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Abstract
In recent years, observations of the atmospheric surface layer have greatly promoted research on high-Reynolds-
number wall-bounded turbulence, especially observations of wind-blown sand flows/sandstorms, which are typical
sand-laden two-phase flows; these successes have advanced the science of gas–solid two-phase wall-bounded
turbulence to very-high-Reynolds-number conditions. Based on a review of existing atmospheric surface layer
observations and the development process, this paper summarizes the important promoting effect played by these
observations in understanding the very-large-scale structure characteristics, turbulent kinetic energy fraction and
amplitude modulation effect, and in reconstructing the spatial electric field under high-Reynolds-number wall
turbulence. This review focuses on the main successes achieved by the observation of sand-laden two-phase flows
and the three-dimensional turbulent flow field, especially in the streamwise direction. Finally, some suggestions and
outlooks for further research on particle-laden two-phase wall-bounded turbulence under high-Reynolds-number
conditions are presented.

Impact Statement
The atmospheric surface layer flow represents some of the highest Reynolds number conditions that can
be achieved terrestrially, and the wind-blown sand flow/sandstorm is a typical sand-laden two-phase flow
in nature. Thus, the atmospheric surface layer is usually seen as a useful benchmark for high-Reynolds-
number particle-free and particle-laden flow experiments. Studies based on observations of the atmospheric
surface layer, especially observations of wind-blown sand flows/sandstorms, promote progress in investigating
the high-Reynolds-number wall-bounded turbulence and gas–solid two-phase flows that are prevalent and
important in many engineering and scientific applications. In addition, the obtained results may provide
scientific basis for accurately predicting and optimally designing the prevention measures of wind-blown sand
movements and sandstorms.

1. Introduction

Wind-blown sand flows/sandstorms are common, natural flows that occur on sandy surfaces and present
various hazards, which include wind erosion and desertification of soil, air pollution, and even casualties
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and property losses (Zheng, 2009). Wind-blown sand flows/sandstorms are mechanically characterized
by a particle–gas two-phase flow experiencing wall turbulence, with a friction Reynolds number 𝑅𝑒𝜏
(𝑅𝑒𝜏 = 𝑈𝜏𝛿/𝜈, where 𝑈𝜏 , 𝛿 and 𝜈 denote the friction velocity, the boundary layer thickness and the
kinematic viscosity of the fluid, respectively) reaching up to 106 and the turbulence degree can reach 19 %
at a height of 0.9 m (Wang, Gu, & Zheng, 2020). Although researchers in the fields of geosciences and
atmospheric sciences have been observing and researching wind-blown sand flows/sandstorms for many
decades (Bagnold, 1941; Kaimal & Wyngaard, 1989; Martin & Kok, 2018), despite being necessary,
comprehensive field observations of wind-blown sand flows/sandstorms are scarce because these flows
are highly nonlinear and complex, with multiphase, multiscale, multiphysical coupling characteristics
and a high Reynolds number. Furthermore, turbulent flows and multiphase flows constitute two of the
most challenging topics in fluid mechanics, and when combined, they pose a formidable challenge,
even in a dilute and dispersed regime (Balachandar & Eaton, 2010). Accordingly, numerous reviews on
wall-bounded turbulence, such as those by Robinson (1991), Marusic, McKeon, et al. (2010), Smits,
McKeon, and Marusic (2011), Dennis (2015) and Wallace (2016), all agree that experimental data
obtained at high Reynolds numbers are needed to better understand the dynamics of turbulence, to
validate previously proposed models and to predict high-Reynolds-number flows.

In recent years, high-Reynolds-number wall turbulence has gradually become an active research
topic. Consequently, many challenges remain with regard to the theory, scaling laws, physical processes,
experimental techniques and numerical simulations of such wall turbulence (Smits et al., 2011). The first
obstacle is understanding the effect of the Reynolds number on high-Reynolds-number wall turbulence.
As the Reynolds number increases, some turbulence characteristics may appear as new phenomena that
are different from the basically accepted theories, scaling laws and physical mechanisms corresponding
to low-Reynolds-number wall turbulence. These new phenomena include the coupling and superposition
of turbulent motions at different scales, the transport and dissipation of turbulent energy, the interactions
between turbulence and particles, and the transport of heat, mass, momentum and energy. For example,
in the case of a high Reynolds number, the lower boundary of the logarithmic region is dependent on the
Reynolds number (Klewicki, Fife, & Wei, 2009; Marusic, Monty, Hultmark, & Smits, 2013), which is
different from the fixed value considered in the case of a low Reynolds number; moreover, the Kármán
constant 𝜅 in the logarithmic velocity profile tends to be a constant different from that at a low Reynolds
number with an increase in the Reynolds number (Nagib & Chauhan, 2008). In addition, the inner-scaled
streamwise turbulence intensity has a second peak farther from the wall in high-Reynolds-number flow
(Morrison, Mckeon, Jiang, & Smits, 2004), which is different from the single peak observed at low
Reynolds numbers, and this second peak is closely related to the very-large-scale motions (VLSMs) that
are unique to high-Reynolds-number flows. The turbulent motions are termed VLSMs if their lengths
are greater than 𝜋𝛿, nominally (Balakumar & Adrian, 2007; Guala, Hommema, & Adrian, 2006), and
the VLSMs are conjectured to result from the coherent alignment of large-scale motions (LSMs, having
lengths up to 0.1 − 1𝜋𝛿) in the form of turbulent bulges or packets of hairpin vortices (Kim & Adrian,
1999).

Concerning the second challenge, laboratory measurements and numerical simulations are subject
to various limitations at high Reynolds numbers. Indeed, special equipment was manufactured to obtain
high-Reynolds-number flows; several representative high-Reynolds-number turbulence experimental
facilities are listed in Table 1. However, these facilities are not only very expensive to construct but
also have high operating costs. Furthermore, although a superpipe can realize a flow of 𝑅𝑒𝜏 ∼ 𝑂 (105),
experimental results at this Reynolds number have yet to be reported owing to the limitation on the
measurement accuracy. On the other hand, direct numerical simulation (DNS) requires a sufficiently
large computational grid to capture the features at the largest scales, yet the grid must also be fine enough
so that the grid size is smaller than the smallest dissipation scale within the flow. The required grid
points are proportional to 𝑅𝑒37/14 (Choi & Moin, 2012) in DNS, drastically increasing the computational
cost. To date, the highest 𝑅𝑒𝜏 values currently available by DNS in a turbulent boundary layer (TBL,
Sillero, Jimenez, & Moser, 2013, 2014), pipe (Ahn, Lee, Lee, Kang & Sung, 2015) or channel (Hoyas,
Oberlack, Kraheberger, & Alcantara-Avila, 2018) are of the order of 𝑂 (103), which is 2–3 orders of
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Table 1. Representative high-Reynolds-number equipment.

Equipment
Flow
type Highest 𝑅𝑒𝜏 Reference

Princeton University, Superpipe Pipe 500 000 Kim and Adrian (1999)
Kungliga Tekniska Högskolan

(KTH), Minimum Turbulence
Level (MTL)

TBL 14 000 Österlund, Johansson, Nagib, and
Hites (2000)

Illinois Institute of Technology,
National Diagnostic Facility
(NDF)

TBL 22 000 Nagib, Chauhan, and Monkewitz
(2007)

University of Melbourne, High
Reynolds Number Boundary
Layer Wind Tunnel (HRNBLWT)

TBL 32 000 Nickels, Marusic, Hafez, Hutchins,
and Chong (2007)

University of New Hampshire,
Flow Physics Facility (FPF)

TBL 50 000 Vincenti, Klewicki, Morrill-Winter,
White, and Wosnik (2013)

Center for International
Cooperation in Long Pipe
Experiments (CICLoPE)

Pipe 40 000 Willert, Eisfelder, Stanislas, Klinner,
and Talamelli (2017)

Princeton University, High
Reynolds number Test Facility
(HRTF)

TBL 89 000 Vallikivi, Hultmark, and Smits
(2015)

magnitude lower than the Reynolds number in most engineering applications. Additionally, for a large
eddy simulation (LES, Lesieur & Métais, 1996), the reliability of both the wall model (Marusic, Mathis,
& Hutchins, 2010; Piomelli & Balaras, 2002) and the sub-grid-scale (SGS) model (Meneveau & Katz,
2000) requires the support of accurate experimental high-Reynolds-number wall turbulence data.

Experiments and numerical simulations of turbulent multi-phase flows are more complex than those
of single-phase flows, making them a formidable challenge. According to the particle volume fraction𝛷𝑣

(particle volume ratio in unit volume), a particle-laden flow with𝛷𝑣 < 10−3 is called a dilute suspension
and a particle-laden flow with 𝛷𝑣 > 10−3 is called a dense suspension, empirically (Elghobashi, 1994).
The dilute suspension can be further divided into one-way coupling (𝛷𝑣 < 10−6), where the particles
have a negligible effect on turbulence, and two-way coupling (10−6 < 𝛷𝑣 < 10−3), where the momentum
transfer from the particles is large enough to alter the turbulence structure. In the dense suspension,
in addition to the two-way coupling between the particles and turbulence, particle/particle collision
takes place because of the increased particle loading, therefore termed four-way coupling. In terms of
experimental measurement, existing particle-laden turbulence experiments, such as the laser Doppler
anemometer (LDA) measurements performed by Kulick, Fessler, and Eaton (1994) and Li and Neuman
(2012) and particle image velocimetry (PIV) measurements performed by Khalitov and Longmire
(2002), Tay, Kuhn, and Tachie (2015) and Zheng, Wang, and Zhu (2021), were mostly conducted in
the laboratory. The corresponding Reynolds number 𝑅𝑒𝜏 was limited to the order of 𝑂 (103). Recently,
experiments performed in the wind tunnel at the St. Anthony Falls Laboratory, University of Minnesota
realized a particle-suspended flow of 𝑅𝑒𝜏 = 19 000 (Berk & Coletti, 2020). For fully-resolved DNS
(Mola, Fawell, & Small, 2020; Pan & Banerjee, 1997), calculating the flow field around each particle
drastically increases the computational cost. The previously documented maximum Reynolds number
is 𝑅𝑒𝜏 = 647 (Ji, Munjiza, Avital, Xu & Williams, 2014). Even if the Lagrangian point-particle method
is employed (Sardina et al., 2012; Vreman, 2007; Zhao, Andersson, & Gillissen, 2013), the highest
Reynolds number 𝑅𝑒𝜏 currently achievable is also limited to 𝑂 (103) (Richter, 2015; Wang & Richter,
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2019). To improve the Reynolds number, the LES may be a feasible approach, but currently, there is no
general model for describing particle-laden turbulence at high Reynolds numbers.

As the sole truly high-Reynolds-number facility, the atmospheric surface layer (ASL) is regarded
as a useful benchmark for the above experiments (Guala, Metzger, & McKeon, 2011) and presents
some of the highest Reynolds number conditions that can be achieved terrestrially (Marusic, McKeon,
et al., 2010). The thickness of the ASL is generally 100–200 m, and even under low-wind velocity
conditions, the 𝑅𝑒𝜏 of an ASL flow can reach an order of magnitude of 𝑂 (106). Moreover, because it
appears on a relatively large scale, the ASL can be measured without the stringent constraints on the
probe resolution imposed by smaller scale boundary layers. Therefore, owing to its larger length scale,
the ASL is a feasible way to observe high-Reynolds-number flows. Since the turn of the millennium,
ASL observations have promoted progress in studying high-Reynolds-number wall turbulence. This
progress is based mainly on the successes at the Surface Layer Turbulence & Environmental Science
Test (SLTEST) site established towards the end of the last century in the western salt flats of Utah and
the Qingtu Lake Observation Array (QLOA) established in 2012 in western China. The former offers
mainly two-dimensional observations of clean winds without particles in the ASL in the wall-normal
and spanwise directions. In contrast, the latter can perform synchronous multipoint measurements on
the three-dimensional turbulent flow field (in the streamwise, spanwise and wall-normal directions) for
both wind-blown sand movements and clean winds. In addition, Hong et al. (2014) and Heisel et al.
(2018) successfully achieved PIV flow imaging in the ASL using natural snowfall as seeding particles.

After briefly introducing these ASL observation sites, this review will focus on the main progress
based on observations of sand-laden two-phase flows and the three-dimensional turbulent flow field,
especially the observations in the streamwise direction. Some topics of this review will include the
dust structure in the sand-laden flow field, the effects of sand particles on the flow structure and the
modulation between multiscale turbulent motions, the error and applicability of Taylor’s hypothesis of
frozen turbulence in estimating the length scale of VLSMs based on the measurement of streamwise
arrays, and the space charge density inversion of electric fields in sandstorms. Finally, some key issues
that deserve further attention are discussed.

2. Field Observations in the ASL

Meteorological and geographic observations in the ASL focus mainly on average statistics, and
researchers in meteorology, oceanography and geography, which includes the physics of wind-blown
sand, have observed the ASL flow on different underlying surfaces for many years. The earliest mea-
surement of the ASL flow was performed in 1926 by British meteorologist F. J. Scrase (Scrase, 1930).
A swinging plate anemometer with a frequency of approximately 1.6 Hz was used to measure the stream-
wise and wall-normal wind velocities at a single point. Based on the observational data, the difference
in the average Reynolds stresses at different heights was analysed; the results indicated that near the wall
(1.5 m), the Reynolds stress is less than one-quarter of that farther from the wall (19 m). This observation
is considered classic in the history of attempting to understand how momentum is transferred in the lower
atmosphere (Barad, 1964). However, the ASL wind velocity measurement in 1926 was performed only
at a single point and at a low sampling rate. Unfortunately, synchronous measurements at different loca-
tions have yet to be achieved. More recently, synchronous multipoint measurements of the wind velocity,
temperature and humidity in the wall-normal direction were conducted in Kansas and Minnesota in the
USA (Kaimal & Wyngaard, 1989). The resulting wall-normal profiles of the velocity and temperature
in the unstable stratified ASL can be used to verify and improve the Monin–Obukhov similarity theory.
In general, the thermal stratifications of the ASL can be characterized by the Richardson number and
the Monin–Obukhov stability parameter. However, the velocity measurement employed a wind cup at
a sampling frequency of only 1 Hz, which makes it difficult to meet the high-resolution requirements
for the analysis of turbulence signals. To increase the sampling rate of velocity measurements, Zeng,
Cheng, Hu, and Peng (2010) employed sonic anemometers with a sampling frequency of 10 Hz to syn-
chronously observe the wind velocity and the temperature in the wall-normal direction (at heights of
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Figure 1. Observation tower employed by (Zeng et al., 2010) to measure the vertical gradients in the
urban boundary layer. This figure was taken from http://www.iap.ac.cn/xwzx/ tpxw/201510/ t20151010_
4435945.html.

47, 120 and 280 m) within the urban boundary layer; a photo of the equipment is shown in Figure 1.
The observations revealed the local meteorology and its impact on climate, and the authors proposed
turbulence parametrization schemes for global weather forecasting models. Nevertheless, although the
sampling frequency was increased, the underlying surface of the urban boundary layer and the flow
environment were more complicated. Hence, their results are difficult to compare with the properties of
the canonical flat TBL and thus cannot be used in the study of high-Reynolds-number wall turbulence.

Geographical observations of wind-blown sand flows in the ASL began with Bagnold (1941), who
laid the foundations of wind-blown sand physics. Bagnold conducted field measurements on the wind
velocity and sediment transport rate under wind-blown sand flows with a focus on measuring the latter.
Bagnold’s quantitative study on the physical mechanisms responsible for the formation and evolution
of sand dunes created a precedent for the study of geomorphological dynamics and has since influenced
researchers in various fields of wind-blown sand physics. However, measurement of the wind velocity
in the ASL is performed to obtain the average velocity profile. Therefore, Pitot tubes distributed in the
wall-normal direction (2.54, 10.16, 40.64 and 162.56 cm) were employed to measure the wind velocity
at a sampling frequency of approximately 0.017–0.0056 Hz (the corresponding sampling interval is
approximately 1–3 min). However, such a low sampling frequency makes it difficult to study high-
Reynolds-number wall turbulence. Subsequently, many researchers observed the sediment flux and its
influencing factors while focusing on the sediment transport rate, wind erosion, lift-off velocity of
sand particles and threshold wind velocity of sand motion; details can be found in the paper by Zheng
(2009). In summary, both in meteorology and geography, ASL flow observations usually involve the
average velocity; furthermore, the sampling frequency is relatively low and the underlying surface of
the boundary layer is generally complex, which makes it difficult to analyse high-Reynolds-number wall
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turbulence. In addition, single-point or wall-normal-distributed measurements were employed, which
cannot meet the requirements for analysing the spatial structure of such flow.

The ASL observations used to study high-Reynolds-number wall-bounded turbulent flow are high-
lighted by the SLTEST site, the details of which are provided by Metzger (2002). Unlike observations in
atmospheric sciences and geosciences, the observational data acquired at the SLTEST site can be used to
investigate high-Reynolds-number wall-bounded turbulent flows because this site is located on the dry
lake bed of the Great Salt Lake in Utah, which has a flat and open surface, and the sampling frequency
of the wind velocity is relatively high (20 Hz). However, owing to the surface conditions in this area and
the low wind velocity, the flow field comprises a single phase and is free of particles. The measurement
array installed at the SLTEST site is shown in Figure 2, which shows that the SLTEST array can perform
synchronous multipoint measurements in the spanwise and wall-normal directions, that is, measure-
ments of the two-dimensional turbulent flow field. For example, using steady wind data obtained at the
SLTEST site with 𝑅𝑒𝜏 ∼ 6×105–3×106 for approximately 70 h under different stratification conditions
(Chauhan, Hutchins, Monty, & Marusic, 2013; Metzger & Klewicki, 2001), the turbulent statistics in
the ASL were confirmed to exhibit scaling laws that are generally representative of the canonical zero-
pressure-gradient flat TBL (Kunkel & Marusic, 2006). This indicates that the high-quality near-neutral
ASL data acquired after applying a strict data processing procedure can be valid to study the canonical
TBL, although the ASL flow may be affected by weather and environmental factors; the wind velocity
and direction are uncontrollable and may be affected by significant thermal instability. In addition, based
on the ASL data obtained at the SLTEST site, researchers found that VLSMs exist in the ASL (Hutchins,
Chauhan, Marusic, Monty, & Klewicki, 2012; Hutchins & Marusic, 2007a; Marusic & Hutchins, 2008),
with an inclination angle independent of the Reynolds number but significantly dependent on the thermal
stability (Chauhan et al., 2013; Marusic & Heuer, 2007). Researchers also found that the inner peak of
turbulent kinetic energy increases with the Reynolds number (Metzger & Klewicki, 2001), the turbulent
kinetic energy exhibits log-linear behaviour with the wall-normal distance (Marusic et al., 2013) and
LSMs/VLSMs modulate the amplitude of small-scale energy in the ASL (Guala et al., 2011; Mathis,
Hutchins, & Marusic, 2009). As is evident, research based on SLTEST measurements has greatly pro-
moted the understanding of wall turbulence with a high Reynolds number. However, owing to the lack
of measurements in the streamwise direction, the applicability of Taylor’s hypothesis in the ASL has not
been verified. Furthermore, because the SLTEST array can obtain only particle-free fluctuating velocity
data, high-Reynolds-number two-phase wall-bounded turbulence has not been investigated. In addition,
the short duration of the measurements at the SLTEST site and the relative scarcity of data make it
difficult to obtain reliable turbulence statistics under high-Reynolds-number conditions.

Unlike the SLTEST site, the QLOA is a unique field observation station that can achieve syn-
chronous measurements of the electric field strength and the three-dimensional (streamwise, spanwise
and wall-normal directions) wind velocity, sand concentration, temperature and humidity within the
three-dimensional turbulent ASL flow, as detailed by Wang and Zheng (2016). The QLOA site is flat
and open, and skirts the path of strong northwest-moving monsoons and sandstorms. Therefore, the
QLOA can not only observe high-Reynolds-number single-phase, particle-free flows but also conduct
measurements on typical sand-laden two-phase wall-bounded turbulence, such as wind-blown sand
flows/sandstorms. These sand-laden two-phase flow data make it possible to analyse the effects of
particles on the statistical and structural characteristics of the flow field under high-Reynolds-number
conditions and provide support for studies on the dust structure and transport in two-phase flows.

Figure 3 presents a photograph of the QLOA, which consists of a main tower with a height of 32 m, 11
and 12 auxiliary towers with a height of 5 m arranged parallel to the upwind direction of the incoming
flow (that is, northwest–southeast) and the spanwise direction (which is orthogonal to the incoming
flow), respectively, and another 11 auxiliary towers oriented east–west to capture another possible
incoming flow direction. Compared with the SLTEST site, the QLOA incorporates two streamwise
arrays arranged along different incoming flow directions. Therefore, the QLOA can not only acquire two-
dimensional ASL observations in the wall-normal and spanwise directions but also realize synchronous
measurements in the streamwise direction. Thus, the QLOA provides three-dimensional observations of
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Figure 2. Measurement array installed at the SLTEST site. This figure was adapted from Hutchins et al.
(2012).

the ASL flow in a spatial domain of 390 m in the streamwise direction, 60 m in the spanwise direction
and 30 m in the wall-normal direction. The observation array in the streamwise direction facilitates the
measurement of the streamwise length scale of the VLSMs in the ASL and accordingly provides the
error and applicability of Taylor’s hypothesis in estimating the scale of the VLSMs. Moreover, these
three-dimensional ASL observations are helpful for inverting the spatial structures of the flow field (see
the paper by (Liu, Wang, and Zheng, 2019a), in which a plausible empirical model was proposed to
characterize the general shape of the three-dimensional large log-layer structure), dust concentration
and electric field.
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Figure 3. Photograph of the QLOA.

To achieve the high-frequency synchronous measurement of multiple physical quantities, the QLOA
is equipped with various measuring equipment, such as sonic anemometers (Gill Instruments R3-50 and
Campbell CSAT3B) operating at a sampling frequency of 50 Hz, aerosol monitors (TSI, DUST TRAK
II-8530-EP), temperature sensors and three-dimensional vibrating-reed electric field mills (VREFMs).
These VREFMs were developed by the author’s research group (Zheng, 2013), and the size of the probe
is only one-tenth of that of a conventional atmospheric electric field meter. Therefore, the VREFMs
can be more compactly installed to measure the three-dimensional electric field in a relatively narrow
region without experiencing significant mutual disturbances among the sensors. Additionally, because
the measuring principle of the electric field meter is based on a vibrating capacitor, disturbances in the
electric field measurements arising from sand particles impacting the electrodes of the electric field
meters can be effectively reduced. The various instruments collect data through multiple data acquisition
instruments, which are synchronized in time by a global positioning system (GPS), thereby realizing the
synchronous measurement of multiple physical quantities, such as the three-dimensional wind velocity,
temperature and electric field intensity, in the three-dimensional ASL flow field.

Taking the entire duration of the sandstorm that occurred on April 17, 2017 as an example, the multi-
physical data are presented in Figure 4. These synchronous measurements are helpful for comparatively
analysing the relationships among the spatial distribution characteristics of different physical quantities,
thereby revealing their coupling effects, such as the relationship among the volumetric dust structure, the
electric structure and the turbulence structure, and thus their interaction mechanism. To date, continuous
ASL observations have been conducted at the QLOA site for 5 years since its establishment, amounting
to more than 7400 h of multiphysics synchronous observational data, which include nearly 600 h of
high-quality steady wind data. Of these data, approximately 120 h pertain to fluctuating velocity data in
the near-neutral, particle-free ASL, while the data in the stable and unstable ASL account for approxi-
mately 302 h; in addition, there are 83 h of sand-laden fluctuating velocity data in the near-neutral ASL
and 90 h of sand-laden data in the non-neutral ASL. The Reynolds numbers in sand-free and sand-laden
(including sandstorms) flows may reach 𝑅𝑒𝜏 ∼ 4.7 × 106 and 𝑅𝑒𝜏 ∼ 5.4 × 106, respectively, which are
the highest known Reynolds numbers in these flows.

https://doi.org/10.1017/flo.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2021.6


Flow E5-9

06
:0

0:
00

08
:0

0:
00

10
:0

0:
00

12
:0

0:
00

14
:0

0:
00

16
:0

0:
00

18
:0

0:
00

20
:0

0:
00

22
:0

0:
00

Time

0

40

80
–180

–90

0
0

100

200
0

15

30
0

6

12
–15

15

0

–15

15

0

0

20

40

15

30

45

R
H

 (
%

)

E z (
kV

 m
–1

)
E y 

(k
V

 m
–1

)
E x 

(k
V

 m
–1

)
w

 (
m

 s
–1

)
v 

(m
 s

–1
)

u 
(m

 s
–1

)
C

P
M

10
 (

m
g 

m
–3

)
T 

(°
C

)

Figure 4. Continuous three-dimensional wind velocity (streamwise 𝑢, spanwise 𝑣 and vertical 𝑤),
PM10 concentration (𝐶𝑃𝑀10), temperature (𝑇) and relative humidity (𝑅𝐻), and three-dimensional
electric field (streamwise 𝐸𝑥 , spanwise 𝐸𝑦 and vertical 𝐸𝑧) data collected on April 17, 2017.
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3. VLSMs in the Sand-Laden Two-Phase Flow

3.1. Existence of VLSMs in Sand-Laden Flows

Turbulent coherent structures represent a series of organized motions that are found in disorganized and
complex turbulent flows, which mainly include hairpin vortices, quasi-streamwise vortices, inner streaks,
LSMs and VLSMs, where LSMs/VLSMs are an important and perhaps dominant feature in the outer
region of wall turbulence. The discovery of coherent structures in wall turbulence can be traced back to
1954, when S. Corrsin and A. L. Kistler found intermittent turbulence in the wake of a turbulent flow,
which implies that turbulence is not a completely irregular and random motion (Corrsin & Kistler, 1954).
These coherent structures are responsible for the generation and dissipation of turbulence, important to
the understanding of turbulence dynamics (Robinson, 1991), and contribute significantly to the transport
of heat, mass and momentum (Marusic, McKeon, et al., 2010). The LSMs in wall turbulence may have
been found as early as the late 1950s when Grant observed long tails of time-delayed streamwise
velocity fluctuations, which implied the potential presence of large-scale structures in shear turbulence
(Grant, 1958). However, LSMs were not officially reported until Kovasznay, Kibens, and Blackwelder
(1970) clearly proposed the existence of LSMs on the streamwise scale reaching 2–3𝛿. Subsequently,
Kim and Adrian (1999) found VLSMs on the streamwise scale exceeding 3𝛿 or even 10–15𝛿 in wall
turbulence, as shown in Figure 5. More recently, Guala et al. (2011) and Hutchins et al. (2012) detected
VLSMs in the particle-free flow of the ASL based on observational data (𝑅𝑒𝜏 = 5 × 105–7.7 × 105)
obtained at the SLTEST site. Wang, Zheng, and Tao (2017) further found VLSMs in sand-laden flow
based on observational data (𝑅𝑒𝜏 ∼ 5 × 106) of a wind-blown sand-laden two-phase flow obtained at
the QLOA. Therefore, LSMs and VLSMs (collectively known as superstructures (Hutchins & Marusic,
2007a)) are common in many different types of flows (Blackwelder & Kovasznay, 1972; Monty et al.,
2007) and are associated with the higher and lower wavenumber peaks, respectively, in the premultiplied
spectrum of the streamwise velocity fluctuation (Kim & Adrian, 1999; Vallikivi, Ganapathisubramani, &
Smits, 2015); therefore, these superstructures contribute significantly to the turbulent kinetic energy and
Reynolds shear stress (Balakumar & Adrian, 2007; Guala et al., 2006; Wang & Zheng, 2016). Moreover,
LSMs/VLSMs also play an important role in mass transport (Zheng, Zhang, Wang, Liu, & Zhu, 2013),
and the complex transport pathways of dust and other pollutants in the atmosphere may be associated
with the dynamics of LSMs/VLSMs (Jacob & Anderson, 2017). Therefore, the study of LSMs/VLSMs
is not only of great significance to understanding wall turbulence but also helpful for revealing the
physical mechanism responsible for mass transport in high-Reynolds-number wall turbulence.

As described above, VLSMs are present within the sand-laden flow field; however, similar very-large-
scale structures also exist in the sand concentration scalar field in wind-blown sand flows/sandstorms.
Analyses of correlation contour maps and the premultiplied energy spectra of the streamwise velocity
fluctuations based on observational data obtained at the QLOA suggest the presence of VLSMs on
streamwise scales exceeding 3𝛿 in high-Reynolds-number (𝑅𝑒𝜏 ∼ 5×106) sandstorm flow fields. These
VLSMs exhibit very long meandering features, as shown in Figure 6a, similar to the phenomenon
observed by Hutchins and Marusic (2007a) in the particle-free flow at the SLTEST site. In addition,
the two-point correlation analysis of the fluctuating PM10 (particles with sizes less than 10 µm)
concentration measured during a sandstorm is shown in Figure 6b, which further reveals an inclined
very-large-scale sand structure similar to a VLSM in the sandstorm flow field. This has been confirmed
by LES results (Zhang & Zheng, 2018). The streamwise distance shown in Figure 6 is converted from
the temporal lead/lag using Taylor’s hypothesis, where the convection velocity of the turbulence and
sand structure is taken as the local mean velocity at the corresponding wall-normal position. This is
consistent with the existing method used to study the characteristic length scale of VLSMs.

3.2. Structure Inclination Angles

The LSMs/VLSMs are inclined structures that are oblique to the free stream, and the angle of inclination
is usually referred to as the structure inclination angle. The structure inclination angle was originally
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Figure adapted from Kim and Adrian (1999).
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Figure 6. (a) Instantaneous streamwise velocity fluctuations across the spanwise array at 𝑧 ≈ 0.033𝛿
based on observational data of a wind-blown sand-laden two-phase flow at the QLOA, with 𝑅𝑒𝜏 ≈

5.4 × 106 and the average PM10 concentration 𝐶𝑃𝑀10 ≈ 1.09 mg m−3. The 𝑥-axis is reconstructed
using Taylor’s hypothesis and a convection velocity based on the local mean. The length marked by the
arrow shows only negative 𝑢 fluctuations (𝑢 < −1 m s−1). (b) Two-dimensional correlation maps of the
fluctuating PM10 concentration, where the dashed line represents a correlation coefficient of 0.05.

studied by (Kovasznay et al., 1970), who examined the two-dimensional contour maps of two-point
correlations based on the fluctuating streamwise velocity measured by hot-wire anemometers in the TBL
at 𝑅𝑒𝜏 = 1240 and found that LSMs have a moderate tilt in the streamwise direction. The observation of
LSMs inclined at a shallow angle away from the wall was subsequently confirmed by Blackwelder and
Kovasznay (1972) and Falco (1977) in the TBL. LSMs/VLSMs contribute significantly to the transport
of turbulence, and thus, the complex transport pathways of heat, mass and momentum may be associated
with the dynamics of inclined LSMs/VLSMs (Jacob & Anderson, 2017; Marusic, McKeon, et al., 2010).
Moreover, the structure inclination angle is vital for accurately establishing the relationship between
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the velocity fluctuation and the wall shear stress (Marusic, Mathis, et al., 2010), and this relationship
can be used to improve the wall model in an LES (Marusic, Kunkel, & Porte-Agel, 2001). Therefore,
the inclination angle has attracted the attention of many researchers (Brown & Thomas, 1977; Chauhan
et al., 2013; Kovasznay et al., 1970).

However, the structure inclination angles provided by different studies vary considerably. In the early
days, Brown and Thomas (1977) inferred an 18◦ angle in the TBL at 𝑅𝑒𝜏 = 3413 from the location of the
maximum correlation between the wall shear stress and the fluctuating streamwise velocities measured
by a hot-film wall shear stress sensor and several hot wires. Subsequently, Head and Bandyopadhyay
(1981) suggested that these large-scale structures are composed of multiple hairpin vortices inclined at
15◦–20◦ with respect to the wall in the TBL over the range of 500 < 𝑅𝑒𝜃 < 17 500 (𝑅𝑒𝜃 = 𝑈∝𝜃/𝜈,
where 𝑈∝ and 𝜃 denote the free stream velocity and momentum thickness, respectively). Advances in
techniques have provided some improvements in this topic of research; in particular, the PIV technique
has provided important new information about the structure inclination angle. For example, Tomkins
(1997) proposed a 12.3◦ angle in a laboratory TBL at 𝑅𝑒𝜏 = 2227, while Christensen and Adrian (2001)
suggested that the inclination angle may be 13◦ and 14◦ in a channel flow at 𝑅𝑒𝜏 = 547 and 1734,
respectively, and Adrian, Meinhart, and Tomkins (2000) indicated that the inclination angle of a large
ramp-like structure formed by hairpin vortex packets is approximately 3◦–35◦, while individual hairpin
vortices are inclined approximately 45◦ with respect to the wall.

ASL observations have played an important role in obtaining more information on the VLSM
inclination angle through experiments in high-Reynolds-number flows. In the neutral marine ASL,
Boppe and Neu (1995) and Boppe and Neu (1999) observed a 15◦ inclination angle of large-scale
structures. Hommema and Adrian (2003) showed that the average inclination angle of VLSMs was
18.7◦ in the neutral ASL at 𝑅𝑒𝜏 = 1.3 × 106 through a smoke visualization experiment at the SLTEST
site. (Carper and Porté-Agel, 2004) also examined data from the SLTEST site and found that the structure
inclination angle is approximately 16◦ in the neutral ASL by analysing the two-point correlations of the
streamwise velocity fluctuations obtained by sonic anemometers. In addition, Morris, Stolpa, Slaboch,
and Klewicki (2007) and Guala et al. (2011) suggested an 11◦ angle at 𝑅𝑒𝜏 = 6 × 105 and 5 × 105,
respectively, whereas Hutchins et al. (2012) provided a 25◦ angle at 𝑅𝑒𝜏 = 7.7 × 105. (Chauhan et al.,
2013) indicated that the inclination angle is 13.7◦ in the neutral regime and varies significantly with
the Monin–Obukhov stability parameter in the unstable ASL. In summary, in the neutral regime, the
structure inclination angle ranges from 3◦ to 35◦ for 𝑅𝑒𝜏 ∼ 𝑂 (103), while it ranges from 11◦ to 25◦ for
𝑅𝑒𝜏 ∼ 𝑂 (106). Nevertheless, Marusic and Heuer (2007) postulated that the structure inclination angle
does not depend on the Reynolds number given that no significant difference in the inclination angles
(13.8◦ and 14.4◦, respectively) was obtained from either a wind tunnel experiment at a low Reynolds
number of 𝑅𝑒𝜏 = 1350 or a neutral ASL experiment at a high Reynolds number of 𝑅𝑒𝜏 ≈ 1.8×106. Thus,
it is necessary to determine a suitable parameter to characterize the variation in the inclination angle
and to ascertain the effects of particles on the inclination angle in wind-blown sand flows/sandstorms.

Studies based on long-term observations of sand-free and sand-laden flows at the QLOA have
deepened the understanding of the VLSM inclination angle. A comparison between the structure
inclination angles of sand-laden and sand-free flows is shown in Figure 7a, which demonstrates that
the structure inclination angle in the sand-laden flow is much larger than that in the sand-free flow and
decreases nearly linearly with the friction velocity (Wang et al., 2020). This linearly decreasing trend
of the inclination angle is qualitatively consistent with the trend in a sand-free flow proposed by Liu,
Bo, and Liang (2017). In addition, Liu, Bo, et al. (2017) provided a plausible explanation for why the
friction velocity dominates the behaviour of the inclination angle: the structure inclination angle of an
LSM/VLSM is actually the angle between the interface formed by two or more hairpin vortex heads
(creating an LSM called a hairpin vortex packet) and the wall (Adrian et al., 2000). In the same packet,
the older hairpin vortices (being larger) are more likely to encounter a faster moving fluid, and thus,
the older hairpin vortices move downstream faster than the younger, smaller vortices closer to the wall
(Dennis, 2015). As a consequence, the hairpin vortex packet is stretched by the velocity gradient, which
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Figure 7. Variation in the structure inclination angle with the friction velocity in the neutral regime,
taken from Wang et al. (2020), where the sand-free flow results are taken from Liu, Bo, et al. (2017).
(b) Variation in the velocity gradient with the sand concentration in the sand-laden flow, taken from
Wang et al. (2020).

forms an inclination angle. With an increase in the velocity gradient, this ‘stretching’ effect is enhanced,
which results in a decrease in the inclination angle. The friction velocity reflects mainly the velocity
gradient in the boundary layer. Therefore, the inclination angle decreases linearly with the friction
velocity. Accordingly, the addition of a large number of sand particles into a sand-laden flow reduces the
velocity gradient in the flow field, as shown in Figure 7b, which leads to an increase in the inclination
angle. Note that experimental scatter is inevitably associated with these ASL measurements; however,
it appears that these measurements can be used as a representation of the very-high-Reynolds-number
behaviour. A detailed analysis of the effects of sand concentration on the mean shear requires more data
for support. In addition to the particle concentration, the particle size has an effect on the mean shear
and coherent structures. Tsuji and Morikawa (1982) found that in cases of both large particle size (with
a diameter of 3.4 mm) and small particle size (0.2 mm), the particles flatten the air-velocity profile (that
is, they reduce the mean shear), and the flattening of the air-velocity profile is more remarkable in the
case of small particle size. With smaller particle size (0.1–0.2 mm), Righetti and Romano (2004) also
observed reduced mean shear in the particle-laden turbulence. This may lead to the increased inclination
angle of the large-scale coherent structure in the particle-laden turbulence, as suggested by Tay et al.
(2015).

3.3. Characteristic Length Scale

The influence of the Reynolds number on the characteristic length scale of VLSMs is not clear. In the
early days, Tritton (1967) examined the two-point correlation of the streamwise velocity fluctuations in
the streamwise direction in a wind tunnel TBL at 𝑅𝑒𝜏 ≈ 880 and discovered that the streamwise length
scale may exceed 5𝛿 and that the spanwise width scale is approximately 0.6𝛿 at the top of the logarithmic
region. In an LES of a channel flow (𝑅𝑒𝜏 ≈ 640), Moin and Kim (1982) studied the streamwise velocity
correlation and inferred a streamwise length scale of approximately 6𝛿 with a corresponding spanwise
width scale of approximately 0.5𝛿 at the wall-normal distance 𝑧 = 0.121𝛿. At the turn of the millennium,
the proposal of the hairpin vortex packet model (Adrian et al., 2000; Kim & Adrian, 1999) based on
experiments in a pipe (at 𝑅𝑒𝜏 = 1058–3175) and the TBL (at 𝑅𝑒𝜏 = 355–2000) contributed to better
understanding the mechanism responsible for the formation of LSMs/VLSMs. The basic idea of this
model is that two or more hairpin vortices are aligned coherently in the streamwise direction, which
creates an LSM (called a hairpin vortex packet) with a streamwise length scale of ∼3𝛿; then, packets
may also align with other packets to create a VLSM with a streamwise length scale of ∼6𝛿.
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With the development of experimental facilities and measurement techniques, the observable
Reynolds number of a flow has greatly increased. Notably, Hutchins and Marusic (2007a) compared
the characteristic length scales at four different Reynolds numbers (𝑅𝑒𝜏 = 1120, 7610, 14 380 and
19 960) by conducting experiments in the High Reynolds Number Boundary Layer Wind Tunnel (HRN-
BLWT) with a spanwise array of ten hot wires and discovered that the streamwise length scale for
𝑅𝑒𝜏 = 1120 seems to be slightly shorter than that for the other three cases. This finding may indicate
that the VLSM scale is dependent on the Reynolds number. However, the results obtained by Hutchins
et al. (2012) from high-Reynolds-number (𝑅𝑒𝜏 ≈ 7.7 × 105) ASL observations at the SLTEST site
indicate that the outer-scaled streamwise velocity correlation agrees well with the documented labo-
ratory TBL results provided by Hutchins and Marusic (2007a), which provides possible evidence that
these large-scale structures scale on the boundary layer thickness up to 𝑅𝑒𝜏 ∼ 𝑂 (106). Nevertheless,
high-Reynolds-number experimental data are quite sparse and more work is needed.

Coherent structures exist throughout the boundary layer, and thus, it is very important to characterize
the variation in the characteristic length scale with the wall-normal distance. Tritton (1967) and Moin
and Kim (1982) found that the spanwise scale of the coherent structures increases with the wall-
normal distance throughout the boundary layer, whereas the streamwise scale decreases with the wall-
normal distance in the wake region in the TBL and channel flow at 𝑅𝑒𝜏 = 880 and 640, respectively.
Subsequently, Krogstad and Antonia (1994) published laboratory TBL results at 𝑅𝑒𝜏 = 1850 showing
that the streamwise scale increases with the wall-normal distance according to the hyperbolic tangent
function, i.e. 𝐿𝑥 ∼ tanh(12𝑧/𝛿). However, the variations in the characteristic length scale with the
wall-normal distance given by different studies diverge. For example, Tomkins and Adrian (2003)
suggested that both the streamwise and spanwise length scales linearly increase with the wall-normal
distance in the logarithmic region of the TBL at 𝑅𝑒𝜏 = 2216. This is consistent with Townsend’s
(1976) attached eddy hypothesis because the linear growth of the eddy size with distance from the wall
is a necessary condition for self-similarity, where self-similarity is an assumption of the hierarchy of
attached eddies Perry and Chong (1982); and recently summarized by Marusic and Monty (2019). The
conclusions obtained from studies on the TBL at 𝑅𝑒𝜏 = 690–2800 indicate that the spanwise scale of
the coherent structures increases linearly throughout the TBL and that the increase is more pronounced
in the logarithmic region (Ganapathisubramani, Hutchins, Hambleton, Longmire, & Marusic, 2005;
Hutchins, Hambleton, & Marusic, 2005). Based on experimental data in pipe (𝑅𝑒𝜏 = 933–4355) and
channel (𝑅𝑒𝜏 = 3178) flows in conjunction with previously reported boundary layer data, Monty et al.
(2007) found that the spanwise scale of the coherent structures linearly increases piecewise with the
wall-normal distance (even in the wake region) for all available data, with 𝑅𝑒𝜏 ∼ 𝑂 (103 − 104) in
different types of flows, as shown in Figure 8a. Recently, the DNS of a TBL at 𝑅𝑒𝜏 ≈ 920 performed
by Lee and Sung (2011) showed that the streamwise length scale increases as far as the top of the
logarithmic region (𝑧/𝛿 = 0.2) and then sharply decreases in the wake region, as shown in Figure 8b.
This behaviour may be explained by the detached eddies in the attached eddy theory. Outside the log
region of a boundary layer, coherent structures (e.g. hairpin packets proposed by Kim & Adrian (1999))
that exist in the log region do not retain their coherence. The breakdown of these structures produces
a population of smaller eddies, which may be detached eddies, vortex rings or some other outer-layer
structure (Katul & Vidakovic, 1996; Perry & Marusic, 1995). The length scale extracted from the two-
point correlation represents the average scale of all turbulent coherent structures at a given distance
from the wall. Therefore, the popular smaller scales may reduce the streamwise length scale.

Studies on flows at high Reynolds numbers and broad Reynolds number ranges based on observations
of wind-blown sand flows/sandstorms at the QLOA have improved the understanding of the scale of
coherent structures. The streamwise length scales calculated using the experimental data of Wang et al.
(2020) in a wind-blown sand flow at the QLOA are shown as the yellow symbols in Figure 9. The results
in this figure are in good agreement with those of a sand-free flow in the ASL (Liu, Wang, & Zheng,
2017); that is, the streamwise length scale remains approximately invariant with the Reynolds number.
However, combined with wind tunnel experimental data at low and moderate Reynolds numbers, Zheng
(2020) revealed that the streamwise length scale of the coherent structures tends to become gradually
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Figure 8. (a) Variation in the spanwise width scale with the wall-normal distance. Figure adapted from
Monty et al. (2007), where the solid curves are fitted to the open symbols for 𝑧 < 0.15𝛿 and the dashed
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wall-normal distance. This figure was adapted from Lee and Sung (2011).
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Figure 9. Variation in the streamwise length scale of the coherent structure with the Reynolds number,
where the results of sand-free flows in the ASL were taken from Liu, Wang, et al. (2017), the wind tunnel
TBL results were taken from Zheng (2020) and the sand-laden flow results were taken from Wang et al.
(2020).

invariant with increasing Reynolds number spanning over four orders of magnitude 𝑅𝑒𝜏 ∼ 𝑂 (102–106),
as shown by the pink symbols in Figure 9. The quantitative results show that when 𝑅𝑒𝜏 < 1200,
the streamwise length scale increases with the Reynolds number, whereas when 𝑅𝑒𝜏 > 1200, the
outer-scaled length scale no longer varies with the Reynolds number. In addition, Wang et al. (2020)
revealed that the streamwise length scale and wall-normal length scale of the coherent structures in
sand-laden flows increase with the wall-normal distance, which is qualitatively consistent with the
relatively universal law governing the evolution of the spatial length scale revealed by Liu, Wang, et al.
(2017) using data from the QLOA of high-Reynolds-number sand-free flows. Moreover, a quantitative
comparison indicates that the addition of particles to a wind-blown sand flow reduces the wall-normal
length scale by approximately 40 %.
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Figure 10. (a) Variation in the convection velocity with the migration distance based on QLOA data
and (b) coherent spectrum analysis. The measured convection velocity and the local mean velocity are
represented by 𝑈𝑚 and 𝑈, respectively. Here, Δ𝑥 is the streamwise distance, 𝑓 is the frequency, and
𝜆 = 𝑈𝑚/ 𝑓 is the streamwise wavelength.

However, the streamwise length scale of coherent structures in the ASL obtained by spatiotemporally
converting the measured data through Taylor’s hypothesis is underestimated. Except for some of the
flow images obtained by PIV in the laboratory (Hutchins & Marusic, 2007a; Wang, Huang, Zhang,
Wang & Zhao, 2018), estimates of the streamwise length scale are still based mostly on Taylor’s
hypothesis. However, Taylor’s hypothesis is applicable only on the premise that the convection velocity
of the turbulence structure is consistent with the local mean velocity at the corresponding wall-normal
position and that the structure does not deform during convection. Unfortunately, these assumptions are
difficult to fully satisfy in actual flows, especially boundary layer flows. Therefore, the applicability of
Taylor’s hypothesis has become a hotspot in turbulence research (Squire et al., 2017; see He, Jin, &
Yang, 2017 for a review of relevant studies). Using the observational data from the streamwise array
unique to the QLOA, Han, Wang, and Zheng (2019) reported that the directly measured streamwise
length scale of the coherent structures is generally larger than that obtained by Taylor’s hypothesis (see
Table 4 in Han, Wang, et al. (2019), where the maximum relative error reaches 25 %). This is because the
convection velocity of coherent structures in the logarithmic region of the ASL varies with the migration
distance, as shown in Figure 10a, in which the convection velocity may reach 40 % higher than the local
mean velocity when the migration distance exceeds approximately 300 m (where the migration distance
represents the spatial displacement of coherent structure along the streamwise direction). Moreover, a
coherent structure in the ASL experiences complete deformation after migrating a distance 1.6 times its
own scale in the streamwise direction, as shown in Figure 10b, where

𝛾2
𝐿 (Δ𝑥, 𝑓 ) =

|〈𝑈𝐴(𝑥, 𝑓 )𝑈𝐵 (𝑥 + Δ𝑥, 𝑓 )〉|2

〈|𝑈𝐴(𝑥, 𝑓 ) |2〉〈|𝑈𝐵 (𝑥 + Δ𝑥, 𝑓 ) |2〉
(1)

is the linear coherence spectrum (Baars, Hutchins, & Marusic, 2016) of the streamwise velocity fluctu-
ations 𝑢𝐴(𝑥, 𝑡 + Δ𝑡/𝑈𝑚) and 𝑢𝐵 (𝑥 + Δ𝑥, 𝑡), 𝑈𝐴(𝑥, 𝑓 ) and 𝑈𝐵 (𝑥 + Δ𝑥, 𝑓 ) are the Fourier transforms of
𝑢𝐴(𝑥, 𝑡 + Δ𝑡/𝑈𝑚) and 𝑢𝐵 (𝑥 + Δ𝑥, 𝑡), 〈〉 denotes ensemble averaging, the overbar indicates the complex
conjugate and | | designates the modulus.

3.4. Turbulent Kinetic Energy of VLSMs

The contributions of VLSMs to the turbulent kinetic energy, Reynolds shear stress and transport of
material are significantly greater than those of other coherent structures. Turbulence exhibits multiscale
motions and the energies of different-scale motions differ. Nevertheless, the dominant position of the
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Figure 11. Variations in the fractions of (a) kinetic energy and (b) shear stress carried by VLSMs
as a function of the Reynolds number for channel (open symbols), zero-pressure-gradient boundary
layer (ZPGBL, grey filled symbols) and pipe (black filled symbols) flows for the following fractions:
open squares, 𝑧/𝛿 ∼ 0.1; open upright triangles, 𝑧/𝛿 ∼ 0.2; open inverted triangles, 𝑧/𝛿 ∼ 0.3; open
diamonds, 𝑧/𝛿 ∼ 0.5; and open circles, 𝑧/𝛿 ∼ 0.7 (taken from Balakumar & Adrian (2007)).

corresponding motion in turbulence is reflected by the energy level. The LSMs/VLSMs initially received
attention as a result of their large scale until Kim and Adrian (1999) analysed the energy spectra in pipes
over 1058 ≤ 𝑅𝑒𝜏 ≤ 3175 and noticed that the high-wavenumber and low-wavenumber peaks in the
energy spectra corresponded to LSMs and VLSMs in the outer layer, respectively. Moreover, the low-
wavenumber peak becomes more obvious in higher-Reynolds-number flows (Vallikivi, Hultmark, et al.,
2015; Wang & Zheng, 2016), which means that the VLSMs in the outer layer have the most significant
contribution to the turbulent kinetic energy in high-Reynolds-number wall turbulence, thereby becoming
the dominant structural feature. Subsequently, researchers have successively investigated the energy
fraction contributed by VLSMs to the total turbulent kinetic energy. For example, Morrison et al. (2004)
analysed pipe flows over 1500 ≤ 𝑅𝑒𝜏 ≤ 1.01 × 105 and revealed that the fraction of turbulent kinetic
energy caused by VLSMs can reach 50 %. The pipe flow (3815 ≤ 𝑅𝑒𝜏 ≤ 7959) examined by Guala
et al. (2006) indicated that the energy fraction of VLSMs can reach up to 65 %, with a 50 %–60 %
contribution to the Reynolds shear stress. Balakumar and Adrian (2007) analysed experimental data
in the TBL (1476 ≤ 𝑅𝑒𝜏 ≤ 2395) and channel flow (531 ≤ 𝑅𝑒𝜏 ≤ 1584), and proposed that the
contributions of VLSMs to the turbulent kinetic energy and Reynolds shear stress were approximately
40 %–65 % and 30 %–50 %, respectively; they also stated that the variations in the energy contribution
and shear stress carried by the VLSMs are functions of the Reynolds number for different flows, as
shown in Figure 11. Numerical simulation results in recent years support this finding. For example, a
DNS (459 ≤ 𝑅𝑒𝜏 ≤ 732) in the TBL (Lee & Sung, 2011) demonstrated that the Reynolds shear stress
contributed by VLSMs exceeds 45 %. Furthermore, the LES results of the TBL at 𝑅𝑒𝜏 ∼ 4000 (Deck,
Renard, Laraufie, & Weiss, 2014) show that VLSMs/LSMs significantly affect the wall shear stress
and contribute more than 60 % of the turbulent friction coefficient (i.e. the contribution of turbulence
to mean friction is obtained by the weighted integration of the Reynolds shear stress). The effect of
VLSMs contributing such a high fraction of turbulent kinetic energy on the transport of material is
also obviously critical. Especially in the ASL, VLSMs play a major role in the downward transport of
momentum (Horiguchi, Hayashi, Adachi, & Onogi, 2012), which will significantly affect the movement
of both water vapour and CO2 (Cooper et al., 2006; Serafimovich, Thomas, & Foken, 2011).

A new mechanism that explains how the VLSM energy changes with height based on the observation
results of sand-laden two-phase flows in the ASL has been proposed. The variation in the energy fraction
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Figure 12. Variations in the contributions of VLSMs to the turbulent kinetic energy in a high-Reynolds-
number flow in the ASL with height: (a) the energy fraction contributed by VLSMs to the total turbulent
kinetic energy and (b) the normalized energy contributed by VLSMs in clean air (black) and sand-laden
(yellow) flows, taken from Wang et al. (2020).

of VLSMs with height is very important because VLSMs commonly exist in the entire outer layer.
However, this topic has been the subject of relatively little research. Recently, Wang et al. (2020) analysed
the influences of sand particles on the turbulent kinetic energy and energy fraction of VLSMs based on the
observational data of sand-laden two-phase flows from the QLOA, as shown in Figure 12 (yellow dots).
The turbulent kinetic energy and energy fraction of VLSMs in high-Reynolds-number sand-laden flows
increase with an approximately log-linear behaviour with height, which is qualitatively consistent with
the particle-free flow results. However, a quantitative comparison shows that the normalized turbulent
energy of VLSMs increases while the energy fraction of VLSMs decreases in sand-laden flows, which
means that sand particles not only increase the energy of VLSMs but also significantly increase the total
streamwise turbulent kinetic energy in sand-laden flows. The corresponding particle-free flow results
can be found in the paper by Wang and Zheng (2016), who revealed the mechanism by which the energy
of VLSMs and the energy fraction increase with the wall-normal distance in an approximately log-linear
manner, as shown in Figure 12 (black dots). The energy fraction of VLSMs can reach 60 % at the top
of the logarithmic layer (𝑧 = 0.2𝛿), which is larger than the energy fractions (approximately 40 %–50 %
over 𝑅𝑒𝜏 ∼ 𝑂 (102–𝑂 (103)) obtained during the experiment conducted in the TBL by Balakumar and
Adrian (2007) and Lee and Sung (2011), which also means that the contribution of VLSMs to the
turbulent kinetic energy becomes more obvious at higher Reynolds numbers.

Another important impact of research on the energy fraction contributed by VLSMs to the process
of wind-blown sand flows/sandstorms is to reveal the nature of the meteorological phenomenon known
as ‘gusty wind’. In 1983, the World Meteorological Organization (WMO) defined gusty wind as a
fluctuation that occurs approximately once every several minutes (WMO, 1983). Moreover, Zeng et al.
(2010) defined gusty wind as having a fluctuation period of 1–10 min under neutral stratified conditions.
According to the analysis of observational data regarding the urban boundary layer, it has been proposed
that gusty wind is coherent and plays an important role in the transport of both sand and dust. Based on
sand-laden flow data from the QLOA, Gu, Wang, Zhu, and Zheng (2019) compared the scales of VLSMs
and LSMs with those of gusty wind in normalized energy spectra. They found that meteorological
gusty wind contains a large number of synoptic waves but is missing the VLSMs and LSMs that have
considerable contributions to the turbulent kinetic energy. In fact, most VLSMs and all LSMs are
forfeited by gusty wind, especially under high-wind velocity condition, and the lost contributions of
VLSMs and LSMs can reach 50 %.
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4. Amplitude Modulation and Its Application

In addition to the ubiquity and importance of LSMs/VLSMs, researchers pay attention to these outer-
region structures because they have a significant amplitude modulation effect on small-scale near-wall
motions (Brown & Thomas, 1977; Rajagopalan & Antonia, 1980). The discovery that LSMs/VLSMs
modulate the amplitudes of small-scale motions not only contributed to a better understanding of the
mechanism responsible for the production of near-wall turbulence (i.e. this process is not completely
‘autonomous’ when referring to the near-wall cycle (Jiménez & Pinelli 1999; Schoppa & Hussain, 2002))
but also provided an effective way to predict the behaviour of near-wall turbulent motions (Marusic
& Hutchins, 2011; Marusic, Mathis, et al., 2010; Marusic et al., 2013). That makes sense because
the scales of the two kinds of structures are different enough for the near-wall elementary structures
to spend most of their ‘lives’ in an environment defined by a single large-scale modulation (Jiménez,
2013). In addition, the modulation effect of LSMs/VLSMs leads to a weakened control effectiveness on
near-wall coherent structures (Deng, Huang, & Xu, 2016), and thus, manipulating the LSMs/VLSMs
may provide an effective approach for controlling the turbulence (Hwang & Sung, 2017). Therefore,
amplitude modulation has recently become a research hotspot and has attracted the attention of many
researchers (Jacobi & Mckeon, 2013; Luhar, Sharma, & McKeon, 2014; Talluru, Baidya, Hutchins, &
Marusic, 2014). In summary, studies on amplitude modulation may be divided into three stages: the
early discovery of this phenomenon, quantitative research, and recent applications and promotion.

The phenomenon of amplitude modulation is common in different types of flows. Initially, Brown
and Thomas (1977) compared low-frequency fluctuations with rectified high-frequency smoothed sig-
nals in the TBL at 𝑅𝑒𝜏 = 3413 and found a high-frequency large-amplitude fluctuation occurring near
the maximum in the slowly varying part of the signal, which indicates that the low-frequency fluctua-
tion amplitude is associated with high-frequency fluctuation. In numerous different types of shear flows
(including boundary layers, mixing layers, wakes and jets), Bandyopadhyay and Hussain (1984) also
found significant coupling between scales in all flows by decomposing the streamwise velocity fluctu-
ation and examining the correlations between the low-frequency and the high-frequency components.
Recently, amplitude modulation was highlighted by Hutchins and Marusic (2007b), who provided a
detailed description of the amplitude modulation process; that is, the amplitudes at small scales were
larger within large-scale positive fluctuations, whereas the amplitudes at small scales became relatively
quiescent within large-scale negative fluctuations.

The amplitude modulation coefficient, as a mathematical tool, was originally proposed by Mathis et al.
(2009). The amplitude modulation coefficient can quantify the degree of the amplitude modulation effect
of LSMs/VLSMs on small-scale motions. The corresponding flow chart of the complete decoupling
procedure is illustrated in Figure 13. Mathis et al. (2009) compared the results of one- and two-point
analyses and suggested that the single-point amplitude modulation coefficient provides a reasonable
estimate of the degree of modulation. Based on this quantitative method, Mathis et al. (2009) and Mathis,
Monty, Hutchins, and Marusic (2009) examined HRNBLWT (𝑅𝑒𝜏 = 2800–19 000), pipe (𝑅𝑒𝜏 = 3015),
channel (𝑅𝑒𝜏 = 3005) and ASL (𝑅𝑒𝜏 = 6.5 × 105) experimental data and found that the amplitude
modulation coefficient exhibits almost no difference between internal and external wall-bounded flows
but exhibits strong dependence on the Reynolds number and wall-normal distance. Furthermore, the
amplitude modulation coefficient increased in a log-linear fashion with the Reynolds number in the
buffer layer (20 < 𝑧+ < 100), but a more significant influencing factor (i.e. the wall-normal distance)
has not yet been considered.

The application of amplitude modulation in the prediction model of near-wall turbulent motion
further highlights the importance of the amplitude modulation effect. Based on studies of the amplitude
modulation coefficient, Marusic, Mathis, et al. (2010) and Mathis, Hutchins, and Marusic (2011)
proposed a time series predictive model for the near-wall fluctuating streamwise velocity; the equation
is shown in Figure 14. Subsequently, Marusic and Hutchins (2011), Inoue, Mathis, Marusic, and Pullin
(2012) and Mathis, Marusic, Chernyshenko, and Hutchins (2013) presented a fluctuating wall-shear
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Figure 13. Flow chart for the calculation of the amplitude modulation coefficient, taken from (Mathis
et al., 2009).

stress predictive model. With these predictive models, the near-wall streamwise velocity and the wall-
shear stress fluctuations can be predicted using only the large-scale velocity information measured in
the logarithmic region. Recently, (Howland and Yang, 2018) made theoretical predictions on the model
parameters within the wall-shear stress model and then applied them to wall-modelled LES by relating the
amplitude modulation process to the Townsend attached eddy hypothesis. These models are important
given that it is difficult to accurately measure and simulate turbulent motion close to a solid boundary.
The proposal of these near-wall models further highlights the importance of amplitude modulation;
therefore, recent research on amplitude modulation still attracts the attention of many researchers.

Talluru et al. (2014) calculated the amplitude modulation coefficient of large-scale streamwise
velocity fluctuations on all three components of the small-scale velocity with measurements from cross-
wire probes in the TBL at 𝑅𝑒𝜏 = 15 000 and found that the modulation of the small-scale energy by
large-scale structures is relatively uniform across all three velocity components. Luhar et al. (2014) and
Tsuji, Marusic, and Johansson (2016) investigated the amplitude modulation of pressure fluctuations and
found a relatively small modulation effect between large- and small-scale pressure fluctuations. Squire,
Baars, Hutchins, and Marusic (2016) and Pathikonda and Christensen (2017) explored the inner–outer
interactions in rough-wall TBL flows and suggested that a rough wall increases the amplitude modulation
coefficient Nadeem, Lee, Lee, and Sung (2015) and Anderson (2016) performed numerical simulations
with similar results). Recently, Yao, Huang, and Xu (2018) investigated the amplitude modulation effect
by the DNS of turbulent channel flows and indicated that extraordinarily high fluctuation events are
provoked by the modulation effect. Salesky and Anderson (2018) presented evidence of amplitude
modulation phenomena in the unstably stratified (i.e. convective) ASL by conducting an LES; they
suggested that the modulation effect of the large-scale streamwise velocity decreases monotonically,
while the modulating influence of the large-scale vertical velocity remains significant because the
spatial attributes of the flow structures change from streamwise to vertically dominated. Wang, Pan,
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Figure 14. Mathematical formulation of the predictive model for the near-wall fluctuating streamwise
velocity, taken from Mathis et al. (2011).

and Wang (2020) examined the characteristics of the streamwise component of the fluctuating wall-
shear stress in a smooth-wall TBL and inferred that the LSMs/VLSMs in the outer region mainly apply
an amplitude modulation effect instead of a footprint effect on the wall-shear stress. However, none
of the abovementioned studies on amplitude modulation involved particle-laden two-phase flows, and
the decoupling procedure employed a nominal cut-off wavelength (usually taken as 𝛿) to divide the
fluctuating velocity into large- and small-scale components. Consequently, very little is known about
the impacts of particles on the amplitude modulation effect and which scales of motion dominate the
amplitude modulation.

Regarding the modulation effect of VLSMs, the author’s team performed a detailed analysis of the
sand-free and sand-laden flows of the ASL and obtained some novel results. Using experimental data
with different sand concentrations in the near-neutral ASL obtained from long-term observations at the
QLOA, Liu and Zheng (2020) found that VLSMs also exhibit an amplitude modulation effect on the
small-scale motions in sand-laden flows, but the amplitude modulation coefficient in a sand-laden flow is
significantly reduced compared with that in a sand-free flow, as shown in Figure 15. This may be because
the addition of sand particles into a two-phase flow does not change the scales of the most energetic
motions but does change the distribution of energy between turbulent motions at different scales. In
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Figure 15. Colour contour maps showing the variations in the amplitude modulation coefficient with
the length scales of the large-scale (𝜆𝑥 > 𝑎𝛿) and small-scale (𝜆𝑥 < 𝑏𝛿) components compared with
the premultiplied energy spectra of the streamwise velocity fluctuations in a (a) sand-laden flow and
(b) sand-free flow, taken from Liu et al. (2019b).

addition, Liu, Wang, and Zheng (2019b) proposed that not all of the length scales of turbulent motions
have an amplitude modulation effect among them; rather, several specific motions have an effect: the
most energetic motions with scales larger than the wavelength of the energy spectral peak in the lower-
wavenumber region contribute significantly to the amplitude modulation effect, while the motions with
small scales (shorter than the wavelength of the higher-wavenumber peak) are strongly modulated.

Marusic, Mathis, et al. (2010) proposed the Marusic–Mathis–Hutchins (MMH) near-wall wind
velocity prediction model, the basic idea of which is to superpose and modulate a large-scale structure
in the outer region onto a small-scale structure near the wall to predict the fluctuating wind velocity
signal near the wall, which is typically difficult to measure. Therefore, this method can predict the
streamwise velocity time series only below the input signal height (usually taking the centre height
of the logarithmic region 𝑧+ = 3.9𝑅𝑒1/2

𝜏 ), which is in the outer region. In the wind tunnel and ASL
with boundary layer thicknesses of 0.3 and 150 m, respectively, these heights correspond to 0.02 and
0.3 m, respectively. However, in practical applications, it is often necessary to know the wind velocity
fluctuation and the sand/dust transport at 2 m or even tens of metres above the input signal height.
Moreover, the determination of both the MMH model parameters and the universal signal depends on
high-precision calibration experiments, and the calibration process requires synchronous measurements
at the measuring point in the centre of the logarithmic region and at different heights below. A hot-wire
probe with high spatial and temporal resolutions is used for the wind speed measurement to ensure
that the minimum viscous-scale vortices can be resolved and are close to the wall surface to ensure
that the near-wall measurement signals can be obtained. However, owing to the complexity of the
ASL surface and the limitations of experimental means, it is very difficult to carry out high-precision
calibration experiments in the field. In addition, owing to the constant adjustment of modulation-related
parameters in the process of determining the universal signal, the modulation coefficient of the large-
scale fluctuation in the outer region to the near-wall standard signal is zero, so this process cannot be
solved directly and the iterative adjustment process is tedious.

To describe the fluctuation characteristics of the ASL velocity field, Han, Liu, Bo, and Zheng (2019)
extended the MMH model to the ASL clear-air field to obtain a modified prediction model based on the
measured time series of the streamwise velocity field at a certain height 𝑧0 (called the reference height);
the purpose of this model was to predict the fluctuating streamwise velocity at any height. The modified
model considers the effect of the high-Reynolds-number ASL on LSMs/VLSMs and its further effect
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Figure 16. Comparison between the model prediction results and measured results at (a) 0.9 m; (b) 1.71
m; (c) 7.15 m; and (d) 30 m, taken from Han, Liu, et al. (2019).

on small-scale fluctuations. The model provided in Han, Liu, et al. (2019) is written as

𝑢+(𝑧) = 𝑢+(𝑧) + 𝑢+𝑠∗(𝑧)(1 + 𝑅(𝑧)𝑘 (𝑧)𝑢+𝑀𝐿 (𝑧𝑀 , 𝛾𝐿)) + 𝑘 (𝑧)𝑢+𝑀𝐿 (𝑧𝑀 , 𝛾𝐿), (2)

where 𝑢+(𝑧) is the predicted streamwise velocity, 𝑢+(𝑧) is the mean velocity given by the logarithmic
law, 𝑢+𝑠∗(𝑧) is the small-scale turbulent signal generated by the harmony superposition method, 𝑅(𝑧) is
the amplitude modulation coefficient, 𝑘 (𝑧) is related to the energy ratio between the large- and small-
scale turbulent signals, 𝑢+𝑀𝐿 (𝑧𝑀 , 𝛾𝐿) is the large-scale turbulent signal shifted forward in the streamwise
direction according to the large-scale structure inclination angle 𝛾𝐿 , and 𝑧𝑀 represents the centre of the
logarithmic region. The predicted results of the model are in good agreement with the results of field
observations, as shown in Figure 16. Because the model does not need complex calibration experiments
and the model parameters are universal, the fluctuating velocity prediction model is easy to apply.

5. Electric Field Measurements in Dust Storms

Particle charging is a ubiquitous phenomenon in industry (e.g. fluidized beds (Sippola et al. 2018)),
nature (e.g. volcanic eruptions and dust storms (Mather & Harrison, 2006; Zhang & Zhou, 2020b)), and
even interplanetary and interstellar space (e.g. protoplanetary disks and dusty plasmas (Blum & Wurm
2008)). Dust storms are natural laboratories for the study of particle charging in particle-laden turbulent
flows, with friction Reynolds numbers reaching as high as 𝑅𝑒𝜏 ∼ 𝑂 (106), and dust storms containing
polydisperse sand and dust particles ranging in size from 𝑂 (10−6) to 𝑂 (10−3) m. The ambient electric
field density in dust storms reaches ∼10–100 kV m−1, which is 2–3 orders of magnitude higher than that
of the fair-weather atmospheric electric field (e.g. Harris, 1967; Kamra, 1972; Rudge, 1913; Stow, 1969;
Zhang & Zhou, 2020b). Numerous studies have shown that the electrostatic forces to which particles are
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subjected are comparable to their gravitational force, which has considerable influences on the particle
lifting process, preferential particle concentration, and particle transport (e.g. Kok & Renno, 2006;
Renzo & Urzay, 2018; Schmidt, Schmidt, & Dent, 1998; Zheng, Huang, & Zhou, 2003). For example,
Kok and Renno (2006) showed that electrostatic forces between particles can significantly reduce the
critical wind speed for particle lifting and even directly lift particles away from the wall. Renzo and
Urzay (2018) conducted numerical simulations and discovered that electrostatic forces can remarkably
affect the preferential concentration of particles in turbulent flows. Zheng et al. (2003) showed that in
wind-blown sand flows, the electrostatic force increases the dust mass flux when the dust particles are
negatively charged, while the electrostatic force decreases the dust mass flux when the dust particles
are positively charged. In addition, the theoretical model of Zhou, He, and Zheng (2005) shows that the
transmission of electromagnetic waves in dust storms is significantly affected by the amount of electrical
charge on the dust particles.

The electrostatic force exerted on a dust particle is equal to the product of the particles’ charge-to-
mass ratio and the electric field strength at its spatial location; hence, the particles’ charge-to-mass ratio
and the spatial structure of the electric field are two important physical quantities for quantifying the
particle charging phenomena in dust storms. Currently, two methods, namely, the trajectory deflection
method (e.g. Miura, Koyaguchi, & Tanaka, 2002) and the Faraday cage method (e.g. Schmidt et al.,
1998), are employed to measure the charge-to-mass ratio of particles. The former method indirectly
determines the particles’ charge-to-mass ratio by measuring the horizontal deflection of the trajectory
of the charged particles under an applied horizontal electric field, and the magnitude of this horizontal
deflection is proportional to the particles’ charge-to-mass ratio; however, as the accuracy of this method
depends on the precise measurement of particle trajectories (usually using PIV, e.g. Waitukaitis, Lee,
Pierson, Forman, & Jaeger, 2014), it cannot be used for dust storm measurements. The latter method
determines the average charge-to-mass ratio of particles during a period by measuring the total charge
and mass of the particles collected in a Faraday cage in real time. This method has been widely used to
measure the charge-to-mass ratios of sand and dust particles (e.g. Bo, Zhang, & Zheng, 2014; Schmidt
et al., 1998) within the saltation layer (i.e. within a height of ∼10 cm above the surface). However, it
is difficult to apply this method at higher altitudes, where the particle concentration is small and the
wind shear stress is strong enough that particles can hardly be collected in a Faraday cage (e.g. Harrison
et al., 2016). Therefore, the electrical properties of suspended dust particles in dust storms are currently
unclear, and the particles’ charge-to-mass ratio is usually assumed to be a constant of ∼ ± 60 µC kg−1

in many numerical models (e.g. Schmidt et al., 1998; Zhang & Zhou, 2020a; Zheng et al., 2003); this
magnitude is consistent with the measurements of (Schmidt et al., 1998). Although Williams, Nathou,
Hicks, Pontikis, and Bartholomew (2009) inferred that the charge structure of dust storms may be
unipolar or bipolar (if particle charging occurs primarily at the ground or in midair, respectively), they
neglected the effects of turbulence, which plays an important role in particle charging (e.g. Grosshans
& Papalexandris, 2017; Renzo & Urzay, 2018). Consequently, they did not obtain detailed information
about the electrical properties of the suspended particles.

On the other hand, although Rudge (1913) conducted observations of atmospheric electric field
changes during dust storms as early as 1913, the spatial structure of the aeolian electric field during a
dust storm remains puzzling owing to its complexity (Harrison et al., 2016; Zheng, 2013). As shown
in Figure 17, the existing observations of the aeolian electric field are concerned mainly with the
vertical component, and these measurements were performed at a single point ∼1–2 m above the ground
(Esposito, 2016; Harris, 1967; Kamra, 1972; Rudge, 1913; Stow, 1969; Yair, Katz, Yaniv, Ziv, & Price,
2016); thus, the spatial structure of the aeolian electric field was not retrieved. In particular, the direction
of the vertical component of the aeolian electric field is still under debate. That is, measurements have
uncovered upward-oriented (e.g. Harris, 1967; Rudge, 1913; Stow, 1969), downward-oriented (e.g.
Esposito, 2016), and even alternatively oriented vertical electric fields (Kamra, 1972; Williams et al.,
2009).

To obtain the electrical properties of the suspended particles at high altitudes and image the fine
structure of the electric field in dust storms, a set of real-time, simultaneous, multipoint observations
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Figure 17. Field observations of the aeolian electric field in dust storms by Esposito et al. (2016).
(a) Instrument stations deployed in the field observations, which were conducted in the Merzouga
Desert, Morocco in 2014. The inset shows the installation of the instruments in 2013. (b) Time series
of the vertical electric field at a height of 2 m measured on 16 July 2013. The positive direction of the
vertical electric field is oriented upward. This figure was adapted from Esposito et al. (2016).
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Figure 18. Wavelet coherence between the space charge density (estimated from the divergence of the
three-dimensional electric field measurements) and the PM10 dust mass concentration at a measurement
point 5 m above the ground. Panels (a–c) correspond to dust storms observed on 17 April, 20 April and
22 April 2017, respectively. The horizontal dashed line corresponds to a time scale of 10 min and the
white solid line is the cone of influence for wavelet analysis. This figure was adapted from Zhang and
Zheng (2018).

of the wind velocity, PM10 dust concentration and electric field were performed at the QLOA (Zhang,
Bo, & Zheng, 2017; Zhang & Zhou, 2020b). First, as shown in Figure 18, the space charge density and
dust mass concentration 5 m above the ground are weakly correlated at short time scales (i.e. <1 min),
while they show a highly linear correlation (wavelet coherence ≥ 0.8) at long time scales (exceeding
10 min) at different stages of the dust storm. Because the ratio of the space charge density to the dust
mass concentration characterizes the average charge-to-mass ratio of the suspended particles, a strong
correlation at a time scale exceeding 10 min indicates that the average charge-to-mass ratio does not
change with the dust concentration over this scale. Such a strong correlation is usually termed the large-
scale electrification equilibrium phenomenon of dust particles in dust storms (e.g. Harper & Dufek,
2016; Zhang & Zheng, 2018). Zhang and Zheng (2018) showed that for a given ambient temperature and
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Figure 19. Reconstruction of the electrical structure of a dust storm, where the electric field data are
from observations collected on 16 April 2017 at 13:20:00 (UTC+8). (a) Reconstruction of the three-
dimensional structure of the space charge density 𝜌𝑖𝑛𝑣 on 16 April 2017 at 13:20:00 (UTC+8), where
the isosurfaces are shown at a space charge density magnitude of 0.02 𝜇C 𝑚−3. The positive and
negative surfaces are coloured red and blue, respectively. Contour slices at 𝑥 = 5 m are coloured based
on the space charge densities. (b) Reconstruction of the three-dimensional structure of the electric field
on 16 April 2017 at 13:20:00 (UTC+8), where the lines are electric field lines and the contour clouds
are stained with the logarithm of the electric field size. Slices at 𝑥 = 0, 𝑦 = 0 and 𝑧 = 4 m are coloured
based on the log magnitude of the three-dimensional electric field. (c) Relative error between the 𝜌𝑖𝑛𝑣
obtained from the reconstructions with subsampling and complete sampling, where the subsampling
size 𝑚 ranges from 5 to 18 for the three different data sets of dust storms 1–3. Dust storms 1, 2 and
3 occurred on 16, 17, and 20 April 2017 (UTC+8), respectively. Error bars represent the standard
deviation of the relative error over 10 random subsampling reconstructions. This figure was adapted
from Zhang and Zhou (2020b).

relative humidity, there is a significant fluctuation in the average charge-to-mass ratio below the 10 min
scale, while the average charge-to-mass ratio is considered to remain unchanged above the 10 min scale.

Furthermore, Zhang and Zhou (2020b) employed Tikhonov regularization and proposed a method to
reconstruct the spatial structures of the space charge density and electric field in dust storms based on
locally measured electric field data in the ASL, thereby providing a method for studying the electrical
structure of dust storms. The reconstructed results in Figure 19a indicate that the space charge density
in dust storms exhibits a universal mosaic pattern (i.e. a mosaic of positively and negatively charged
regions), which implies that the charge-to-mass ratio of dust particles varies spatially. Surprisingly, this
mosaic charge structure is quite different from the unipolar or bipolar charge structures inferred from
previous work (Williams et al., 2009). This is because particle charging is generally size-dependent;
i.e. large particles tend to be positively charged, whereas small particles tend to be negatively charged
(Lacks & Sankaran, 2011). In dust storms, negatively charged small particles with an 𝑆𝑡 (Stokes) number
less than ∼𝑂 (1) accumulate in the low-speed region owing to turbulence, while particles with an 𝑆𝑡
number much larger than ∼𝑂 (1) are distributed more uniformly owing to their large inertia (Lacks &

https://doi.org/10.1017/flo.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2021.6


Flow E5-27

Sankaran, 2011). It is likely that these different responses of charged particles to turbulence are the
main physical mechanism that generates the mosaic charge structure of dust storms (e.g. Cimarelli,
Alatorre-lbarguengoitia, Kueppers, Scheu, & Dingwell, 2014; Renzo & Urzay, 2018). Moreover, as
shown in Figure 19b, the electric field of the dust storms is three-dimensional at different locations.
Therefore, field measurements should focus on the three-dimensional electric field and not only on the
vertical component. Note that the measurement points in the streamwise direction play an important role
in the reconstruction model. As shown in Figure 19c, the relative error between the subsampling and
complete sample reconstructions reaches 40 % when the streamwise measurement points (i.e. streamwise
towers 5 m above the ground) have been removed. This means that such subsampling reconstructions
are unreliable. In fact, because the space charge density in a dust storm is not uniformly distributed in
the streamwise direction, a reconstruction with insufficient streamwise data cannot fully reproduce the
real structures.

6. Conclusion and Outlook

Wind-blown sand flows/sandstorms are typical gas–solid two-phase flows that not only constitute frontier
foundational science issues but also present significant application requirements for studying their reg-
ularity and formation/evolutionary mechanisms. However, it is difficult to study high-Reynolds-number
two-phase wall-bounded turbulence owing to the lack of existing research methods; consequently, the
understanding of such flows remains poor. As discussed in this paper, based on a review and summary
of the current research status on LSMs/VLSMs in high-Reynolds-number wall-bounded turbulence,
the innovative results reported in this field are focused primarily on the observations of wind-blown
sand-laden two-phase flows in the ASL, especially the results obtained from the QLOA. These research
successes mainly include: discovering the existence of VLSMs in the flow field and very-large-scale
sand structures in the sand concentration scalar field in high-Reynolds-number particle-laden flows
(𝑅𝑒𝜏 ∼ 𝑂 (106)); ascertaining the scale, structure inclination angle and other features of VLSMs in the
particle-laden ASL flow; determining the energy distribution with height and its difference between
particle-laden and particle-free flows; the effects of sand particles on the amplitude modulation effect
between multiscale turbulent motions; further modifying Taylor’s hypothesis of frozen turbulence based
on the difference between the streamwise scales of the VLSMs measured by the streamwise array and the
corresponding results obtained by this hypothesis; and retrieving the space charge density and electric
field of a sandstorm from spatial multipoint three-dimensional electric field synchronous measure-
ments. These theories provide guidance for predicting wind-blown sand flows in the ASL, especially for
improving the sand flux model based on the steady flow field and stationary saltation hypothesis, and
for studying the physics of wind-blown sand movement (Anderson & Haff, 1988; McEwan & Willetts,
1991).

Based on the understanding of the phenomena and mechanisms discussed herein revealed by the
existing research on high-Reynolds-number wall-bounded turbulence and wind-blown sand-laden two-
phase flows, the author summarizes the following key issues that need to be further studied.

1. The coupling effects between near-wall motions of particles and turbulence. An erodible surface
can be found in wind-blown sand flows/sandstorms. The motions of near-wall particles, especially
heavy particles, such as sand, include impacts/collisions, rebounding/splashing and creeping/saltating
on an erodible surface. Moreover, the near-wall turbulent motions include hairpin vortices, streaks,
ejection and sweep events, and LSMs/VLSMs. The coupling effect between these two types of near-wall
motions and their influence on turbulence structures can play key roles in the formation and evolution
of gas–solid two-phase flows, especially turbulence structures, as well as significantly complicate the
occurrence of two-phase particle-laden wall turbulence. Therefore, quantitatively characterizing the
coupling effect between these two types of near-wall motions and their influencing mechanism can
enhance the understanding of the evolutionary characteristics of turbulence structures and improve the
prediction of gas–solid two-phase flows, especially wind-blown sand flows/sandstorms, in terms of
accuracy and precision.
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2. The particle concentration effects on the statistics and VLSM characteristics in high-Reynolds-
number particle-laden turbulence. In current studies, both the turbulence statistics (such as the mean
wind profile, turbulence fluctuation intensity and Reynolds shear stress) and the VLSM characteristics
(including the scale, structure inclination angle, energy fraction and amplitude modulation) are signifi-
cantly affected by the existence of sand particles in wind-blown sand-laden two-phase flows. However,
most of these statistics are limited in their qualitative differences from the comparison of particle-laden
and particle-free results. Therefore, studies on the turbulence statistics and structural characteristics that
vary with different concentrations of sand particles are lacking. Future research on this topic will need to
realize the synchronous measurement of the near-wall wind velocity and the concentration of particles
(especially with a larger particle concentration in the ASL, which is much more difficult to measure).

3. The research methods in high-Reynolds-number gas–solid two-phase flows. The research methods
used to investigate gas–solid two-phase flows are mainly experiments and numerical simulations, where
the former includes field observations and wind tunnel experiments. However, owing to uncontrollable
environmental factors and the surface conditions of field observations, near-wall measurements are
difficult to perform in the saltation layer of a wind-blown sand-laden two-phase flow. Moreover, wind
tunnel experiments performed on gas–solid two-phase flows under controlled conditions cannot satisfy
the complete measurement of VLSMs owing to the limited field of view of PIV. With regard to numerical
simulations, real wind-blown sand flows/sandstorms have a higher Reynolds number (𝑅𝑒𝜏 ∼ 𝑂 (106))
and density ratio (the particle-to-fluid density ratio is approximately 2000), an obvious gravity settlement
process and strong near-wall motions of particles on the erodible surface, and multiscale motions and
scale-spanning motions are coupled simultaneously. Therefore, while the Reynolds numbers of full-
resolution DNSs of particles and turbulence are being continuously improved, the influences of gravity
and the erodible surface should be considered, and a scale-spanning high-precision numerical algorithm
needs to be developed from the near-wall motion of a single particle to the motions of a particle swarm
and the transport of particles from near the wall to the middle of the ASL.

4. The evolution of turbulence properties and structural characteristics during sandstorms. Accord-
ing to changes in the wind velocity, the whole process of a sandstorm can be divided into three sections:
a rising stage with increasing wind velocity, a stationary stage with stable wind velocity and a declin-
ing stage with decreasing wind velocity. Existing wind-blown sand-laden two-phase flow studies focus
on analysing only the stationary process. In contrast, investigating the turbulence statistical proper-
ties, especially the evolutionary regularities of the structural characteristics over time, throughout the
whole sandstorm process, which includes the rising and descending stages, would be helpful to reveal
the mechanisms of sandstorm formation and evolution, and therefore achieve the effective control of
sandstorms. However, relevant research has yet to be reported, so further experimental observations, as
well as the development of reliable non-stationary data processing methods suitable for the rising and
declining stages of sandstorms, are needed.

5. The structures of the three-dimensional electric field and dust concentration field in dust storms.
The mosaic charge structure arising from the different responses of oppositely charged particles to
turbulence in dust storms implies that the electrical structure of dust storms is closely related to the
structure of the turbulent flows. Therefore, a joint reconstruction model for reconstructing the turbulent
flows, dust concentration field and electric field is needed to reveal the coupling mechanisms among
them. Additionally, because almost all the existing studies are concerned mainly with the properties of
the mean electric field, the fluctuating properties of the aeolian electric field remain largely unknown.
Future research should focus on the statistical quantities of the fluctuating field, such as the power
spectra of fluctuating electric fields and the coherence spectra among the fluctuating electric field, dust
concentration and turbulence, from which the energy distribution and coherence can be assessed across
different scales.

6. The application of research achievements on high-Reynolds-number gas–solid two-phase flows.
The flows in nature and industrial applications are mostly multiphase flows with high Reynolds numbers.
For sandstorms, wind-blown sand flows and the diffusion of pollutants, the transport of particles should
be limited through the study of particle two-phase flows. However, for industrial applications, such as
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coal combustion and pneumatic transport, particles and fluids must be fully mixed. Therefore, based
on the deep understanding of the regularities and physical mechanisms of the interactions between
particles and turbulence, it is necessary to establish a theoretical framework and prediction method
that are suitable for high-Reynolds-number gas–solid two-phase wall-bounded turbulent flows to better
realize the advantages and disadvantages of particle-laden two-phase flows.
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