm.

the leading-order inertial streamfunction is singular. We noted that these are spurious
mathematical singularities that arise because of the incorrect and incomplete evaluation
of the streamfunction at the critical contact angles; the lack of an inherent length scale
in the problem and therefore, the absence of a prescribed closing boundary condition at
this distance from the contact line is the reason for the presence of these singularities.
The singularity was resolved in this case by including the eigenfunction terms of (4.7),
which are the solutions of the Stokes flow problem that satisfy the homogeneous boundary
conditions, i.e. the flow created by external disturbances near a stationary contact line.
These eigenfunctions were modelled based on a stick-slip phenomenon occurring at
the solid surface, away from the contact line. The reason for choosing stick slip as
the physical mechanism that generates the disturbance flow is twofold: (i) physically,
every solid surface contains irregularities or localised regions of contamination such as
micro-bubbles where the flow effectively slips. This leads to intermittent sticking and
slipping of the liquid on the solid surface; (ii) mathematically, the form of the first
eigenfunction term obtained using this assumption near the critical contact angle of
0.715π, was found to be exactly same as that of the leading-order inertial-correction
term, and hence, is also singular at α = 0.715π. This property of the eigenfunction,
along with an appropriate choice of the eigenfunction coefficient, allowed us to nullify
the singularities in the combined eigenfunction–inertial term, and consequently derive the
correct, singularity-free, asymptotic expansion of the streamfunction from first principles,
as given in (5.10). The eigenfunction terms were found to be significant only when
α � 0.5π, and in this range, the smooth transition from the general power series expansion
to the modified asymptotic expansion at α = 0.715π is facilitated by the expression for
the eigenfunctions derived using the stick-slip model. However, we also noted that when
α > 0.715π, the eigenfunction terms would be asymptotically more influential than the
inertial corrections themselves. Therefore, our results are applicable only for contact
angles 0 � α � 0.715π.

Using the singularity-free, inertia-corrected streamfunction obtained in (6.1), we
determined the influence of inertia on the flow near a moving contact line: as the flow
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approaches an advancing or a receding contact line, it is drawn further towards the contact
line due to inertia, with substantial effect felt in the bulk fluid away from the boundaries.
At the free surface, it is well known that the Stokes velocity is independent of the distance
from the contact line. However, when inertia is taken into account (in (6.6)), we observed
that the flow accelerates to the Stokes velocity as it approaches an advancing contact
line, while for a receding contact line, the flow accelerates from the Stokes velocity as it
leaves the contact line. This behaviour is in accordance with the experimental observations
(Clarke 1993; Chen et al. 1996). We also observed that the inertia-corrected free-surface
velocity increases with increase in α for both advancing and receding contact lines, similar
to the case of Stokes flow. In fact, for small contact angles (α � 1), we have obtained an
approximate algebraic expression in (6.7) for the free-surface velocity, where the inertial
correction, at the leading-order, was found to vary quadratically with α. Moreover, this
simple approximation may be appreciated for its exceptionally good accuracy even for
contact angles as large as α = 0.5π. When α � 1, inertia has very little influence on the
flow field, even for relatively large Reynolds numbers ρ ∼ 10. Inertia has no influence for
perfectly wetting or dewetting flows, i.e. when α = 0. Rather curiously, the leading-order
inertial correction was also found to be zero for perfectly non-wetting flows, i.e. when
α = π. This is, however, not the case for intermediate contact angles, as detailed earlier;
for partially wetting or dewetting flows, it is imperative to include inertia in the analysis.

For sliding water drops, we showed that the inertial correction to the free-surface
velocity, at the current maximum experimental resolution of r = 10 μm from the contact
line, is expected to be as large as 10 % of the Stokes solution for the advancing contact
lines, and approximately 5 % for receding contact lines. However, at closer distances
r(= l) = 10 nm, where additional contact line physics dictates the contact angle, the
correction is predicted to be a meagre 0.01 %, implying that inertia has practically no
role in modifying the contact angles. This result contradicts the need for inertial contact
angle models (Cox 1998; Sui & Spelt 2013). This conclusion is further substantiated in
§ 6.3, where we corrected for inertia in the classical Cox–Voinov model to determine the
dynamic contact angles; the deviation of the corrected solution was indeed only marginal
compared with that predicted using the original Cox–Voinov model.

The analysis presented here is expected to supplement numerical methods such as
singular finite element methods for evaluating corner flow problems involving a free-shear
boundary. Besides providing the leading-order inertial correction to the Stokes flow, we
have also determined the elusive eigenfunction contributions which are associated with
Stokes flows, but which are often mistakenly omitted in these numerical simulations
(Sprittles & Shikhmurzaev 2009). Determining the coefficients of these eigenfunction
terms required evaluating the inertial-correction terms.

We had assumed a flat liquid interface in our analysis, i.e. we considered only the
leading-order interface profile in the limit of small capillary number (Ca � 1). However,
subsequently, we also analysed the viscous bending of the interface in § 6.3; the influence
of inertia on the interface curvature was shown to be relatively weak. Additionally,
an analysis of the relative influence of the curved interface in comparison with the
inertial correction on the Stokes flow was carried out in Appendix E; we determined
the region, ρ/| ln ρ| � Ca where the interface curvature would have negligible influence
on the inertial correction computed for a flat interface. Thus, the model proposed in this
manuscript is valid between the asymptotic limits of ρ � 1 and ρ/| ln ρ| � Ca. Finally,
while this article details the procedure to determine the hydrodynamic effects of inertia
near a moving contact line of a single fluid, the same techniques can also be used to
describe the inertial effects in a modified situation involving a moving contact line formed
by two immiscible fluids such as air and water.
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Appendix A. Local self-similar flows due to stick slip at the solid boundary

Consider a Stokes flow in a rigid–free wedge driven by small sections of the solid
boundary. The fluid is assumed to slip in the remaining regions of the solid surface, thus
creating an equivalent stick-slip phenomenon. Since we are looking merely for the form
of expression of the solution, and not the actual values, we consider the flow to stick to
the solid boundary at θ = −α everywhere, except in a small region a � ρ � b, where the
flow completely slips. Thus the streamfunction ϕ of the Stokes flow obeys the biharmonic
equation (2.1) and the dimensionless boundary conditions

1
ρ

∂ϕ

∂θ

∣∣∣∣
θ=−α

=

⎧⎪⎨
⎪⎩

0 ρ < a
∓1 a � ρ � b
0 ρ > b

, (A1)

∂ϕ

∂ρ

∣∣∣∣
θ=0,−α

= 0, (A2)

and (
−∂

2ϕ

∂ρ2 + 1
ρ2
∂2ϕ

∂θ2 + 1
ρ

∂ϕ

∂ρ

)∣∣∣∣
θ=0

= 0. (A3)

Note that (A1), considered in the context of the problem in the main text, implies that
the flow velocity at the solid surface, within Stokes limit (= ± 1) is exactly cancelled in
a � ρ � b, effectively giving rise to a slip in this region.

We take the Mellin transform of the above equations that is defined by

ϕ̄( p, θ) =
∫ ∞

0
ρp−1ϕ(ρ, θ) dρ, (A4)

where p can be complex but with a real part such that the above integral exists. This
transform converts the piecewise boundary conditions of (A1) into a continuous boundary
condition. By writing p as p = λ− 2, the biharmonic equation for the transformed
streamfunction is (Moffatt 1964b; Dussan 1976)

d4ϕ̄

dθ4 + [λ2 + (λ− 2)2]
d2ϕ̄

dθ2 + λ2(λ− 2)2ϕ̄ = 0, (A5)

with boundary conditions

ϕ̄|θ=0,−α = 0,
dϕ̄
dθ

∣∣∣∣
θ=−α

= ∓(bλ−1 − aλ−1)

λ− 1
, and

d2ϕ̄

dθ2

∣∣∣∣∣
θ=0

= 0. (A6a–c)
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Applying the boundary conditions of (A6) in the general solution of (A5) and simplifying
gives

ϕ̄(λ, θ) = ∓(bλ−1 − aλ−1)(sin (λ− 2)α sin λθ − sin λα sin (λ− 2)θ)
(λ− 1)W(λ)

, (A7)

where W(λ) is given by (4.5). To obtain the true streamfunction we take the inverse
transform,

ϕ(ρ, θ) = 1
2πi

∫ c+i∞

c−i∞
ρ2−λ ϕ̄(λ, θ) dλ. (A8)

The poles of this integrand are at the roots of W(λ) which are, in addition to λ = 2, the
eigenvalues shown in figure 2. These roots occur at αn for n � 0. The residues may be
computed thereafter by a proper choice of c; here, we take c = −1. If α /=α0, α1, . . . , αn,
i.e. for simple poles, the streamfunction can be directly obtained from (A8) using Cauchy’s
residual theorem as

ϕ(ρ, θ) =
∞∑

m=0

ϕm(ρ, θ), with (A9)

ϕm(ρ, θ) = ρλm(bλm−1 − aλm−1)(sin (λm − 2)α sin λmθ − sin λmα sin (λm − 2)θ)
(λm − 1)W ′(λm)

,

(A10)

where λ0 = 2 and λm, for m � 1, are the eigenvalues shown in figure 2. The function
W ′(λm) can be obtained by taking derivative of (4.5) to obtain

W ′(λm) = dW(λ)
dλ

∣∣∣∣
λ=λm

= 2α cos(2(λm − 1)α)− sin 2α. (A11)

The flow is driven by the slip region of length s = b − a. Since we assume this
disturbance to originate relatively far from the contact line, we have s/a = ε � 1. With
this assumption, and also noting that

bλm−1 − aλm−1 = aλm−1
(
(1 + ε)λm−1 − 1

)
≈ ε(λm − 1)aλm−1 = Cλm−1

m , (A12)

where Cm is some coefficient, (A10) becomes

ϕm(ρ, θ) = Cλm−1
m ρλm(sin (λm − 2)α sin λmθ − sin λmα sin (λm − 2)θ)

(λm − 1)(2α cos(2(λm − 1)α)− sin 2α)
. (A13)

Additionally, note that, when α = αm for m = 0, 1, 2, . . ., then W ′(λm) = 0 and so, the
integrand in (A8) exhibits double poles, and its residues give a different mathematical
expression for the streamfunction (Blum, Rannacher & Leis 1980). For example, when
α = α1, the first and second terms of the streamfunction have to be replaced with

ϕ1(ρ, θ) = ϕ2(ρ, θ)

= 1
W ′′(λ1)

d
dλ

(
C1
λ−1ρλ(sin (λ− 2)α sin λθ − sin λα sin (λ− 2)θ)

)
λ=λ1

.

(A14)
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Figure 10. Comparison of the estimated free-surface velocity in a receding contact line when three different
functions for C1 are chosen in the eigenfunction ψe1 ; C1 = M(α0) (solid curve) is currently what is used in our
analysis.

Appendix B. Choice of the coefficient C1

The contribution of the eigenfunction increases as it approaches the singularity at
α = α0 = 0.715π. To be precise, since the inertial correction ψ2 is of O(ρ2) and the
first eigenfunction term ψe1 is of order ρλ1 , with the assumption of ρ � 1, the first
eigenfunction term cannot be neglected when λ1 � 3. This happens when α � 0.5π
(see figure 2). So all obtuse contact angles will have non-negligible influence from this
eigenfunction. This is necessary to suppress the effect of the singularity when α < α0. So,
the assumptions made in stick-slip model will play an important contribution for obtuse
contact angles. In (5.6), C1 is an arbitrary value and physically signifies the effective
length scale in the stick-slip model proposed in Appendix A to remove the singularity.
Its choice depends on following: (i) its magnitude maintains the asymptotic order of ψe1 ,
i.e. ψe1 < ψ2 for all angles α < α0, (ii) C1 = M(α0) when α = α0, is necessary condition
to resolve singularity and, for mathematical simplicity, (iii) it is assumed to be continuous
function for all contact angles. The ’stick slip’ is simply a mathematical model to resolve
the mathematical singularity and maintain realistic results. In this article, C1 is considered
as a constant (C1(α) = M(α0)) for all contact angles. As shown in figure 10, testing out
other possibilities show that there is no significant difference in the magnitudes if we stick
to the above rules.

Appendix C. Free-surface velocity in a few special cases

It was noted in § 5 that for some particular values of contact angle α, such as when
α = α0 = 0.715π and α = α1 = 0.442π, the complete streamfunction has singular terms.
Nevertheless, explicit non-singular expressions for the streamfunction at these contact
angles were also derived. Here, we shall determine the free-surface velocities for these
special cases. When α = α0, we write a truncated form of the general expression for the
streamfunction from (4.10),

Ψ |α=α0 ≈ ψ1 + ψ2 + Re(ψe1). (C1)
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Note that the second eigenfunction ψe2 , having λ2 > 3, is asymptotically negligible and
non-singular, and hence, is not considered here. The Stokes solution ψ1 is obtained from
(2.8). The combined leading-order inertial correction and the first eigenfunction term,
i.e. ψ2 + Re(ψe1), which is non-singular, is explicitly given in (5.9). Using these, the
free-surface velocity is hence determined to be

ũ
|U| = 1

ρ

∂Ψ

∂θ

∣∣∣∣
θ=0, α=α0

= ∓0.8 + 0.071ρ − 0.019ρ ln ρ. (C2)

Notice that the free-surface velocity is not in simple power series of ρ as in the general
expansion (6.6), but rather includes an additional ρ ln ρ contribution from the inertial and
the eigenfunction terms.

When α = α1 = 0.442π, the second eigenfunction ψe2 is not insignificant, and the
complete streamfunction (4.10) needs to be considered. We recall that, when α = α1, the
streamfunctions ψe1 and ψe2 have corresponding eigenvalues λ1 = λ2 = 3.78. However,
these eigenfunction terms are individually singular. Nonetheless, both the singularities can
still be resolved and one can arrive at a non-singular expression for these eigenfunctions
(see § 5.2, (5.11)). The streamfunction for Stokes flow, ψ1, and the leading-order inertial
correction, ψ2, are computed directly from (2.8) and (3.15) respectively. The free-surface
velocity can now be obtained as

ũ
|U| = 1

ρ

∂Ψ

∂θ

∣∣∣∣
θ=0, α=α1

= ∓0.605 + 0.0324ρ + ρ2.78(−0.436 + 0.108 ln ρ)× 10−3.

(C3)

Appendix D. Higher-order terms and convergence of series

The general governing ordinary differential equation for the inertial corrections is given
in (3.3) for n � 2. When n = 2, we get (3.4), the first inertial correction. Beyond
this leading-order inertial term, we determine the numerical values of the higher-order
inertial-correction terms at discrete locations in the fluid by implementing finite difference
approximations of (3.3). To assess the radius of convergence ρc of the series, as an
example, we consider a π/4 receding contact line.

We analyse ψn at θ = −α/2 = −π/8; farthest from the boundaries where they are zero.
The partial sum of the series (3.2),

ΨN(ρ, θ) =
N∑

n=1

ψn =
N∑

n=1

ρn fn(θ), (D 1)

at θ = −π/8 for various Reynolds numbers, ρ = r|U|/ν are shown in table 1. The number
of steps used in the θ direction was 200. Table 1 suggests a radius of convergence ρc, a
little more than ρ = 5.

The eigenfunction series given in (4.1) needs to be added along with (D 1) to resolve
these singularities when α � 0.5π. Similar to the example where α = π/4 mentioned
above, the approximate ρc of Ψ2 was found for various contact angles and is tabulated in
table 2; we observe that ρc decreases progressively with increasing α.

Appendix E. Effect of interface curvature vs effect of inertia

In the main text, we had considered the limit of negligible capillary number Ca → 0,
and approximated the liquid interface as flat till the solid. However, for larger capillary
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N ρ = 5 ρ = 10 ρ = 15 ρ = 20 ρ = 25

1 −0.7711 −1.542 −2.313 −3.085 −3.856
2 −0.8051 −1.678 −2.619 −3.628 −4.705
5 −0.8029 −1.649 −2.473 −3.147 −3.457
10 −0.8029 −1.653 −2.543 −3.618 −5.113

Table 1. Values of ΨN(ρ, θ = −π/8) at various ρ for a 45◦ receding contact line.

α/π ρc

0.1 20
0.2 10
0.4 5
0.5 3
0.6 2
0.715 2

Table 2. Approximate ρc within which the streamfunction Ψ displays good numerical convergence.

numbers, the deformation of the liquid interface would not be negligible and it could
modify the flow field considerably. The objective of this section is to determine the
correction introduced by the deformed liquid interface in the Stokes solution. We note
that in the case of a constant curvature of either the solid or the liquid interface, the
correction has been determined by Voinov (2005). Here, we shall account for the varying
interface curvature created by the normal stresses at the interface due to the Stokes flow.
This analysis would hence reveal whether the correction introduced by the curved interface
is significant compared with the inertial effects in the flat-interface problem, and also
determine the conditions under which the assumption of a flat interface holds.

E.1. Formulation
Let the curved interface of the liquid, formed due to viscous bending from the Stokes
flow, be described in parametric form by Θ(ρ). For small capillary numbers, Ca � 1, the
interface profile due to Stokes flow can be written in the form (Cox 1986) (also obtained
from expression of interface curvature for Stokes flow in § 6.3)

Θ(ρ) = Θ0 + 2Ca C(α) ln ρ + O(Ca2), (E1)

whereΘ0 is the location of the undeformed, flat interface. In our analysis, we had assumed
the flat interface at Θ0 = 0. The unit outward normal of the interface in (E1) is

n = −2Ca C(α)√
1 + 4Ca2 C(α)2

er + 1√
1 + 4Ca2 C(α)2

eθ . (E2)

The streamfunction may also be expanded in powers of the capillary number as

ψc = ψc1 + Caψc2 + O(Ca2). (E3)

Let ( pc,uc) denote the pressure and velocity fields within the liquid. We solve the Stokes
flow problem with the deformed boundary given by Θ(ρ) = 0 + 2Ca C(α) ln ρ. Thus, we
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have the Stokes equation

∇4ψc(ρ, θ) = 0 =⇒ ∇4ψc1(ρ, θ)+ Ca ∇4ψc2(ρ, θ)+ O(Ca2) = 0, (E4)

subject to the following boundary conditions at the interface:

(i) no penetration through the liquid interface, i.e.

un(ρ, θ) = uc · n = 0 at θ = Θ(ρ); (E5)

(ii) zero shear at the liquid interface, i.e.

τ(ρ, θ) = (σ c · t) · n = 0 at θ = Θ(ρ), (E6)

where σ c = −pcI + 2Ec, Ec is the viscous stress tensor and the unit vector
t = ez × n is tangent to the free surface;

(iii) no slip at the solid surface, i.e.

uc(ρ, θ) = ±er at θ = −α. (E7)

Since Ca � 1 and ρ is within continuum limits, we can expand the interface boundary
conditions (E5) and (E6) as a Taylor series expansion around θ = 0 to obtain

un(ρ,Θ(ρ)) = un(ρ, 0)+ 2Ca C(α) ln ρ u′
n(ρ, 0)+ O(Ca2) = 0, (E8)

and
τ(ρ,Θ(ρ)) = τ(ρ, 0)+ 2Ca C(α) ln ρ τ ′(ρ, 0)+ O(Ca2) = 0, (E9)

respectively, where, ′ denotes derivative with respect to θ . Furthermore, expressing the
boundary conditions (E7)–(E9) in terms of the streamfunction ψc, and expanding using
(E3), we can rewrite them as

(i) no penetration through the liquid interface,

∂ψc1

∂ρ

∣∣∣∣
θ=0

+ Ca
[
∂ψc2

∂ρ
+ 2C(α)

ρ

∂ψc1

∂θ
+ 2C(α) ln ρ

∂2ψc1

∂ρ∂θ

]
θ=0

+ O(Ca2) = 0;
(E10)

(ii) zero shear at the liquid interface,

1
2

(
−∂

2ψc1

∂ρ2 + 1
ρ2
∂2ψc1

∂θ2 + 1
ρ

∂ψc1

∂ρ

)
θ=0

+ Ca
[

1
2

(
−∂

2ψc2

∂ρ2 + 1
ρ2
∂2ψc2

∂θ2 + 1
ρ

∂ψc2

∂ρ

)

+ C(α) ln ρ
(

− ∂3ψc1

∂ρ2∂θ
+ 1
ρ2
∂3ψc1

∂θ3 + 1
ρ

∂2ψc1

∂ρ∂θ

)

−4C(α)
(−1
ρ2
∂ψc1

∂θ
+ 1
ρ

∂2ψc1

∂ρ∂θ

)]
θ=0

+ O(Ca2) = 0; (E11)

(iii) no slip and no penetration at the solid surface, which is straightforward to write as

1
ρ

∂ψc1

∂θ

∣∣∣∣
θ=−α

+ Ca
ρ

∂ψc2

∂θ

∣∣∣∣
θ=−α

= ±1 and
∂ψc1

∂ρ

∣∣∣∣
θ=−α

+ Ca
∂ψc2

∂ρ

∣∣∣∣
θ=−α

= 0,

(E12a,b)
respectively.
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Inertial effects near a moving contact line

Before proceeding, we summarise the governing equations and the boundary conditions
which we derived above, at each order of Ca(�1). At O(1) of (E4) and (E10)–(E12), we
recover the Stokes equations and boundary conditions for the flat interface at θ = 0, i.e.
the classical case of moving contact line described in § 2. Thus, we have the solution at
this order as

ψc1(ρ, θ) = ψ1(ρ, θ) = ρf1(θ). (E13)

We can now use this information to rewrite the boundary conditions at O(Ca). At O(Ca)
of (E4) and (E10)–(E12), we have

∇4ψc2 = 0, (E14)

subject to the boundary conditions in (E10), (E11), and (E12)

∂ψc2

∂ρ

∣∣∣∣
θ=0

= −2C(α)(B(α)+ C(α))(1 + ln ρ), (E15)

(
−∂

2ψc2

∂ρ2 + 1
ρ2
∂2ψc2

∂θ2 + 1
ρ

∂ψc2

∂ρ

)
θ=0

= 4C(α)2
ln ρ
ρ
, (E16)

1
ρ

∂ψc2

∂θ

∣∣∣∣
θ=−α

= 0 and
∂ψc2

∂ρ

∣∣∣∣
θ=−α

= 0, (E17a,b)

respectively. Without solving for the exact solution, an inspection of the form of these
boundary conditions suggest a solution of the form

ψc2 = ρ ln ρ h(θ). (E18)

Thus, the streamfunction when the Stokes interface deformation is taken into account, at
the leading order in capillary number, is

ψc = ρ f1(θ)+ Ca ρ ln ρ h(θ). (E19)

Exact expression of the function h(θ) is not determined here as our objective is only to
determine the order of magnitude of the correction when ρ � 1.

Additionally, the effect of disturbance flows on the interface curvature were determined
by Anderson & Davis (1993); the disturbance flows are characterised by eigenfunctions. In
particular, they identified that the correction introduced by the eigenfunction terms, at the
leading order in Ca, to the streamfunction of Stokes flow scale as ρ2λm−1; here, λm are the
eigenvalues. Note that for the case of a flat liquid interface problem, we had limited our
analysis to α � 0.715π; correspondingly, we have λm � 2 (see figure 2) and hence, the
eigenfunction contributions, scaling at least as ρ3, would always be subdominant when
ρ � 1, and will be neglected here.

E.2. Validity of the flat-interface model: inertial vs capillary corrections
The dimensionless curvature of interface due to Stokes flow is κs = 2Ca C(α)/ρ (Huh &
Scriven 1971) (also see § 6.3). The assumption of flat interface for Stokes flow is justified
when κs � 1; with the asymptotic conditions Ca � 1 and ρ � 1, this corresponds to

ρ � Ca. (E20)

For Ca = 2.5 × 10−3 considered in the main article, this turns out to be a distance from
the contact line of r � 10 nm for water, and r � 0.7 nm for mercury. The actual lower
bound can, however, be larger when α � 1, because in the expression for κs, the prefactor
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C(α) � 1 in this case – implying large deformation of the interface (see figure 8) due to
the strong lubrication forces.

Note that (E20) does not compare the relative correction introduced by the interface
curvature to that by inertia. Thus, we need to specify a new range of ρ where the
leading-order correction to the Stokes flow field by inertia (in (3.15)) is greater than the one
introduced by the curvature of interface (in (E18)). Comparing the magnitudes of the two
terms, we find a lower bound above which the inertial correction would be asymptotically
dominant,

|ψ2| � |ψc2 |, i.e. when
ρ

| ln ρ| � Ca. (E21)

For Ca = 2.5 × 10−3, this turns out to be ρ � 1.125 × 10−2 (equivalently, r � 60 nm
for water), which is more than the cutoff obtained from (E20) albeit the same order of
magnitude. Nonetheless, our analysis, which is applicable even in the visco-inertial regime
ρ ∼ 1, will have only a very small region close to the contact line where the assumption
of a flat interface breaks down. At the experimental measurement scale of r = 10 μm
considered in the main article, the inertial correction far outweighs the correction from
interface curvature.
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