ON CHUNG'S STRONG LAW OF LARGE NUMBERS IN GENERAL BANACH SPACES

Bong Dae Chol and Soo Hak Sung

Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of independent Banach valued random variables and $\left\{a_{n}, n \geqslant 1\right\}$ a sequence of real numbers such that $0<a_{n} \uparrow \infty$. It is shown that, under the assumption $\sum_{n=1}^{\infty} E \phi\left(\left\|X_{n}\right\|\right) / \phi\left(a_{n}\right)<\infty$ with some restrictions on $\phi, S_{n} / a_{n} \rightarrow 0$ a.s. if and only if $S_{n} / a_{n} \rightarrow 0$ in probability if and only if $S_{n} / a_{n} \rightarrow 0$ in L^{1}. From this result several known strong laws of large numbers in Banach spaces are easily derived.

1. Introduction

Let $(B,\| \|)$ be a real separable Banach space. The laws of large numbers for Banach-valued random variables have been studied by many authors ([1], [3], [4], [5], [8]). Hoffmann-Jorgensen and Pisier [3] and Korzeniowski [4] have investigated the geometric structure on the Banach space for which an analogue of the strong laws of large numbers (SLLN) holds true. de Acosta [1] and Kuelbs and Zinn [5] have shown that many classical SLLN hold for random variables taking values in a general Banach space under the assumption that the weak law of large numbers (WLLN) holds.

In this paper, we apply several inequalities (maximal inequality [2] and de Acosta inequality [1]) to obtain Chung's SLLN in a general Banach space under the assumption that WLLN holds. From this result several known SLLN in Banach spaces are easily obtained.

2. Main result

To prove the main theorem we will need the following several lemmas. The following lemma is a generalisation of a classical result (Stout [7], P. 127-128), but its proof is standard and is omitted.

Lemma 1. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of random variables stochastically dominated by X with $E|X|^{r}<\infty$ for $0<r<\infty$; that is, $P\left(\left|X_{n}\right| \geqslant t\right) \leqslant P(|X| \geqslant t)$, for $t \geqslant 0$. Then
(i) $\sum_{n=1}^{\infty} \frac{1}{n^{\beta / r}} E\left|X_{n}\right|^{\beta} I\left(\left|X_{n}\right| \leqslant n^{1 / r}\right)<\infty$ for $0<r<\beta$
(ii) $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha / r}} E\left|X_{n}\right|^{\alpha} I\left(\left|X_{n}\right|>n^{1 / r}\right)<\infty$ for $0<\alpha<r$.

Recently Etemadi [2] proved the following maximal inequality which holds for B valued random variables.

Received 19 March 1987

Supported in part by Korea Science and Engineering Foundation Grant.

Lemma 2. Let X_{1}, \ldots, X_{n} be independent random variables. Let $S_{i}=\sum_{j=1}^{i} X_{j}$ for $i=1, \ldots, n$, and $t>0$. Then

$$
P\left(\max _{1 \leqslant i \leqslant n}\left|S_{i}\right|>t\right) \leqslant 4 \max _{1 \leqslant i \leqslant n} P\left(\left|S_{i}\right|>t / 4\right) .
$$

The following lemma plays an essential role in our main Theorem.
Lemma 3. (de Acosta [1]). Let X_{1}, \ldots, X_{n} be independent B-valued random variables with $E\left\|X_{i}\right\|^{r}<\infty$ for $i=1, \ldots, n$ and $1 \leqslant r \leqslant 2$. Then

$$
E \mid\left\|S_{n}\right\|-E\left\|S_{n}\right\|^{r} \leqslant C_{r} \sum_{i=1}^{n} E\left\|X_{i}\right\|^{r},
$$

where C_{r} is a positive constant depending only on r; if $r=2$ then it is possible to take $C_{2}=4$.

Let ϕ be a positive, even and continuous function on R such that as $|x|$ increases,

$$
\begin{equation*}
\frac{\phi(x)}{x} \uparrow \quad \text { and } \quad \frac{\phi(x)}{x^{2}} \downarrow \tag{1}
\end{equation*}
$$

Theorem 4. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of independent B-valued random variables and $\left\{a_{n}, n \geqslant 1\right\}$ constants such that $0<a_{n} \uparrow \infty$. Assume

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{E \phi\left(\left\|X_{n}\right\|\right)}{\phi\left(a_{n}\right)}<\infty \tag{2}
\end{equation*}
$$

Then the following are equivalent:
(i) $E\left\|S_{n}\right\| / a_{n} \rightarrow 0$;
(ii) $S_{n} / a_{n} \rightarrow 0 \quad$ a.s.;
(iii) $S_{n} / a_{n} \rightarrow 0$ in probability.

Proof: (i) \Longrightarrow (ii). Let $X_{n}^{\prime}=X_{n} I\left(\left\|X_{n}\right\| \leqslant a_{n}\right), X_{n}^{\prime \prime}=X_{n} I\left(\left\|X_{n}\right\|>a_{n}\right), S_{n}^{\prime}=$ $\sum_{i=1}^{n} X_{i}^{\prime}$ and $S_{n}^{\prime \prime}=\sum_{i=1}^{n} X_{i}^{\prime \prime}$. Since ϕ is increasing, we have

$$
\sum_{i=1}^{\infty} P\left(\left\|X_{i}\right\|>a_{i}\right) \leqslant \sum_{i=1}^{\infty} P\left(\phi\left(\left\|X_{i}\right\|\right)>\phi\left(a_{i}\right)\right) \leqslant \sum_{i=1}^{\infty} \frac{E \phi\left(\left\|X_{i}\right\|\right)}{\phi\left(a_{i}\right)}<\infty
$$

Thus it follows by the Borel-Cantelli lemma that $S_{n}^{\prime \prime} / a_{n} \rightarrow 0$ a.s. The proof will be completed by showing that

$$
\begin{equation*}
S_{n}^{\prime} / a_{n} \rightarrow 0 \quad \text { a.s. } \tag{3}
\end{equation*}
$$

From the first hypothesis in (1), we have

$$
\frac{|x|}{a_{i}} \leqslant \frac{\phi(|x|)}{\phi\left(a_{i}\right)} \quad \text { for }|x|>a_{i} .
$$

It follows that

$$
\sum_{i=1}^{\infty} \frac{E\left\|X_{i}^{\prime \prime}\right\|}{a_{i}} \leqslant \sum_{i=1}^{\infty} \frac{E \phi\left(\left\|X_{i}^{\prime \prime}\right\|\right)}{\phi\left(a_{i}\right)}<\infty .
$$

Thus $E\left\|S_{n}^{\prime \prime}\right\| / a_{n} \leqslant \sum_{i=1}^{n} E\left\|X_{i}^{\prime \prime}\right\| / a_{n} \rightarrow 0$ by the Kronecker lemma. From this result and (i), we obtain

$$
\begin{equation*}
E\left\|S_{n}^{\prime}\right\| / a_{n} \rightarrow 0 \tag{4}
\end{equation*}
$$

To prove (3), for $k \geqslant 0$ we define $m_{k}=\inf \left\{n, a_{n} \geqslant 2^{k}\right\}$. First we show that

$$
\begin{equation*}
\frac{S_{m_{k}}^{\prime}}{a_{m_{k}}} \rightarrow 0 \quad \text { a.s. } \tag{5}
\end{equation*}
$$

By (4), it is enough to show that $\left(\left\|S_{m_{k}}^{\prime}\right\|-E\left\|S_{m_{k}}^{\prime}\right\|\right) / a_{m_{k}} \rightarrow 0$ a.s. From Lemma 3,

$$
\begin{aligned}
& \sum_{\substack{k=0, m_{k} \neq m_{k+1}}}^{\infty} P\left(\left|\frac{\left\|S_{m_{k}}^{\prime}\right\|-E\left\|S_{m_{k}}^{\prime}\right\|}{a_{m_{k}}}\right|>\varepsilon\right) \\
& \quad \leqslant \frac{1}{\varepsilon^{2}} \sum_{\substack{k=0, m_{k} \neq m_{k+1}}}^{\infty} \frac{1}{\left(a_{m_{k}}\right)^{2}} E\left\|S_{m_{k}}^{\prime}\right\|-E\left\|S_{m_{k}}^{\prime}\right\|^{2} \\
& \leqslant \frac{4}{\varepsilon^{2}} \sum_{\substack{k=0, m_{k} \neq m_{k+1}}}^{\infty} \frac{1}{\left(a_{m_{k}}\right)^{2}} \sum_{i=1}^{m_{k}} E\left\|X_{i}^{\prime}\right\|^{2} \\
& \quad=\frac{4}{\varepsilon^{2}} \sum_{i=1}^{\infty} E\left\|X_{i}^{\prime}\right\|^{2}\left(\sum_{\substack{\left\{k: m_{k} \geqslant i, m_{k} \neq m_{k+1}\right\}}}^{\infty} 1 /\left(a_{m_{k}}\right)^{2}\right)
\end{aligned}
$$

where $\sum_{k=0, m_{k} \neq m_{k+1}}^{\infty}$ means that the summation is taken over all k such that $m_{k} \neq$ m_{k+1}. Now we estimate $\sum_{\left\{k: m_{k} \geqslant i_{1} m_{k} \neq m_{k+1}\right\}} 1 /\left(a_{m_{k}}\right)^{2}$. Let $k_{0}=\min \left\{k: m_{k} \geqslant\right.$
$\left.i, m_{k} \neq m_{k+1}\right\}$. Then $m_{k_{0}} \geqslant i, m_{k_{0}+1}>m_{k_{0}}$ and $a_{m_{k_{0}}}<2^{k_{0}+1}$. Hence we have

$$
\begin{aligned}
& \sum_{\substack{\left\{k: m_{k} \geqslant i, m_{k} \neq m_{k+1}\right\}}} 1 /\left(a_{m_{k}}\right)^{2} \leqslant \sum_{k=k_{0}}^{\infty} \frac{1}{\left(a_{m_{k}}\right)^{2}} \\
& \quad \leqslant \sum_{k=k_{0}}^{\infty} \frac{1}{\left(2^{k}\right)^{2}}=\frac{1}{1-(1 / 2)^{2}} \frac{1}{\left(2^{k_{0}}\right)^{2}}=\frac{16}{3} \frac{1}{\left(2^{k_{0}+1}\right)^{2}} \\
& \quad<\frac{16}{3} \frac{1}{\left(a_{m_{k_{0}}}\right)^{2}} \leqslant \frac{16}{3} \frac{1}{a_{i}^{2}} .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \sum_{\substack{k=0, m_{k} \neq m_{k+1}}}^{\infty} P\left(\left.\| \frac{\left\|S_{m_{k}}^{\prime}\right\|-E\left\|S_{m_{k}}^{\prime}\right\|}{a_{m_{k}}} \right\rvert\,>\varepsilon\right) \\
& \quad \leqslant \frac{4}{\varepsilon^{2}} \frac{16}{3} \sum_{i=1}^{\infty} \frac{E\left\|X_{i}^{\prime}\right\|^{2}}{a_{i}^{2}} \\
& \quad \leqslant \frac{4}{\varepsilon^{2}} \frac{16}{3} \sum_{i=1}^{\infty} \frac{E \phi\left(\left\|X_{i}\right\|\right)}{\phi\left(a_{i}\right)}<\infty
\end{aligned}
$$

It follows that $\left(\left\|S_{m_{k}}^{\prime}\right\|-E\left\|S_{m_{k}}^{\prime}\right\|\right) / a_{m_{k}} \rightarrow 0$ a.s. By observing that

$$
\max _{m_{k} \leqslant n<m_{k+1}} \frac{\left\|S_{n}^{\prime}\right\|}{a_{n}} \leqslant \frac{\left\|S_{m_{k}}^{\prime}\right\|}{a_{m_{k}}}+\max _{m_{k} \leqslant n<m_{k+1}} \frac{\left\|S_{n}^{\prime}-S_{m_{k}}^{\prime}\right\|}{a_{m_{k}}}
$$

we will obtain $S_{n}^{\prime} / a_{n} \rightarrow 0$ a.s. if we show that
(6)

$$
\max _{m_{k} \leqslant n<m_{k+1}} \frac{\left\|S_{n}^{\prime}-S_{m_{k}}^{\prime}\right\|}{a_{m_{k}}} \rightarrow 0 \text { a.s. }
$$

First we observe that $\max _{m_{k} \leqslant n<m_{k+1}} E\left\|S_{n}^{\prime}-S_{m_{k}}^{\prime}\right\| / a_{m_{k}} \rightarrow 0$ and hence we have that
$\max _{m_{k} \leqslant n<m_{k+1}} E\left\|S_{n}^{\prime}-S_{m_{k}}^{\prime}\right\| / a_{m_{k}} \leqslant \varepsilon / 8$ for $k \geqslant k_{1}$, because we have by (4)

$$
\begin{aligned}
\max _{m_{k} \leqslant n<m_{k+1}} \frac{E\left\|S_{n}^{\prime}-S_{m_{k}}^{\prime}\right\|}{a_{m_{k}}} & \leqslant \frac{E\left\|S_{m_{k}}^{\prime}\right\|}{a_{m_{k}}}+\max _{m_{k} \leqslant n<m_{k+1}} \frac{E\left\|S_{n}^{\prime}\right\|}{a_{m_{k}}} \\
& \leqslant \frac{E\left\|S_{m_{k}}^{\prime}\right\|}{a_{m_{k}}}+\frac{1}{2^{k}} \max _{m_{k} \leqslant n<m_{k+1}} \frac{a_{n} E\left\|S_{n}^{\prime}\right\|}{a_{n}} \\
& \leqslant \frac{E\left\|S_{m_{k}}^{\prime}\right\|}{a_{m_{k}}}+\frac{a_{m_{k+1}-1}}{2^{k}} \max _{m_{k} \leqslant n<m_{k+1}} \frac{E\left\|S_{n}^{\prime}\right\|}{a_{n}} \\
& \leqslant \frac{E\left\|S_{m_{k}}^{\prime}\right\|}{a_{m_{k}}}+2 \max _{m_{k} \leqslant n<m_{k+1}} \frac{E\left\|S_{n}^{\prime}\right\|}{a_{n}} \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$. By Lemma 2 and Lemma 3, we obtain

$$
\begin{aligned}
& \sum_{\substack{k=k_{1}, m_{k} \neq m_{k+1}}}^{\infty} P\left(\max _{m_{k} \leqslant n<m_{k+1}} \frac{\left\|S_{n}^{\prime}-S_{m_{k}}^{\prime}\right\|}{a_{m_{k}}}>\varepsilon\right) \\
& \leqslant 4 \sum_{\substack{k=k_{1}, m_{k} \neq m_{k+1}}}^{\infty} \max _{m_{k} \leqslant n<m_{k+1}} P\left(\frac{\left\|S_{n}^{\prime}-S_{m_{k}}^{\prime}\right\|}{a_{m_{k}}}>\frac{\varepsilon}{4}\right) \\
& \leqslant 4 \sum_{\substack{k=k_{1}, m_{k} \neq m_{k+1}}}^{\infty} \max _{m_{k} \leqslant n<m_{k+1}} p\left(\frac{\left\|S_{n}^{\prime}-S_{m_{k}}^{\prime}\right\|-E\left\|S_{n}^{\prime}-S_{m_{k}}^{\prime}\right\| \mid}{a_{m_{k}}}>\frac{\varepsilon}{8}\right) \\
& \left.\leqslant 4 \frac{8^{2}}{\varepsilon^{2}} \sum_{\substack{k=k_{1}, m_{k} \neq m_{k+1}}}^{\infty} \frac{1}{\left(a_{m_{k}}\right)^{2}} \max _{m_{k} \leqslant n<m_{k+1}} E \right\rvert\,\left\|S_{n}^{\prime}-S_{m_{k}}^{\prime}\right\|-E\left\|S_{n}^{\prime}-S_{m_{k}}^{\prime}\right\| \|^{2} \\
& \leqslant \frac{4^{2} 8^{2}}{\varepsilon^{2}} \sum_{\substack{k=0, m_{k} \neq m_{k+1}}}^{\infty} \frac{1}{\left(a_{m_{k}}\right)^{2}} \sum_{i=1}^{m_{k+1}-1} E\left\|X_{i}^{\prime}\right\|^{2} \\
& =\frac{4^{2} 8^{2}}{\varepsilon^{2}} \sum_{i=1}^{\infty} E\left\|X_{i}^{\prime}\right\|^{2}\left(\sum_{\left\{k: m_{k+1}-1 \geqslant i,\right.} 1 /\left(a_{m_{k}}\right)^{2}\right) \\
& \left.\boldsymbol{m}_{\boldsymbol{k}} \neq \boldsymbol{m}_{\boldsymbol{k}+1}\right\} \\
& <\frac{4^{2} 8^{2}}{\varepsilon^{2}} \frac{16}{3} \sum_{i=1}^{\infty} \frac{E\left\|X_{i}^{\prime}\right\|^{2}}{a_{i}^{2}} \\
& \leqslant \frac{4^{2} 8^{2}}{\varepsilon^{2}} \frac{16}{3} \sum_{i=1}^{\infty} \frac{E \phi\left(\left\|X_{i}\right\|\right)}{\phi\left(a_{i}\right)}<\infty .
\end{aligned}
$$

Hence the desired result (6) follows by the Borel-Cantelli Lemma. The implication (ii) \Longrightarrow (iii) is obvious. Now we show that (iii) \Longrightarrow (i). Assume $S_{n} / a_{n} \rightarrow 0$ in probability. From the proof of $(\mathrm{i}) \Longrightarrow$ (ii), we have $E\left\|S_{n}^{\prime \prime}\right\| / a_{n} \rightarrow 0$ and $S_{n}^{\prime \prime} / a_{n} \rightarrow 0$ a.s. Hence we obtain $S_{n}^{\prime} / a_{n} \rightarrow 0$ in probability. Thus it is enough to show that $E\left\|S_{n}^{\prime}\right\| / a_{n} \rightarrow 0$. By Lemma 3,

$$
E\left(\frac{\left\|S_{n}^{\prime}\right\|-E\left\|S_{n}^{\prime}\right\|}{a_{n}}\right)^{2} \leqslant \frac{4}{a_{n}^{2}} \sum_{i=1}^{n} E\left\|X_{i}^{\prime}\right\|^{2} \rightarrow 0
$$

since

$$
\sum_{i=1}^{\infty} \frac{E\left\|X_{i}^{\prime}\right\|^{2}}{a_{i}^{2}} \leqslant \sum_{i=1}^{\infty} \frac{E \phi\left(\left\|X_{i}\right\|\right)}{\phi\left(a_{i}\right)}<\infty
$$

Hence $\left(\left\|S_{n}^{\prime}\right\|-E\left\|S_{n}^{\prime}\right\|\right) / a_{n} \rightarrow 0$ in probability. Recalling that, $S_{n}^{\prime} / a_{n} \rightarrow 0$ in probability we have $E\left\|S_{n}^{\prime}\right\| / a_{n} \rightarrow 0$.

Corollary 5. ([1], [5]). Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of independent B valued random variables such that $\sum_{n=1}^{\infty} E\left\|X_{n}\right\|^{\alpha} / n^{\alpha}<\infty$ for some $1 \leqslant \alpha \leqslant 2$. Then

$$
S_{n} / n \rightarrow 0 \text { in probability if and only if } S_{n} / n \rightarrow 0 \text { a.s. if and only if } S_{n} / n \rightarrow 0 \text { in } L^{1} .
$$

Proof: It is clear that $\phi(x)=x^{\alpha}$ satisfies the condition (1).
Corollary 6. (Marcinkiewicz SLLN). ([4]). Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of i.i.d. B-valued random variables with $E\left\|X_{1}\right\|^{r}<\infty$ for $1 \leqslant r<2$. Then the following are equivalent:
(i) $S_{n} / n^{1 / r} \rightarrow 0$ a.s.;
(ii) $S_{n} / n^{1 / r} \rightarrow 0$ in probability;
(iii) $S_{n} / n^{1 / r} \rightarrow 0$ in L^{1};
(iv) $S_{n} / n^{1 / r} \rightarrow 0$ in L^{r}.

Proof: Let $X_{n}^{\prime}=X_{n} I\left(\left\|X_{n}\right\| \leqslant n^{1 / r}\right), \quad X_{n}^{\prime \prime}=X_{n} I\left(\left\|X_{n}\right\|>n^{1 / r}\right), \quad$ and $S_{n}^{\prime}=\sum_{i=1}^{n} X_{i}^{\prime}$ and $S_{n}^{\prime \prime}=\sum_{i=1}^{n} X_{i}^{\prime \prime}$. First we show that (i) \Longleftrightarrow (ii) \Longleftrightarrow (iii). Since $E\left\|X_{1}\right\|^{r}<\infty$, we have $S_{n}^{\prime \prime} / n^{1 / r} \rightarrow 0$ a.s. and $S_{n}^{\prime \prime} / n^{1 / r} \rightarrow 0$ in L^{1}. Hence it is enough to show that $S_{n}^{\prime} / n^{1 / r} \rightarrow 0$ a.s. if and only if $S_{n}^{\prime} / n^{1 / r} \rightarrow 0$ in probability if and ouly if $S_{n}^{\prime} / n^{1 / r} \rightarrow 0$ in L^{1}. Since $\sum_{n=1}^{\infty} E\left\|X_{n}^{\prime}\right\|^{2} / n^{2 / r}<\infty$ by Lemma 1 , these equivalences are seen by applying Theorem 4 to $\left(X_{n}^{\prime}\right)$ with $\phi(x)=x^{2}$. Now we show that (iii) \Longleftrightarrow (iv). Since the implication (iv) \Longrightarrow (iii) is obvious, it remains to show that(iii) \Longrightarrow (iv). Assume $S_{n} / n^{1 / r} \rightarrow 0$ in L^{1}.

$$
E\left\|S_{n}\right\|^{r} \leqslant 2^{r-1} E\left|\left\|S_{n}\right\|-E\left\|S_{n}\right\|\right|^{r}+2^{r-1}\left(E\left\|S_{n}\right\|\right)^{r} .
$$

Thus it is enough to show that

$$
\begin{equation*}
\frac{1}{n} E\left|\left\|S_{n}\right\|-E\left\|S_{n}\right\|\right|^{r} \rightarrow 0 \tag{7}
\end{equation*}
$$

From Lemma 3,

$$
\begin{aligned}
& E\left|\left\|S_{n}\right\|-E\left\|S_{n}\right\|\right|^{r}=E\left|\left\|S_{n}^{\prime}+S_{n}^{\prime \prime}\right\|-E\left\|S_{n}^{\prime}+S_{n}^{\prime \prime}\right\|\right|^{r} \\
& \leqslant E\left(\left|\left\|S_{n}^{\prime}\right\|-E\left\|S_{n}^{\prime}\right\|\right|+\left|\left\|S_{n}^{\prime \prime}\right\|-E\left\|S_{n}^{\prime \prime}\right\|\right|+2 E\left\|S_{n}^{\prime \prime}\right\|\right)^{r} \\
& \leqslant 2^{2 r-2} E\left|\left\|S_{n}^{\prime}\right\|-E\left\|S_{n}^{\prime}\right\|\right|^{r}+2^{2 r-2} E\left|\left\|S_{n}^{\prime \prime}\right\|-E\left\|S_{n}^{\prime \prime}\right\|\right|^{r}+2^{2 r-1}\left(E\left\|S_{n}^{\prime \prime}\right\|\right)^{r} \\
& \leqslant 2^{2 r-2}\left(E\left|\left\|S_{n}^{\prime}\right\|-E\left\|S_{n}^{\prime}\right\|\right|^{2}\right)^{r / 2}+2^{2 r-2} E\left\|S_{n}^{\prime \prime}\right\|-\left.E\left\|S_{n}^{\prime \prime}\right\|\right|^{r}+2^{2 r-1}\left(E\left\|S_{n}^{\prime \prime}\right\|\right)^{r} \\
& \leqslant 2^{3 r-2}\left(\sum_{i=1}^{n} E\left\|X_{i}^{\prime}\right\|^{2}\right)^{r / 2}+2^{2 r-2} C_{r} \sum_{i=1}^{n} E\left\|X_{i}^{\prime \prime}\right\|^{r}+2^{2 r-1}\left(\sum_{i=1}^{n} E\left\|X_{i}^{\prime \prime}\right\|\right)^{r}
\end{aligned}
$$

By a standard calculation, we have

$$
\begin{aligned}
& \sum_{i=1}^{n} E\left\|X_{i}^{\prime}\right\|^{2} / n^{2 / r} \rightarrow 0 \\
& \sum_{i=1}^{n} E\left\|X_{i}^{\prime \prime}\right\|^{r} / n \rightarrow 0 \text { and } \\
& \sum_{i=1}^{n} E\left\|X_{i}^{\prime \prime}\right\| / n^{1 / r} \rightarrow 0
\end{aligned}
$$

Thus the proof is completed.
Remark: For i.i.d. real valued random variables, Pyke and Root [6] have shown that

$$
E\left|X_{1}\right|^{r}<\infty \Longleftrightarrow S_{n} / n^{1 / r} \rightarrow 0 \text { a.s. } \Longleftrightarrow S_{n} / n^{1 / r} \rightarrow 0 \text { in } L^{r}
$$

Recall that the Banach space $(B,\| \|)$ is of type p if there exists $C>0$ such that

$$
E\left\|\sum_{k=1}^{n} X_{k}\right\|^{p} \leqslant C \sum_{k=1}^{n} E\left\|X_{k}\right\|^{p}
$$

for all independent B-valued random variables X_{1}, \ldots, X_{n} with mean zero and finite p th moments; ([3], [8]).

Corollary 7. ([10]). If the Banach space B is of type p for $1<p \leqslant 2$ and $\left\{X_{n}, n \geqslant 1\right\}$ are independent B-valued random variables with $E X_{n}=0$ for $n=$ $1,2, \ldots$ and $E\left\|X_{n}\right\|^{p} \leqslant \Gamma$ for some constant Γ, then

$$
S_{n} / n^{1 / r} \rightarrow 0 \text { a.s. } \quad \text { for } 1<r<p
$$

Proof: To apply Theorem 4, we will show that

$$
\sum_{n=1}^{\infty} E\left\|X_{n}\right\|^{p} /\left(n^{1 / r}\right)^{p}<\infty \text { and } S_{n} / n^{1 / r} \rightarrow 0 \text { in } L^{1}
$$

The first one is obvious. The second one is true by the following fact:

$$
\begin{aligned}
E\left\|\frac{S_{n}}{n^{1 / r}}\right\| & \leqslant \frac{1}{n^{1 / r}}\left(E\left\|S_{n}\right\|^{p}\right)^{1 / p} \\
& \leqslant \frac{C^{1 / p}}{n^{1 / r}}\left(\sum_{i=1}^{n} E\left\|X_{i}\right\|^{p}\right)^{1 / p} \\
& \leqslant \frac{C^{1 / p} \Gamma^{1 / p} n_{n^{1 / p}}}{n^{1 / r}} \rightarrow 0
\end{aligned}
$$

References

[1] A. de Acosta, 'Inequalities for B-valued random vectors with applications to the strong law of large numbers', Ann. Probab. 8 (1981), 157-161.
[2] N. Etemadi, 'On some classical results in probability theory', Sankhya Ser. A 47 (1984), 215-221.
[3] J. Hoffmann-Jorgensen and G. Piser, 'The law of large numbers and the central limit theorem in Banach spaces', Ann. Probab. 4 (1976), 587-599.
[4] A. Korzeniowski, 'On Marcinkiewicz SLLN in Banach spaces', Ann. Probab. 12 (1984), 279-280.
[5] J. Kuelbs and J. Zinn, 'Some stability results for vector valued random variables', Ann. Prob. 7 (1979), 75-84.
[日] R. Pyke and D. Root, 'On convergence in r-mean of normalized partial sums', Ann. Math. Statist. 39 (1968), 379-381.
[7] W.F. Stout, Almost sure convergence (Academic Press, New York, 1974).
[8] R.L. Taylor, Stochastic convergence of weighted sums of random elements in linear spaces, Lecture notes in Mathematics 672 (Springer-Verlag, Berlin, Heidelberg, New York, 1978).
[9] R.L. Taylor and D. Wei, 'Law of large numbers for tight random elements in normed linear spaces', Ann. Probab. 7 (1979), 150-155.
[10] X. Yang, 'Four theorems about the convergence of weighted sums of random elements', Acta. Sci. Natur. Univ. Jilin. 1 (1984), 36-44.

Department of Applied Mathematics
Korea Advanced Institute of Science and Technology
P.O.Box 150

Cheongryang
Seoul
Korea

