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Abstract. We present a closed-form normalization method suitable for the study of the secular
dynamics of small bodies inside the trajectory of Jupiter. The method is based on a convenient
use of a book-keeping parameter introduced not only in the Lie series organization but also in
the Poisson bracket structure employed in all perturbative steps. In particular, we show how
the above scheme leads to a redefinition of the remainder of the normal form at every step of
the formal solution of the homological equation. An application is given for the semi-analytical
representation of the orbits of main belt asteroids.
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1. Introduction

In the present short presentation we summarize our work concerning the development
of a normalization method in the framework of the Sun-Jupiter restricted three-body
problem (R3BP) in order to represent semi-analytically the secular dynamics of a mass-
less particle inside the planet trajectory. We search for a normal form not depending
on the fast angles of the problem; using modified Delaunay variables, the latter are
the mean longitudes of the particle and the planet, λ and λP . We will briefly describe
below the main steps for the elimination of these angles in the Hamiltonian by a normal-
ization procedure in closed form. A more detailed presentation will be given elsewhere
(Cavallari & Efthymiopoulos (2021)).

In our problem, the initial Hamiltonian has two components, a leading term Z0 not
depending on λ and λP and a disturbing function R. The dependence of the Hamiltonian
on modified Delaunay variables (Λ, Γ,Θ, λ, γ, ϑ) and on λP is through the orbital ele-
ments of the particle (a, e, i,Ω, ω, u) (with u the eccentric anomaly) and of the planet
(aP , eP , fP ) (with fP the planet true anomaly). We have:

Z0 = −GM
2a

+ nP IP , R= μ

+∞∑
s=s0

εsR(0)
s (a, e, i,Ω, ω, u, fP ; eP , aP ), s0 ∈Z

+,

where nP is the planet mean motion and IP is the dummy action variable conjugated to
λP ; M is the mass of the Sun and μ= GmP , with mP the mass of Jupiter; ε is a so-called
book-keeping parameter, i.e. a formal parameter with numerical value ε= 1 whose powers
keep track of the relative size of each perturbing term in R.
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In perturbation theory the normal form is typically computed in an iterative way through
a composition of Lie transformations (see Deprit (1969)). At the j-th iteration the term

R
(j−1)
s0+j−1 (of book-keeping order s0 + j − 1) of the Hamiltonian H(j−1), computed at the

previous step, is normalized by means of a Lie generating function χ
(j)
s0+j−1, determined

by solving the homological equation

L
χ
(j)
s0+j−1

(Z0) + εs0+j−1R
(j−1)
s0+j−1 = εs0+j−1Zs0+j−1, (1.1)

with

L
χ
(j)
s0+j−1

(Z0) = −
(
n
∂

∂λ
+ nP

∂

∂λP

)
χ
(j)
s0+j−1,

where n=
√

GM/a3 and L
χ
(j)
s0+j−1

= {·, χ(j)
s0+j−1} is the Poisson bracket operator.

Solving (1.1) in our problem can be complicated since the initial disturbing function R
depends on λ and λP through u and fP , which implies solving Kepler equation in series
form to obtain the required trigonometric expansions. Two techniques are typically used
to overcome this difficulty. One consists of approximating the original Hamiltonian by
means of a Taylor expansion in the eccentricities e, eP , to make explicit the trigonometric
dependence on the fast angles (see Brouwer & Clemence (1961) and Kaula (1966)). The
drawback of this technique is that it can be used only for low values of the eccentricity.
A second technique, introduced in Palacián (1992) and formalized in Segerman & Coffey
(2000); Deprit & Palacián (2001), is the so-called relegation method: since nP <n for our
problem, the term nP IP of the leading term is neglected in equation (1.1), so that this
can be solved in closed form. We refer to Sansottera & Ceccaroni (2017) for a discussion
about the algorithm convergence, and to Lara (2021) for more general references on
closed-form perturbative techniques.

Here, we propose a closed-form normalization method alternative to relegation, which
is suitable for orbits with relatively high values of the eccentricity. A method similar to
ours was introduced in Lara et al. (2013), referring to the motion of a test particle under
a multiple expansion of the geopotential (e.g. with J2 and C22 terms). In summary, the
method works as follows. We perform a multipolar (Legendre) expansion of the initial
disturbing function and we expand the semi-major axis as a= a∗ + δa, where a∗ is a
reference value characteristic of each considered individual trajectory. This last step aims
at having constant frequencies in the leading term Z0, which turns out to be useful for
algorithmic convenience purposes (see below). The starting Hamiltonian takes the form

H(0) =Z0 +R, Z0 = n∗δΛ + nP IP , R=

+∞∑
s=s0

εsR(0)
s . (1.2)

The book-keeping parameter ε separates terms in groups of different order of smallness,
depending on four small quantities: e, eP , δΛ and the ratio between the planet and the
Sun masses. To overcome the difficulty of solving (1.1), the main idea is, now, to accept a
remainder generated by the homological equation (to be normalized at successive steps):

L
χ
(j)
s0+j−1

(Z0) + εs0+j−1R
(j−1)
s0+j−1 = εs0+j−1Zs0+j−1 + O(εs0+j) (1.3)

where Zs0+j−1 contains the terms of R
(j−1)
s0+j−1 not depending on λ and λP .

The steps to perform in order to apply the normalization method are described in
Section 2. In Section 3, we discuss the applicability of the method in the case of the
planar elliptic R3BP.
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2. Normalization Method

2.1. Hamiltonian preparation

We consider a heliocentric inertial reference frame with the x̂ axis and ẑ axis parallel
to the planet orbital eccentricity vector and the angular momentum respectively. Let r
be the heliocentric position vector, r= |r|, p the vector of conjugated momenta, p= |p|
and rP the planet position vector, rP = |rP |; the Hamiltonian of the R3BP is

H =
p2

2
− GM

r
+ R, with R = −μ

(
1√

r2 + r2P − 2r · rP
− r · rP

r3P

)
The following operations must be performed:

(a) Multipolar Expansion:

R∼ R = − μ

rP

o∑
j=2

rj

rjP
Pj(cos α), with cos α=

r · rP
rrP

where Pj(·) are Legendre polynomials;
(b) Extended Hamiltonian: the Hamiltonian is expressed as an implicit function of the

modified Delaunay variables by means of the orbital elements of the particle and
of the planet. A dummy action variable IP , conjugated to λP , is introduced. We
get:

H = −GM
2a

+ nP IP + R, with R = R(a, e, i, ω,Ω, u, fP ; aP , eP ).

(c) Expansion of the semi-major axis: Considering that a= Λ2

μ , we perform the

expansion of the semi-major axis as

a= a∗ +
2δΛ

a∗n∗
+ . . . , n∗ =

√
GM
a∗3

.

Thus, we obtain

H = nP IP + n∗δΛ − 3

2

δΛ2

a∗2
+ · · · + R(a∗ +

2δΛ

a∗n∗
+ . . . , e, i, ω,Ω, u, fP ; aP , eP ).

(d) RM-reduction: using the identity r= a(1 − e cos u), we re-write H as

H = nP IP + n∗δΛ +

(
− 3

2

δΛ2

a∗2
+ . . .

+ R

(
a∗ +

2δΛ

a∗n∗
+ . . . , e, i, ω,Ω, u, fP ; aP , eP

))
Q

with Q=
a(1 − e cos u)

r
=
a∗(1 − e cos u)

r
+ 2

(1 − e cos u)

a∗n∗r
δΛ + ...= 1. (2.1)

After performing RM-reduction, the Hamiltonian H is expressed as a sum of
trigonometric monomials cos(k1u+ k2fP + k3ω+ k4Ω), all divided by r. As dis-
cussed below, such a form allows for a straightforward calculation of the solution
of the homological equation yielding the generating function at each normalization
step.
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2.2. Book Keeping

To write the initial Hamiltonian in the form (1.2), we use the book-keeping parameter
ε to keep track of the relative size of the several terms of H. There are four different small

parameters to consider in the problem: μ, δΛ, e and eP . We define s0 =

⌈
log
(

mP
M
)

log(e)

⌉
and

we adopt the following book-keeping rules:
• terms depending on ejekP (j, k ∈Z) are multiplied by ε(j+k);

• terms depending on (1 + η)j and (1 − η)k, with η=
√

1 − e2, (j, k ∈N) are multiplied
by ε0 and ε2k respectively;

• terms depending on μjδΛk (j, k ∈N) are multiplied by ε(j+k)s0 ;
• terms depending on δΛk (k ∈N) are multiplied by ε(k−1)s0 .

Finally, the value of s0 is specified, for any particular trajectory, by the initial value e(0).

2.3. Poisson bracket structure

During the normalization process, we need to compute Poisson brackets of the form
{A1, A2}, where A1 and A2 are implicit functions of (δΛ, Γ,Θ, IP , λ, γ, ϑ, λP ) through
the variables (e, i, ω,Ω, u, fP ), r, η=

√
1 − e2, φ= u−M (with M the mean anomaly).

To compute {A1, A2}, we use the formula:

{A1, A2}=
∂A1

∂λ

∂A2

∂δΛ
− ∂A1

∂δΛ

∂A2

∂λ
+
∂A1

∂γ

∂A2

∂Γ
− ∂A1

∂Γ

∂A2

∂γ
+
∂A1

∂ϑ

∂A2

∂Θ
− ∂A1

∂Θ

∂A2

∂ϑ

+
(∂A1

∂λP

∂A2

∂IP
− ∂A1

∂IP

∂A2

∂λP

)
Q.

(2.2)

To evaluate the partial derivates with respect to the modified Delaunay variables in the
formula, we must perform a composition of partial derivates. The last term is multiplied
by Q defined in (2.1) to allow significant simplifications to be carried out automatically
during the normalization process. For the same reason, the following relations must be
used for any A=A1,2 in the computation of the partial derivatives:

∂e

∂δΛ
= − ηe

(1 + η)n∗a∗2
ε+ O(εs0δΛ),

∂e

∂Γ
= − η

a∗2n∗e
ε−1 + O(εs0δΛ),

∂η

∂δΛ
=

1 − η

n∗a∗2
ε2 + O(εs0δΛ),

∂η

∂Γ
=

1

a∗2n∗
+ O(εs0δΛ),

∂ cos i

∂δΛ
=

1 − cos i

a∗2n∗η
+ O(εs0δ),

∂ cos i

∂Γ
=

cos i− 1

a∗2n∗η
+ O(εs0δΛ),

∂ cos i

∂Θ
= − 1

a∗2n∗η
+ O(εs0δΛ),

∂u

∂λ
=
a∗

r
+ O(εs0δΛ),

∂u

∂γ
=
a∗

r
+ O(εs0δΛ),

∂φ

∂λ
=
a∗

r
− 1 + O(εs0δΛ),

∂φ

∂γ
=
a∗e cos u

r
ε+ O(εs0δΛ),

∂u

∂δΛ
=

ηe sin u

r(1 + η)n∗a∗
ε+ O(εs0δΛ),

∂u

∂Γ
=
η sin(u)

a∗n∗er
ε−1 + O(εs0δΛ),
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∂φ

∂δΛ
=

ηe sin u

r(1 + η)n∗a∗
ε+ O(εs0δΛ),

∂φ

∂Γ
=
η sin(u)

a∗n∗er
ε−1 + O(εs0δΛ),

∂φ

∂δΛ
=

ηe sin u

r(1 + η)n∗a∗
ε+ O(εs0δΛ),

∂φ

∂Γ
=
η sin(u)

a∗n∗er
ε−1 + O(εs0δΛ),

∂r

∂λ
=
a∗2e sin(u)

r
ε+ O(εs0δΛ),

∂r

∂γ
=
a∗2e sin(u)

r
ε+ O(εs0δΛ),

∂r

∂δΛ
=

ηe cos u

(1 + η)n∗a∗
ε+ O(εs0δΛ),

∂r

∂Γ
=
η(eε− cos(u))

n∗er
ε−1 + O(εs0δΛ),

∂ω

∂γ
= −1,

∂ω

∂ϑ
= 1,

∂Ω

∂ϑ
= −1,

∂fP
∂λP

= 1 +
2eP cos(fP )

η3P
ε+

(
1

η3P
− 1 +

e2P cos2(fP )

η3P

)
ε2.

The fact that the book-keeping parameter ε is present in all partial derivatives of terms
depending on e, eP and δΛ is an essential element of the method. We can readily see
that, for every case in which s0 > 1, the result of Poisson brackets between such terms
contains terms of different powers of ε, which, however, are always larger than the current
normalization order (for the case s0 = 1, instead, see Cavallari & Efthymiopoulos (2021)).

2.4. Normalization Process

At the j-th iteration of the normalization process, we must determine the generating

function χ
(j)
s0+j−1 satisfying the homological equation (1.3). The remainder term R

(j−1)
s0+j−1

to normalize contains four different types of terms:

• type 1: a∗
r f(e, i, η, ω,Ω),

• type 2: a∗
r f̂k(e, i, η) cos(k1u+ k2fP + k3ω+ k4Ω),

• type 3: a∗
rp f̄(e, i, η, ω,Ω), p > 1,

• type 4: a∗
rp f̃k(e, i, η) cos(k1u+ k2fP + k3ω+ k4Ω), p > 1.

The corresponding terms to be added in χ
(j)
s0+j−1 are

• for type 1: 1
n∗ f(e, i, η, ω,Ω)φ,

• for type 2: 1
k1n∗+k2nP

f̂k(e, i, η) cos(k1u+ k2fP + k3ω+ k4Ω),

• for type 3: 1
n∗φ

∑p
k=1

f̄(e,η,i,ω,Ω)
ak−1rp−k , p > 1,

• for type 4: 1
k1n∗+k2nP

1
rp−1 f̃k(e, η, i) sin(k1u+ k2fP + k3ω+ k4Ω), p > 1.

The new Hamiltonian is

H(j) = exp(L
χ
(j)
s0+j−1

)H(j−1) =Z0 +

s0+j−1∑
s=s0

εsZs +

r∑
s=s0+j

εsR(j)
s .

where exp(Lχ) denotes the operation exp(Lχ) =
∑∞

k=0
1
k!Lkχ, with Lkχ =

{. . . {{·, χ}, χ} . . . , χ}︸ ︷︷ ︸
k times

. The normal form terms Zs are independent of the fast angles λ,

λP , while the remainder terms R
(j)
s can be normalized at successive normalization steps.
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Figure 1. Evolution of the semi-major axis and of the eccentricity in the framework of the
Sun-Jupiter restricted three-body problem. We select orbits with the following initial condi-
tions: (case 1) a(0) = 2.2au, e(0) = 0.15; (case 2) a(0) = 2.2au, e(0) = 0.5; (case 3) a(0) = 4au,
e(0) = 0.15. For all of them we set a∗ = a(0) and ω(0) = 90◦, M(0) = 90◦, i(0) = 20◦, Ω(0) = 0◦,
λP (0) = 0◦. We show the evolution computed by means of a numerical propagation of the trajec-
tory (grey line) and semi-analytically through the normal form computed through the algorithm
of section 2 (black line).

3. Results

The error of the method increases with an increase of the semi-major axis or the
eccentricity. The trend with respect to the semi-major axis has two main causes: first
of all, increasing a, we obtain trajectories which arrive closer to the planet and to the
region of Hill-unstable orbits. The other reason is related to the multipolar expansion: as a
increases, the heliocentric distances of the particle and of the planet become comparable.
Dealing with this problem requires performing a multipolar expansion of high order,
which, however, implies a substantial increase in the number of terms to normalize.
Similarly, reducing the error for highly eccentric orbits requires performing a large number
of normalization steps. However, the consequent increase of the computational time can
become significant. In the case of the Sun-Jupiter planar elliptic R3BP, performing a
multipolar expansion of order equal to 5 and doing from 4 to 7 normalization steps allows
to obtain accurate results up to an initial semi-major axis a� 0.6aP and for relatively
high values of e, up to almost 0.7.
Figure 1 shows the evolution of the semi-major axis and of the eccentricity in three
cases: a trajectory with a low value of the eccentricity, one with a relatively high value of
eccentricity and one with a semi-major axis larger than 0.6aP . We compare the outcomes
obtained semi-analytically through our normal form algorithm with those resulting from
a numerical propagation. The method works well in the first two cases, while the errors
increase in general with e. In fact, in case 1 the maximum relative error is ∼ 10−4.6 for
the semi-major axis and ∼ 10−3.34 for the eccentricity, while in case 2 it is ∼ 10−3.5 for
the semi-major axis and ∼ 10−2.75 for the eccentricity. Instead, in case 3 the method
is not sufficiently precise: the maximum relative error is ∼ 10−0.97 and ∼ 10−0.2 for the
semi-major axis and for the eccentricity respectively. More detailed examples and results
are contained in Cavallari & Efthymiopoulos (2021).
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