Inclusion Body Myositis Associated with Systemic Sarcoidosis

Moris J. Danon, Osvaldo H. Perurena, Salve Ronan and Jose R. Manaligod

ABSTRACT: We report an autopsy study of a 64-year-old female with systemic sarcoidosis. In addition many muscles showed typical light and electron microscopic features of inclusion body myositis. To our knowledge this association has not previously been reported.

RÉSUMÉ: Nous rapportons l’étude du matériel anatomopathologique provenant de l’autopsie d’une femme âgée de 64 ans atteints de sarcoïdose systémique. En plus des lésions de sarcoïdose, on retrouvait à la microscopie optique et électronique des manifestations de myosite à corps d’inclusion au niveau de plusieurs muscles. A notre connaissance, cette association n’a encore jamais été rapportée.

Inclusion body myositis (IBM) is a recently recognized and distinct inflammatory myopathy. Several dozen cases of IBM have been published and probably many more are either unreported or remain undiagnosed. The classically held view of IBM is that it clinically differs from other types of inflammatory myopathies by its relatively benign protracted course, absence of features of collagen-vascular disease, male preponderance and lack of response to immunosuppression. Light microscopy shows muscle fibres containing vacuoles lined with hematoxylinophilic granules, as well as variable degrees of inflammation and necrosis. In many biopsies mixed features of both denervation and myopathy are seen. The prerequisite for the diagnosis is the ultrastructural presence of intracytoplasmic and/or intranuclear masses of abnormal filaments, each measuring 14 to 18 nm in diameter. 1-3 Although most patients with IBM lack features of immunological disease, four cases associated with collagen-vascular disease and one with chronic immune thrombocytopenia have recently been reported. 4-7 Adding to this list, we describe here a patient with systemic sarcoidosis and associated IBM.

REPORT OF A CASE

A 64-year-old black female presented with a one year history of progressive difficulty in climbing stairs. On examination she had marked weakness of hip muscles with moderately decreased strength in dorsiflexion of the feet and in hand grip. There was no craniofacial involvement; stretch reflexes were hypoactive throughout; sensation and coordination were normal. She had no myalgia, dysphagia or skin rash. A presumptive diagnosis of pulmonary sarcoidosis was made twenty years before on the basis of an abnormal radiologic study. On admission, a roentgenogram of the chest showed reticulonodular interstitial fibrosis; the image was unchanged when compared with previous films. Nerve conduction velocities were normal. Needle electromyography (EMG) showed short duration, low amplitude, polyphasic motor unit potentials and some fibrillations. Electrocardiogram (ECG), urinalysis, blood urea nitrogen (BUN), glucose, calcium, alkaline phosphatase, serum glutamic-oxalacetic transaminase (SGOT), pyruvic transaminase (SGPT), lactate dehydrogenase (LDH) were normal. Except for a mildly increased sedimentation rate the hemogram was unremarkable. Rheumatoid arthritis (RA) factor, antinuclear antibodies (ANA) and lupus erythematosus (LE) cells were not demonstrated. Serum creatine kinase (CK) was elevated at 255 (N < 87 I.U.). Both serum protein and immunoelectrophoresis showed polyclonal gammapathy. Cerebrospinal fluid (CSF) examination was normal. Repeated cultures of sputum and CSF for acid fast bacilli (AFB) were negative. Serological testing for blastomyositis, coxiellomyositis, histoplasmosis and skin reactions to various antigens (mumps and purified protein derivative) were negative. Pulmonary function tests were abnormal.

A muscle biopsy showed numerous noncaseating granulomas compatible with sarcoidosis. There were no features of IBM. She received prednisone (40 mg/day) for six months with no improvement. One year later, she suffered a femoral fracture and died shortly thereafter, from pulmonary complications.

AUTOPSY FINDINGS

Postmortem examination revealed massive pulmonary thromboemboli involving both right and left pulmonary arteries and their branches. The lungs showed apical emphysema and fibrosis. Microscopically, many noncaseating granulomas were seen in...
peribronchial areas, as well as in the regions of subpleural fibrosis (Figure 1). Similar noncaseating granulomas were seen in the spleen, liver, perihilar and mesenteric lymph nodes, left deltoid (Figure 2) and right gastrocnemius muscles. Special stains for fungus and mycobacteria were negative. The central nervous system was not examined.

Cryostat sections from the left deltoid muscle showed numerous small angulated fibres, at times forming small groups. These fibres were intermingled with many small, rounded and few hypertrophic fibres. However, histochemical stains did not show any type grouping or targets. Scattered necrotic fibres undergoing phagocytosis and few regenerating fibres also were noted. There was some mild inflammation which consisted of both perivenular and endomysial mononuclear infiltrates (Figure 3). About 10 percent of muscle fibres had single or multiple "lined" vacuoles (Figure 4). Intranuclear inclusions and noncaseating granulomas were absent; this was probably a sampling bias since they were seen in other muscle samples processed for paraffin embedding. Electron microscopy (EM) of these vacuoles showed membranous whorls, some glycogen particles, and filaments measuring 14.0 to 18.0 nm in diameter, findings typical for IBM (Figure 5).1,2

COMMENT

Noncaseating granulomas are frequently found in muscle biopsies of patients with generalized sarcoidosis even in the absence of signs and symptoms of muscle disease. In a smaller group, sarcoidosis may present as chronic myopathy and has a preponderance for post-menopausal women in their fifties. Serum enzymes are usually elevated and EMG is compatible with myopathy.8 Granulomatous myopathy also can occur without systemic involvement. Although the granulomas histologically are similar to those seen in sarcoidosis, the so-called granulomatous myopathies are usually considered separate clinical pathological entities.9,10 A case of sarcoid myopathy associated with the typical clinical and pathological findings of dermatomyositis has been reported in which the patient had major improvement with steroid therapy.10 In general the response to treatment with corticosteroids in systemic sarcoidosis is quite variable. The overall prognosis appears to be better in patients with peripheral rather than central nervous system involvement.8

Like sarcoidosis, IBM is a chronic painless myopathy with similar distribution of muscle weakness and usually shows mild elevation of CK. In some patients, however, the presence of distal weakness and atrophy, absent stretch reflexes, occasional asymmetric distribution and intact sensation, IBM may resemble either a distal myopathy or motor neuron disease.1,2 Indeed in many patients EMG studies have shown fibrillation potentials and large, highly polyphasic motor units compatible with a neurogenic phenomenon in addition to electrophysiological "myopathic" derangement. These features, coupled with histological changes of denervation (without reinnervation) and prominent increase in fibre density by single fibre electromyography, prompted Eisen et al11 to suggest a neurogenic origin in some cases of IBM.

The characteristic light microscopic feature of IBM is the so-called "lined" or "rimmed" vacuole.1,2 In addition to IBM these vacuoles have been found in some cases of oculopharyngeal dystrophy (OPD)12 and in a familial myopathy of Iranian Jews.13 In none of these cases, however, were the classical filamentous inclusions (the prerequisite for a diagnosis of IBM) demonstrated by EM except in one case of OPD where Smith and Chad12 described a single nucleus containing the typical inclusions. Intranuclear inclusions similar to the ones found in IBM have been reported in an autopsy study of the brain, adrenal gland,
and muscle in a patient who appeared to have some sort of long standing motor neuron disease with bulbar involvement. In addition they have also been noted in two cases of giant cell tumour of bone and in osteoclasts of patients with Paget’s disease. It is of interest to note that one of our previous patients had both IBM and Paget’s disease.

Recently a number of patients with IBM, have been reported in association with disorders known to have immunological derangements; chronic immune thrombocytopenia, scleroderma, Sjögren’s syndrome and in a patient with some sort of collagen vascular disease with a skin rash. Although most cases of IBM are resistant to various types of immunosuppression, two successfully treated cases have been reported. One was treated with steroids, while the other received total body irradiation.

Chronic viral infection in IBM has been suggested by many authors, but viral isolation has been unsuccessful, except in the case of Mikol et al. who demonstrated serological evidence of infection for a strain of adenovirus type 2 in a muscle biopsy. Recently Chou and Mizuno using a histochemical technique, demonstrated antigen to mumps virus both in nuclei and “lined” vacuoles of 6 patients diagnosed to have IBM. This is probably the first convincing evidence that implicates viral infection in the etiology of this disease.

There is ample evidence that patients with sarcoidosis have immunological disturbances compatible with altered cell-mediated immunity. It is possible that a prolonged altered immunological state made our patient susceptible to a viral infection and subsequently developed IBM. Recently Arahata and Engel in a study with monoclonal antibodies of various myopathies have shown an altered immune state in the form of T-cell-mediated muscle fibre injury in IBM and polymyositis. With this body of evidence and the growing number of cases of IBM associated with various diseases known to have altered immune states, the presence of IBM in this patient with systemic sarcoidosis appears to be more than a chance association.

References