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Numerical simulations have been conducted to examine the structure of diffusive-convection
staircases in the presence of vortical-mode-induced turbulent forcing. By modulating
the input power P and the background density ratio Rρ , we have identified three
distinct types of staircase structures in these simulations: namely staircases maintained
in the system driven by double-diffusion, by turbulence or by a combination of both
double-diffusion and turbulence. While we showed that staircases maintained in the
double-diffusion-dominated system are accurately characterised by the existing model
originally proposed by Linden & Shirtcliffe (J. Fluid Mech., vol. 87, no. 3, 1978,
pp. 417–432), we introduced new physical models to describe the staircase structures
maintained in the turbulence-dominated system and the system driven by both turbulence
and double-diffusion. Our integrated model reveals that turbulence fundamentally governs
the entire life cycle of the diffusive-convection staircases, encompassing their formation,
maintenance and eventual disruption in the Arctic Ocean’s thermohaline staircases. While
our previous work of Ma & Peltier (J. Fluid Mech., vol. 931, 2022b) demonstrated that
turbulence could initiate the formation of Arctic staircases, these staircases are sustained
by both turbulence and double-diffusion acting together after formation has occurred.
Strong turbulence may disrupt staircase structures; however, the presence of weak
turbulence could lead to unstable stratification within mixed layers of the staircases, as well
as enhancing vertical heat and salt fluxes. Turbulence can even sustain a stable staircase
structure factor when Rρ is relatively large, following a similar mechanism to the density
staircases observed in laboratory experiments. Consequently, previous parameterisations
(e.g. Kelley, J. Geophys. Res.: Oceans, vol. 95, no. C3, 1990, pp. 3365–3371) on the
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vertical heat flux across the diffusive-convection staircases may provide a significant
underestimation of the heat transport by ignoring the influences of turbulence.

Key words: double diffusive convection, turbulent mixing, turbulence simulation

1. Introduction

Thermohaline staircases, characterised by alternating layers of homogeneous temperature
and salinity with sharp interfaces separating adjacent mixed layers, are prevalent features
in the Arctic Ocean. Because both temperature and salinity increase as depth in the
stratification in the Arctic Ocean, this type of staircases were always referred to as
‘diffusive-convection staircases’, or ‘diffusive staircases’, to be distinguished from the
‘salt-fingering staircases’ in which both temperature and salinity decrease with depth
(e.g. Radko 2013). First observed in the late 1960s (Neal, Neshyba & Denner 1969), our
understanding of these Arctic staircases has grown significantly through the deployment of
numerous ice-tethered profilers (e.g. Krishfield et al. 2008; Timmermans et al. 2008; Toole
et al. 2011; Shibley et al. 2017) and an increasing number of microstructure measurements
(e.g. Padman & Dillon 1989; Guthrie, Fer & Morison 2015; Fine et al. 2018, 2022; Boury
et al. 2022). Recent studies, such as those by Shibley et al. (2017) and Van der Boog
et al. (2021), have provided clear geographic maps illustrating the regions of existence
these staircases, along with crucial information on interfacial thicknesses, layer depth and
background density ratio.

Despite considerable advances in observing and measuring these staircase structures,
at least three major theoretical questions remain to be addressed. (1) How do
diffusive-convection staircases form? (2) How can we model the structure of these
staircases? (3) How should we parameterise the vertical transport of heat and salt across
these structures? These questions were raised and discussed shortly after the initial
discovery of diffusive-convection staircases, as reviewed by Kelley et al. (2003). While
progress has been made in answering each of these questions, further exploration is
necessary. The third question is particularly crucial in the context of global warming, as
the heat transport to the bottom of the sea ice in the Arctic Ocean is facilitated by these
staircase structures (e.g. Rudels et al. 2004; Maksym 2019). Yet, to accurately address the
third question, a comprehensive understanding of the answers to the first two questions is
essential.

The formation mechanism of diffusive-convection staircases has traditionally been
attributed to double-diffusion processes. Previously proposed mechanisms include the
thermohaline-intrusion mechanism by Merryfield (2000) and Bebieva & Timmermans
(2017), as well as the thermohaline-shear instability theory discussed in papers by
Radko (2016), Brown & Radko (2019) and Radko (2019). However, these theories have
limitations. The thermohaline-intrusion mechanism, for instance, provides only a rough
description and lacks the necessary detail to accurately depict the formation of staircase
structures. The thermohaline-shear instability theory, on the other hand, is limited by
the specific form of shear and does not adequately describe general diffusive-convection
systems.

In contrast to conventional understanding, our recent work (Ma & Peltier 2022b,
hereafter MP21; Ma & Peltier 2022c, hereafter MP22) argues that stratified turbulence,
rather than double-diffusion, may be the primary driver for the formation of
diffusive-convection staircases. This theory demonstrates that the staircases will form
spontaneously in a salinity-stratified ocean if the turbulent level is relatively low, which
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Diffusive-convection staircases in the polar oceans

explained the widespread availability of staircases in the Arctic Ocean where both these
conditions are well met. Its central assumptions and conclusions have been further verified
using a series of numerical simulations in MP22, establishing it as a highly plausible
explanation for the formation of Arctic staircases.

Given our recent findings on the critical role of turbulence in the formation of staircase
structures, a logical extension would be to explore its potential effect in sustaining these
staircases and managing heat transport within them. Historically, many traditional studies,
both in laboratory experiments and theoretical models, have overlooked turbulence. In the
past, the characteristics of diffusive-convection staircases have been explored extensively
through laboratory experiments, as evidenced by numerous studies such as Turner (1965),
Shirtcliffe (1973), Crapper (1975), Marmorino & Caldwell (1976), Newell (1984), Taylor
(1988) and, most recently, Guo, Cen & Zhou (2018). These investigations typically
employed either heat–salt or salt–sugar systems to delve into the underlying dynamics
and gauge vertical transport across the interfaces. Notably, mechanical forcing was absent
in these set-ups. Based on these experimental results, empirical parameterisation schemes
have been proposed to represent the heat and salt fluxes as a function of density ratio Rρ =
�S/�Θ (here �S and �Θ are differences between salinity and temperature between
well-mixed layers, both defined in density units), for example Marmorino & Caldwell
(1976), Kelley (1990) and the functional form used in the KPP parameterisation (Large,
McWilliams & Doney 1994), which is the most commonly used parameterisation scheme
in global climate models.

From a theoretical perspective, Linden & Shirtcliffe (1978) (hereafter LS) proposed
a one-dimensional model to explain the maintenance of diffusive-convection staircases
without invoking turbulence. In LS’s model, steady diffusive-convection staircases can
be sustained by the recurrent growth and disruption of unstable boundary layers at the
edges of interfaces, if and only if the density ratio is smaller than the critical value of
Rcr

ρ = τ−1/2 ≈ 10, where τ = κs/κθ ≈ 0.01 represents the ratio of molecular diffusivity
for salinity to that for temperature under typical oceanographic conditions. The steadiness
of these LS-like systems has been confirmed in several direct numerical simulations
(DNS) study of (e.g. Flanagan, Lefler & Radko 2013; Sommer, Carpenter & Wüest 2014),
in which staircase structures are in equilibrium under the condition of Rρ < Rcr

ρ . The
proposed boundary layer structures of LS has also been observed in the run-down DNSs
of Carpenter, Sommer & Wüest (2012).

While these earlier investigations (including experiments, theories and simulations)
demonstrated that steady staircase structure can indeed persist in the system without
any mechanical forcing that drives turbulence, a growing interest has been focused
on understanding the interactions between shear/turbulence and diffusive-convection
staircases, given that real-world diffusive-convection staircases in the ocean are in the
dynamic environment. In fact, observations have suggested that staircases in high shear
environments might exhibit higher heat fluxes (e.g. Padman & Dillon 1987) and that
stronger turbulence levels could lead to staircase disruption (e.g. Guthrie, Fer & Morison
2017). Numerical simulations have been employed to investigate the interaction between
shear and double-diffusion staircases. For example, Brown & Radko (2021) and Brown
& Radko (2022) have demonstrated that staircases are relatively resistant to shear-induced
disruption and that heat and salt fluxes are enhanced in the presence of shear. Meanwhile,
shear has also been identified as a potential cause of diffusive-convection layer formation
in DNSs by Flanagan et al. (2014), Yang et al. (2022), Radko (2016) and Brown & Radko
(2019). Regarding turbulence, its effects have been considered in the 1D model of Shibley
& Timmermans (2019). Utilising this model and one-dimensional simulations, the authors
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argued that in a weakly turbulent environment, a stable staircase structure might become
unstable when weak turbulence is introduced, and the vertical heat fluxes would be even
smaller than in the absence of turbulence.

In this paper, we present a systematic analysis of the interaction between turbulence and
the diffusive-convection staircases using numerical simulations and theoretical models,
seeking to understand the role of turbulence in maintaining the diffusive-convection
staircase structures. Our numerical simulations build upon the methodologies established
in our previous work MP22. In these simulations, vortical forcing, which is a
representation of the influence exerted by large-scale geostrophic vortices (e.g. Waite
& Bartello 2004) drives the triply periodic system that has a diffusive-convection type
of stratification. A distinctive benefit of this forcing approach lies in its capability to
meticulously modulate the turbulent intensity within the system by varying the strength
of vortical-forcing implemented. Meanwhile, by adopting a triply periodic boundary
condition, we eliminate unphysical responses from the simulation boundaries walls,
providing a representation more in line with the Arctic pycnoclines. In MP22 we showed
that staircase structures can form spontaneously from linear gradients of heat and salt in
these models when subjected to intermediate strength of forcing, and we demonstrated
that the formation mechanism is governed by the thermohaline-turbulence instability we
initially proposed in MP21.

Based upon the same numerical model, we are able to further examine how the formed
staircases react to varying turbulence intensities in our numerical systems. As we show
in the following, staircases can be classified into different regimes based on different
energy sources that drives the system: they can either be maintained in systems driven by
double-diffusion, turbulence or driven by both. Staircases in these different regimes have
different structures in mixed layers and interfaces, which further lead to distinct vertical
transport of heat and salt. In contrast to Shibley & Timmermans’s (2019) results, we show
that heat and salt fluxes increase as the turbulent level increases in the system driven by
both double-diffusion and turbulence.

In the remainder of this paper, we first provide a brief overview of our numerical
simulation settings and categorise the simulation results into distinct regimes in § 2.
Following that, in § 3, we develop models for diffusive-convection staircases in each of
these regimes, based upon the findings of our numerical simulations. In § 4, we discuss
the implications of our numerical simulations for actual staircases in the Arctic Ocean.
Lastly, we present a summary and conclusion in § 5.

2. Different regimes of diffusive-convection staircases in numerical simulations

In this section, we focus on the settings and basic outcomes of numerical simulations
performed in this paper. First, we introduce the settings and numerical method for the
numerical simulations in § 2.1. Following this, we categorise the simulation results into
five different regimes and present the typical evolution of the numerical system in each
of these regimes in § 2.2. Lastly, in § 2.3, we display and compare the heat and salt fluxes
across our simulations.

2.1. Numerical settings
The numerical model employed in this work closely resembles that in MP22. As
in MP22, we assume constant-gradient background profile of −Θz0, −Sz0 (Θz0 > 0,
Sz0 > 0) as the initial state, both of which increases with depth. Under the Boussinesq
approximation, the scalar fields Θ(x, y, z, t), S(x, y, z, t), which are defined to be the
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differences to these constant-gradient profiles, and the velocity field u(x, y, z, t) =
(u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) are governed by the Navier–Stokes equations as
follows:

∂u
∂t

+ u · ∇u = −∇p −
(

Rρ

Rρ − 1
S − 1

Rρ − 1
Θ

)
ez + 1

Re
∇2u + F ,

∇ · u = 0,

∂Θ

∂t
+ u · ∇Θ = 1

RePr
∇2Θ + w,

∂S
∂t

+ u · ∇S = 1
ReSc

∇2S + w.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

In the above equations, ez is the unit vector in the positive vertical direction. We
have non-dimensionalised these equations using length scale L0, temperature scale
�Θ = Θz0L0, salinity scale �S = Sz0L0, density scale �ρ = �S − �Θ and background
buoyancy frequency N = √

g�ρ/(ρ0L0) as the timescale. This results in a velocity scale
U0 = L0N = √

g�ρL0/ρ0 that we employ more often to define our non-dimensional
parameters. The critical non-dimensional parameters are the Reynolds number Re =
U0L0/ν (where ν is the kinematic viscosity), inverse density ratio Rρ = �S/�Θ , Prandtl
number Pr = ν/κθ and Schmitt number Sc = ν/κs (where κθ and κs are molecular
diffusivities for heat and salt). In this paper, we fix the value of Re = 1000, Pr = 7
and Sc = 70 to be consistent with the initial exploration in MP22. Here Re = 1000
essentially determines the size of our chosen domain. In MP22 we have demonstrated
using a controlled experiment that the domain size is tall enough to not influence the
initial layer formation. The dimensional size of our domain size is discussed in detail in
§ 4. The critical non-dimensional value of Rρ is varied and studied in our simulations.
It is worth noting that Sc = 70 is approximately an order smaller than its actual value
in the ocean and we employed this compromised value due to the constraint of limited
computational resources. The ‘+w’ terms on the right-hand side of the latter two equations
come from the vertical advection of the background vertical gradients −Θ0z and −S0z after
non-dimensionalisation.

Governing equations (2.1) are integrated in a triply periodic cubic domain of length 2π

in each dimension. Vertical periodicity in Θ and S infers that the background gradients
−Θz0 and −Sz0 remain constant, allowing only local scalar gradients to vary within the
simulation. Such a model is generally referred to as ‘unbounded gradient model’ (e.g.
Radko 2013) in the literature. This model offers an optimal framework for investigating
oceanographic staircase phenomena, given its exclusion of specific solid boundaries,
which are irrelevant in the oceanographic context, and its allowance for the potential
equilibrium of a staircase state.

In MP22 and the current study, we introduce body forcing to our system as a means
of energy injection, ensuring the system maintains an equilibrium state and emulating
large-scale forcing. Specifically, we resort to a vortical-mode forcing, as referenced in
Waite & Bartello (2004), Maffioli, Brethouwer & Lindborg (2016) and Howland, Taylor
& Caulfield (2020), to simulate the eddy-driven forcing stemming from large-scale
quasi-horizontal motion. It is pertinent to highlight that the stratified turbulence system can
also sustain small-scale turbulent energy through the breaking of internal waves, leading
to forcing with pronounced vertical motions. A comparative analysis between these two
modes of forcing was recently conducted by Howland et al. (2020). They found that
wave-forced simulations typically exhibit elevated potential energy and superior mixing
efficiency relative to vortical-mode forcing simulations. However, the question regarding
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which form of forcing is more physically apt for a small-scale numerical simulation
remains unclear. In our work, we opt for the vortical forcing, primarily due to the
pronounced stratification and subdued internal wave energy characteristic of the Arctic
Ocean (e.g. Cole et al. 2018). It is worth noting that opting for a different mixing approach
could potentially yield varied simulation outcomes. Specifically, we have adhered to the
vortical-mode forcing schema as outlined in MP22, detailed as follows:

(Fx, Fy) = A × Real

⎛
⎜⎝ ∑

2.5≤
√

k2+l2≤3.5

(l, −k) ei(kx+ly+φk,l)

⎞
⎟⎠ , (2.2)

where k and l are the wave numbers in the x and y directions, respectively, and the phase
φk,l is chosen randomly at each time step. The amplitude of the forcing A above is adjusted
to ensure the energy input rate p ≡ 〈u · F 〉 remains constant at each time step (in this paper
〈·〉 represents the volume averages). We further define the relative energy input rate

P ≡ 〈udim · F dim〉
νN2 , (2.3)

using dimensional physical quantities to quantify the relative strength of this energy
input rate compared with the background stratification. Considering the choice of the
non-dimensional parameter in this paper, P = Re × p = 1000p. The scaled energy input
rate P is of greater importance than the value of the input power p non-dimensionalised by
our choice of scales, as P can be directly compared with the buoyancy Reynolds number

Reb ≡ εdim

νN2 , (2.4)

of the system (here εdim is the dimensional value of viscous dissipation), which controls
the criterion of layering formation of the system as shown in MP21 and MP22.

In MP22, simulations with Rρ = 2, 5, 8, ∞ (which represents a single-component
system stratified by salinity) and P = 10 were conducted (noted as R2P10, R5P10, R8P10
and R∞P10 in what follows), which showed that equilibrium staircase structures formed
spontaneously from the linear background temperature and salinity stratification. In this
paper, we first performed two additional simulations with Rρ = 3 and 4 (R3P10 and
R4P10) using the same initial conditions as described in detail in MP22 to explore the
model dependence on Rρ more accurately. Both of these new simulations demonstrated
spontaneous staircase structure formation in our system, similar to the R5P10 simulation
performed in MP22. We then used the equilibrium states of all these simulations (R2P10,
R3P10, R4P10, R5P10, R8P10) as initial conditions and adjusted the input power P to
different values to explore the staircase state’s robustness to various energy levels.

All simulations were performed using open-source computational fluid dynamics
software Nek5000 (Fischer et al. 2008). As in MP22, the simulations are initially
performed at a resolution of 350 × 350 × 350 until the system reached a equilibrium
state. A higher resolution of 700 × 700 × 700 was then employed to better characterise the
equilibrium structure of the system. In this paper, we use the term ‘intermediate-resolution
simulations’ to represent the long-time-period simulation under the 350 × 350 × 350
resolution, which is mostly relevant to § 2.2, focusing on the evolution process of
staircases. Meanwhile, we use the term ‘high-resolution simulations’ to represent
the shorter simulation under 700 × 700 × 700, employed to better characterise the
equilibrium structure of the staircase state, mainly discussed in §§ 2.3 and 3. It is important
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Simulation Rρ P Initial condition Run time Final state Staircases

R2P10 (MP22) 2 10 Linear gradient 3098 2 steps Formed
R3P10 3 10 Linear gradient 12 526 1 step Formed
R4P10 4 10 Linear gradient 10 918 1 step Formed
R5P10 (MP22) 5 10 Linear gradient 8112 1 step Formed
R8P10 (MP22) 8 10 Linear gradient 6298 1 step Formed
R∞P10 (MP22) ∞ 10 Linear gradient 10 004 1 step Formed
R2P0 2 0 R2P10 (2 steps) 4242 2 steps Maintained
R2P1 2 1 R2P10 (2 steps) 1504 2 steps Maintained
R2P5 2 5 R2P10 (2 steps) 1020 1 step Merged
R2P50 2 50 R2P10 (2 steps) 1478 2 steps Maintained
R2P100 2 100 R2P10 (2 steps) 510 0 step Disrupted
R3P0 3 0 R3P10 (1 step) 1988 1 step Maintained
R4P0 4 0 R4P10 (1 step) 2600 0 step Disrupted
R5P0 5 0 R5P10 (1 steps) 6646 0 step Disrupted
R5P1 5 1 R5P10 (1 step) 3288 0 step Disrupted
R5P5 5 5 R5P10 (1 step) 2068 1 step Maintained
R5P50 5 50 R5P10 (1 step) 898 1 step Maintained
R5P100 5 100 R5P10 (1 step) 666 0 step Disrupted
R8P0 8 0 R8P10 (1 step) 3016 0 step Disrupted
R8P5 8 5 R8P10 (1 step) 1944 1 step Maintained
R∞P0 ∞ 0 R∞P10 (1 step) 4345 0 step Disrupted
R∞P5 ∞ 5 R∞P10 (1 step) 2572 1 step Maintained
R∞P50 ∞ 50 R∞P10 (1 step) 542 1 step Maintained
R∞P100 ∞ 100 R∞P10 (1 step) 428 0 step Disrupted

Table 1. Governing parameters and critical information for the intermediate-resolution numerical simulations
performed in this paper.

to note that while our high-resolution simulation adequately captures the Kolmogorov
scale, the grid spacings employed are still 2–8 times larger than the Batchelor’s scale
specific to salinity. Achieving an even finer resolution would necessitate substantially more
computational resources than are currently accessible to us. A comprehensive discussion
regarding the influence of resolution on the equilibrium state of our simulations can be
found in the Appendix. Although the current resolution might introduce small biases in
the quantification of heat and salt transport, no significant differences were observed in
the horizontally averaged vertical profiles of temperature and salinity at the equilibrium
states in simulations of different resolutions.

In table 1, we provide a concise summary of the parameters and the staircase state of all
the simulations performed in the current paper, along with the four relevant simulations
from MP22. As evident from the table, the fate of the staircases is strongly dependent on
both the non-dimensional parameters Rρ and P.

2.2. Maintenance and disruption of staircases in different regimes
Before discussing the simulation results summarised in table 1 in detail, we would
like to classify our numerical systems into three different regimes based on energetic
considerations. This can be done by examining the evolution of the volume-averaged
kinetic energy of the system K ≡ 1/2〈|u|2〉, which can be directly derived based on (2.1)
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as

dK
dt

= p − Fb − ε

= p − (Fbθ + Fbs) − ε, (2.5)

where

ε = 2
Re

〈sijsij〉,
Fb = Fbθ + Fbs,

Fbθ = − 1
Rρ − 1

〈w′Θ ′〉,

Fbs = Rρ

Rρ − 1
〈w′S′〉,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

are defined to be the viscous dissipation rate, total buoyancy flux (defined under the
convention that buoyancy flux is positive if K loses energy) and buoyancy flux associated
with temperature and salinity, respectively. sij is the strain rate tensor which is defined
as 1/2(∂ui/∂xj + ∂uj/∂xi). Note that in this paper, we use an overline to represent the
horizontal average of a physical quantity and we use ′ to represent the deviations from it.
In the quasi-steady state of the system, the kinetic energy K of the system remains roughly
constant, which leads to a simple balance equation of

ε ∼ p + (−Fb). (2.7)

This allows us to define three different regimes.

(i) The double-diffusion driven regime, which is defined by −Fb � p > 0. This
means the dissipation is roughly balanced by the negative buoyancy forcing which
is released by the potential energy stored in the unstably stratified temperature
component (ε ∼ −Fb). This is the classical energetics of double-diffusive
convection, and we say this system is ‘driven by double-diffusion’.

(ii) The turbulence-driven regime. In this case, we have Fb > 0 and ε + Fb ∼ p. This
represents a system that is entirely driven by external forcing, and the turbulence
cascades to be dissipated at the molecular scale and drives mixing in the process.
We therefore say the system is ‘driven by turbulence’.

(iii) The regime driven by both double-diffusion and turbulence, or hereafter the hybrid
regime. This is characterised by a comparable value of −Fb > 0 and p. In this third
case, the system is driven by both external forcing p and a negative buoyancy forcing
−Fb > 0 together, both of which provide energy for the system to be dissipated.

With the above method of distinguishing among the energy sources, we are able to
further categorise these simulations into five different scenarios based on their different
energy sources and the simulation outcomes: the staircases can either be ‘maintained in the
double-diffusion-dominated regime’, ‘maintained in the turbulence-dominated regime’,
‘maintained in the hybrid regime’, ‘disrupted by diffusion’ or ‘disrupted by turbulence’.
In doing so, we aim to distinguish between the various mechanisms that either sustain
or disrupt the staircases. In figure 1, we show the evolution of buoyancy fluxes and
vertical temperature and salinity profiles in five simulations, R2P0, R8P5, R2P5, R5P0 and
R2P100, to illustrate those five scenarios, respectively. For each simulation, the driving
force of the system can be confirmed by comparing p (black lines) with Fb (red line
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Figure 1. (a–e) Evolution of −Fbθ (red) and Fbs (blue) in the intermediate-resolution simulations of R2P0,
R8P5, R2P5, R5P0 and R2P100, respectively. The controlled input power of forcing p is also shown in each
figure with a black line. ( f –j) Comparisons of horizontally averaged profiles of temperature (red) and salinity
(blue) at the beginning (dot-dashed lines) and the end (solid lines) of the intermediate-resolution simulations
for R2P0, R8P5, R2P5, R5P0 and R2P100, respectively.

minus the blue line) in figure 1(a–e), and the evolution of the staircases can be seen in
figure 1( f –j). As discussed previously and listed in table 1, the initial conditions for these
five simulations were all set from the equilibrium stage of the previous staircase-forming
simulations with P = 10, therefore p is adjust at t = 0 in figure 1(a–e) to reflect these
changes.

In cases where staircases are maintained, such as R2P0, R8P5 and R2P5, the system
rapidly transitions to a new equilibrium state as the parameter P (or p) is adjusted.
Remarkably, the vertical structure of the staircases remains almost unchanged. The energy
sources for R2P0, R8P5 and R2P5 are different, with R2P0 driven by double-diffusion,
R8P5 driven by turbulence, and R2P5 driven by a combination of double-diffusion and
turbulence. Although it is not immediately clear from figure 1, staircases with different
energy sources actually have very different structures, and we examine these structures in
detail in § 3 of this paper with our high-resolution simulations.

Now we turn to the cases in which staircases are disrupted when P is adjusted. In
simulation R2P100 shown in figure 1(e,j), the forcing strength is sufficiently high to
disrupt the staircase structure, leading the system to a turbulence-driven equilibrium state
characterised by roughly linear temperature and salinity profiles. The staircase structure is
entirely disrupted within approximately 50 time units (the relevant timescale in physical
units is discussed in detail in § 4.1 of the current paper). In the case of simulation R5P0, the
disruption process is driven by slow molecular diffusion at the interfaces, requiring a much
longer time (O(100 000) time units). Notably, by the end of the simulation, the disruption
process is still ongoing, as demonstrated by the gradually diminishing buoyancy fluxes in
figure 1(d).
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Figure 2. Classification of the simulation results for all the simulations described in table 1. Horizontal dashed
lines represent the possible positions of the boundaries separating simulation results in different regimes. The
vertical dashed line is plotted based on Rρ = Rcr

ρ = τ−1/2 ≈ 3.16, which is the critical density ratio described
in LS.

In figure 2, we plot all simulations listed in table 1 within the two-dimensional Rρ–P
parameter space and categorise the results according to the five regimes previously
discussed. When P is small, the system is predominantly driven by double-diffusion.
In this scenario, the maintenance and disruption of staircases align with the classical
critical density ratio criterion of LS: The staircase structure can be maintained only if
Rρ < Rcr

ρ = τ−1/2 ≈ 3.16. More investigations on the effectiveness of LS’s theory are
performed in § 3.1.

However, as P increases to O(10), the staircase structure can be maintained regardless of
Rρ values, because the intermediate strength of turbulence can lead to the stabilisation of
the staircase structure. This effect has been discussed in MP22, and we further explore it in
§ 3. When P is on the order of O(10), the system can be either driven by turbulence alone
or driven by both double-diffusion and turbulence. It is important to note that the transition
between the turbulence-dominated regime and the hybrid regime is distinguished by the
sign of Fb. The boundary between these two regimes appears to depend on both Rρ and P,
so no simple boundary line can be drawn in figure 2.

In addition, while we labelled the R2P50 simulation as ‘maintained in the hybrid
regime’, this specific simulation deviates from the evolution depicted in figure 1(c) and
1(h). In this case, the original two-layer staircases slowly merge into a single layer structure
following the H merger mechanism described by Radko (2007) after we increase P from
10 to 50. A detailed analysis of the layer merging mechanism in our simulations and its
dependence on external forcing falls outside the central focus of this paper, but may be
examined in future studies.

Finally, when P increases to O(100), the staircase structure will be disrupted by
turbulence regardless of the values of Rρ . This finding aligns with the conventional
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understanding that staircase structures can often be disrupted by strong turbulence (e.g.
Guthrie et al. 2017).

2.3. Heat and salt flux in the equilibrium stage of high-resolution simulations
While we have briefly discussed five different regimes for the evolution of staircases above,
in this subsection, we focus on the vertical transport of heat and salt in these different
regimes. To do this, we calculate the Nusselt numbers for salt Nus and heat Nuθ , and
the flux ratio γ averaged in the equilibrium states of our high-resolution simulations as
follows:

Nus = 1
ReSc

〈〈w′S′〉〉t, Nuθ = 1
RePr

〈〈w′Θ ′〉〉t, γ =
〈

Rρ〈w′S′〉
〈w′Θ ′〉

〉
t
, (2.8a–c)

where we use 〈〉t to represent time averages in this paper. Briefly put, Nusselt numbers
describe the relative strength of vertical turbulent fluxes over the vertical diffusive fluxes,
providing a convenient measurement of the strength of the vertical transport of heat and
salt. The flux ratio γ , on the other hand, describes the relative strength of the salinity
buoyancy flux over the temperature buoyancy flux. Therefore, γ > 1 means Fb > 0,
and γ < 1 suggests Fb < 0. Consistent with classical definitions (e.g. Radko 2013), the
occurrence of γ < 1 in our system indicates that double-diffusion is playing a role so that
the system lies either in the regime of ‘driven by double-diffusion’ or ‘driven by both
turbulence and double-diffusion’.

In figure 3(a–c), we plot Nus, Nuθ , and γ in the Rρ–P parameter space using different
colour bars to represent their values. When directly comparing these quantities, it is
important to note that these simulations lie in different regimes with varying staircase
states, which might contribute to the differences in fluxes. It should also be mentioned that
we are not evaluating the fluxes in regimes where staircases are disrupted by diffusion,
given that the staircase disruption is so slow that no equilibrium state can be reached
within a reasonable simulation time.

As shown in figures 3(a) and 3(b), both the Nusselt numbers Nus and Nuθ are positively
related to P, and negatively related to Rρ . Generally speaking, P has a stronger influence
on the vertical transport of heat and salt than Rρ does. In figure 3(c), we also show
the value of γ for our simulations. As defined, the variation of γ is less than 1 in the
double-diffusion maintained-staircase regime and jointly maintained regime and larger
than 1 in the turbulence-driven regime. When turbulence is strong, γ can reach values
close to Rρ , suggesting a state in which turbulent diffusivities for heat and salt are almost
identical, which is an assumption commonly made in strong turbulence.

In figures 3(d) and 3(e), we show the influence of P on Nuθ and Nus at fixed Rρ = 2 and
Rρ = 5, respectively. Turbulence influences the fluxes relatively weakly when the turbulent
strength is weak and the system is still driven by double-diffusion, but this influence
becomes much stronger at larger P. It is worth noting that the positive dependence
of Nuθ on P in the low-turbulent regime of Rρ = 2 contradicts the previous model of
Shibley et al. (2017), which predicted that turbulence would lead to a decrease of heat
flux in the low-turbulence regime. This discrepancy may arise because the influence of
turbulence in the mixed layers has not been properly considered in the previous model.
A detailed analysis of the structure of thermohaline staircases driven by both turbulence
and double-diffusion is presented in § 3.1.

In figure 3( f ), we further explore the influence of Rρ on Nuθ while keeping P = 10
fixed. It is clear from the figure that as Rρ increases, Nuθ will decrease (the higher value of
Nuθ for Rρ = 3 than Rρ = 2 should be attributed to the consequence that the temperature
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Figure 3. (a–c) Salinity Nusselt number Nus (a), temperature Nusselt number Nuθ (b) and flux ratio γ (c)
averaged over equilibrium state of high-resolution simulations (simulations in the ‘disrupted by diffusion
regime’ and simulations with Rρ = ∞ are not shown). (d) Variation of Nusselt numbers as a function of P
for Rρ = 2. (e) Variation of Nusselt numbers as a function of P for Rρ = 5. ( f ) Variation of temperature
Nusselt numbers as a function of Rρ for P = 10. The errorbars in (d–f ) are calculated based on the standard
deviation of the Nusselt numbers in the equilibrium state of high-resolution simulations.

jump across the interfaces are smaller at Rρ = 2 because there are two steps). However,
the influence of Rρ on Nuθ is much weaker compared with P.

The comparisons presented above only reveal a general trend of how fluxes are impacted
by the critical parameters Rρ and P. An accurate functional form of the parameterisation
cannot yet be properly calibrated based on these data, both because there are still some
uncertainties related to the current resolution (discussed in the Appendix) and because we
are currently assuming a compromised value of τ , which leads to a much smaller Rcr

ρ than
the oceanographic value.

Nonetheless, these comparisons still have crucial implications for the parameterisation
of heat flux across diffusive-convection staircases. In previous studies, most
parameterisation schemes are based on the study of purely double-diffusion-maintained
staircases (e.g. Marmorino & Caldwell 1976; Kelley 1990; Flanagan et al. 2013). These
parameterisations do not consider any large-scale forcing or energy sources, essentially
setting P = 0 and treating fluxes as functions of Rρ , which, as discussed previously,
plays only a secondary role in heat flux. By ignoring turbulence in this problem, these
parameterisations may lead to a significant underestimation of vertical fluxes in the
staircase state maintained in the hybrid regime. We revisit this issue in more detail in
§ 4.3 to systematically discuss the implications of our numerical simulations for actual
oceanographic measurements in the Arctic staircases.
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Unstratified

mixed layer

Diffusive

core

Boundary

layers

ρ
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S Θ

Figure 4. Schematic illustration of the diffusive interface model proposed by LS. Note that both potential
temperature Θ and S are in density units so that the equation of state takes the form of ρ = S − Θ .

3. Structures of staircases in different regimes

In the previous section, we demonstrated that in our simulations, staircase structures
can be maintained in the double-diffusion-dominated regime, maintained in the
turbulence-dominated regime or maintained in the hybrid regime. In this section, we
conduct a detailed investigation of the structures of these different types of staircases.
Specifically, we will develop idealised models to describe their structures and then validate
these models using data obtained from our high-resolution simulations.

3.1. Staircases maintained in double-diffusion-dominated regime
The double-diffusion-dominated regime is characterised by low (or zero) external forcing.
In this regime, the criterion for layer formation is highly consistent with the predictions
of the theory of LS, as shown in figure 2. Therefore, it is instructive to briefly review the
key physical descriptions of this model and compare the theoretical predictions with our
numerical simulations.

LS proposed a classical model describing the structure of diffusive-convection staircases
maintained under double-diffusion. As shown in figure 4, the diffusive-convection
staircase structure proposed by LS consists of a diffusive core, two unstable boundary
layers, and two unstratified well-mixed layers. In the diffusive core, LS assumed that heat
and salt are transported only through molecular diffusion. Since the molecular diffusivity
for temperature, κθ , is much larger than that for salinity, κs, the interfacial thickness for
temperature, hθ , is much larger than that for salinity, hs. This leads to the formation of
unstable boundary layers above and below the interfaces as demonstrated in figure 4.
LS assumed that heat and salt transport from the interface into the mixed layers occurs
through the continuous growth and breakdown of the boundary layer structure. Whenever
the boundary layer becomes unstable enough to be disrupted down by convection, the heat
and salt elements stored in the boundary layers are released into the upper (lower) mixed
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Figure 5. (a) Pseudo-colour plot of density fields for the equilibrium staircases in the high-resolution
simulation of R2P0. (b) Same density field as (a), but with the colourbar adjusted to highlight the variations in
the density field within the mixed layer. (c) Enlarged view of panel (b).

layer. By relating the diffusive fluxes to the fluxes generated by boundary layer instability,
LS predicted that the structure is steady if and only if the density ratio Rρ < Rcr

ρ = τ−1/2,
where τ = κs/κθ is the diffusivity ratio, which has already been shown to be satisfied. The
theory also demonstrated that the value of the local density ratio Rloc

ρ (z) = S̄z/Θ̄z (here, S
and Θ are in density units) and flux ratio γ follow the relationship

Rloc
ρ = τ−1/2

γ = τ 1/2

}
, (3.1)

at the interface.
The low-forcing simulations performed in this paper are largely consistent with the

picture of LS’s theory described previously. This can be seen by first inspecting at the
pseudo-colour plot of the density field at the equilibrium state of our high-resolution
phase of simulation R2P0, shown in figure 5. While figure 5(a) shows two well-mixed
layers with stable high-gradient interfaces present in our numerical system, the detailed
structure in the mixed layers can be better visualised by adjusting the colourbar to focus
on the mixed layer region, as in figures 5(b) and 5(c). In figure 5(c), we can clearly see
a thin layer of heavier water (blue) just below the upper interface (the opposite is also
true in the lower interface) as described by LS. Furthermore, these heavier elements sink
into the mixed layer by the buoyancy forcing, generating thin plumes with buoyancy values
different from the density of the mixed layers (rising plumes can also be seen in figure 5b).
These plumes transport heat and salt between interfaces through mixed layers. The above
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Figure 6. An example of the structure of staircase maintained in the double-diffusion-dominated regime in
our numerical simulation. Depth dependence of temperature and salinity profile Θ(z) (red), S(z) (blue) (a),
buoyancy frequency N2(z), negative temperature and salinity gradients −Θz (red) and −Sz (blue) (b), local
density ratio Rloc

ρ (z) (c), half of the horizontal kinetic energy 1/2Kh (green) and vertical kinetic energy Kv

(yellow) (d), averaged over the equilibrium state of high-resolution simulation of R2P0. In (c), the dashed lines
represent the values of Rcr

ρ = √
10 ≈ 3.2 predicted by LS’s theory.

picture is generally consistent with LS’s description, which claimed that the boundary
layer would be constantly broken and inject heat and salt into the mixed layers.

The consistency with LS’s theory can also be observed in the depth dependence of
several physical quantities shown in figure 6. This figure displays the temperature and
salinity profiles Θ(z), S(z), local buoyancy frequency N2(z), the local density ratio Rloc

ρ (z)
and horizontal and vertical kinetic energies Kh(z) and Kv(z) for the high-resolution
simulation of R2P0. Specifically, these physical quantities, together with the diapycnal
diffusivities for heat and salt KΘ(z) and KS(z) and the depth-dependent viscous dissipation
rate ε(z) that we evaluate in § 3.3, are evaluated based on time averages of the equilibrium
stage of our high-resolution numerical simulation data as follows:

Θ(z) = 〈Θ(x, y, z, t)〉t, (3.2a)

S(z) = 〈S(x, y, z, t)〉t, (3.2b)

N2(z) = −
(

Rρ

Rρ − 1
∂S(z)
∂z

− 1
Rρ − 1

∂Θ(z)
∂z

)
, (3.2c)

Rloc
ρ (z) = Rρ

∂S(z)
∂z

/
∂Θ(z)

∂z
, (3.2d)

Kh(z) = 1
2 〈u2(x, y, z, t) + v2(x, y, z, t)〉t, (3.2e)

Kv(z) = 1
2 〈w2(x, y, z, t)〉t (3.2f )

KΘ(z) = −〈w′Θ ′(z, t)〉t/Θz(z) + 1
RePr

, (3.2g)

KS(z) = −〈w′S′(z, t)〉t/Sz(z) + 1
ReSc

, (3.2h)

ε(z) = 〈2sijsij(z, t)〉t, (3.2i)

where we use overline to represent horizontal averages and we use subscript z to represent
vertical derivatives.
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In figure 6(a), it can be clearly seen that the mixed layers are essentially unstratified for
both temperature and salinity profiles, which confirms the model shown in figure 4. This
fact is further verified in figure 6(b), in which the values of N2(z) are approximately 0
in the mixed layers. The boundary layer structure is captured as small peaks of negative
N2(z) at the edges of mixed layers. In figure 6(c), we further plot the value of Rloc

ρ (z), which
matches quite well with LS’s prediction (shown by the dot-dashed line) at the interfaces.
Figure 6(d) shows the vertical structure of the distribution of Kh and Kv . The interface
is almost motionless, especially for the vertical velocities, suggesting that the core of the
interface is weakly influenced by the fluid motion in the mixed layer. In the mixed layers,
on the other hand, the vertical motion is larger than the horizontal motion, consistent with
the picture that vertical plumes driven by buoyancy forcing dominate the motion in the
mixed layers.

While the above analyses provided further support on the effectiveness of LS’s model
in describing the staircase structure simulated in this paper, the flux ratio calculated from
our numerical simulations do not agree well with LS’s prediction. For example, the flux
ratio γ is averaged to be approximately 0.45 at the equilibrium state in the high-resolution
phase of the high-resolution simulation of R2P0, which is larger than the LS’s predicted
value of about 0.32. This fact could be due to the inaccurate estimations of scalar fluxes in
our current simulations constrained by the resolutions. The evaluation of the influence of
resolution on the equilibrium fluxes are discussed in detail in the Appendix of this paper.

3.2. Staircases maintained in the hybrid regime
In the last subsection, we demonstrated that the physics governing the staircase structures
in the regime driven by double-diffusion can be well captured by the classic theory of
LS. Now we examine staircases maintained in the system driven by both double-diffusion
and turbulence to investigate how the introduction of turbulence influences the staircase
structure. In fact, the staircase structure in this regime has been briefly analysed by
investigating the simulation result of R2P10 in MP22, but we have not proposed any
physical model of the staircase structure in MP22. In this paper, we discuss the key
physical mechanism governing the staircase structure and perform further analyses on our
simulations to test our proposed mechanism.

The basic staircase structure in this regime that we are proposing in shown in figure 7.
Similar to the staircase maintained only by double-diffusion (figure 4), there is an interface
core through which heat and salt are transported mainly by molecular diffusion, although
turbulence transport is also responsible for transporting some fluxes. The boundary layers
can still be formed due to different values of diffusivities across the interface cores.
However, under the influence of external forcing, finite values of temperature gradient and
salinity gradient are present in the mixed layer region, the combined effect of which leads
to the unstably stratified positive density gradient in the mixed layers, which is explained
in what follows.

It should be noted that the scalar and density gradients in the mixed layers are
exaggerated in figure 7 to highlight their structural differences with figure 4. The actual
scalar gradients in our simulated staircase structure in this regime are still relatively small,
as can be seen directly in the depth-dependent of scalar fields for simulation R2P5 shown
in figure 8(a). In figure 8(b), we can still visualise the existence of boundary layer structure.
In figure 8(c), we show the depth dependence of the local density ratio Rloc

ρ . In the mixed
layers, Rloc

ρ is smaller than 1, which is another way of representing N2 < 0. At the interface,
LS’s predicted value of τ 1/2 no longer provides a good estimate of Rloc

ρ , indicating that the
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Figure 7. Schematic illustration of the staircase structure in the regime driven by both turbulence and
double-diffusion.

turbulence introduced in the system start to influence the interface gradients by mixing
scalar fields across it (the possible effect of turbulence penetration in leading to a larger
Rloc

ρ can be found in discussion of MP22). In fact, the penetration of mixed layer motion
at the interface can be seen in figure 8(d), where Kv and Kh are both larger at the
interfaces compared with the double-diffusion-maintained interface shown in figure 6.
More importantly, unlike figure 6(d), the mixed layer is dominated by horizontal motion
instead of vertical motion, because we have employed vortical forcing on the system to
stir the system into horizontal motion and the rising/sinking of plumes are no longer the
dominant motion in the system.

One of the key questions for the staircase structure in this regime is to explain
the existence of unstably stratified mixed layers. Insights on this question can be
provided from the visualisation of the density field, shown in figure 9(b). Just as in the
double-diffusion-maintained staircases, thin boundary layers that are lighter (heavier) than
the mixed layers can also be seen directly above (below) the bottom (upper) interface. This
is, again, due to the fact that heat diffuses much faster than salt, as shown schematically
in figure 7. When the lighter (heavier) fluid elements rise (sink) from the boundary layer
below (above) the mixed layer, the strong horizontal motion carries these fluid elements
into the ambient environment at roughly the same height, helping spread these density
anomalies. Meanwhile, the turbulent motion in the mixed layer region is also actively
distorting the ‘abnormal’ densities in the boundary layers to the region that is just above
or below the boundary layers. Under these influences, the upper mixed layers are turning
‘blue’ and the lower mixed layers are turning ‘red’ in figure 9(b), creating a negative N2

in the mixed layer region. Note that the mixing between boundary layer and mixed layer
would not happen as strongly without the external forcing, as in figure 4. In that case, the
mixed layer is dominated by the vertically oriented motion of plumes travelling across the
mixed layer, without strongly interacting with the majority of mixed layer fluid elements.
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Figure 8. An example of the structure of staircase maintained in the hybrid regime in our numerical
simulation. Depth dependence of temperature and salinity profile Θ(z) (red), S(z) (blue) (a), buoyancy
frequency N2(z), negative temperature and salinity gradients −Θz (red) and −Sz (blue) (b), local density ratio
Rloc

ρ (z) (c), half of the horizontal kinetic energy 1/2Kh (green) and vertical kinetic energy Kv (yellow) (d),
averaged over the equilibrium state of high-resolution simulation of R2P5. In (c), the dashed lines represent the
values of Rcr

ρ = √
10 ≈ 3.2 predicted by LS’s theory.

3

(a)

(c)

(b)ρ
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y x
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–1.300
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Figure 9. (a) Pseudo-colour plot of density fields for the equilibrium staircases in the high-resolution
simulation of R2P5. (b) Same density field as (a), but with the colourbar adjusted to highlight the variations in
the density field within the mixed layer. (c) Enlarged view of panel (b).

Given the unstable stratification of the mixed layer, Rayleigh–Bernard convection
(e.g. Ahlers, Grossmann & Lohse 2009) also plays a role in facilitating mixing within
this region. The convection-induced mixing tends to equalise diffusivities between
heat and salt, thereby acting to neutralise the negative N2 present in the mixed layer.
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However, in our simulations in which staircase are maintained in the hybrid system, the
Rayleigh number for the mixed layer stratification stands at a modest value of the order
of 106, rendering the resultant convection insufficient to achieve total homogenisation of
the mixed layers. Instead, this convection serves as an ancillary mechanism aiding in the
transport of heat and salt within the mixed layer, complementing the mixing prompted by
turbulence from horizontal motion and double-diffusion plumes. A precise quantification
of the contributions from these mixing processes is intricate and strays from the central
theme of this paper.

In summary, the incorporation of vortical mode forcing in our system generates
turbulence within the mixed layers, significantly transforming the staircase structure
observed in the double-diffusion case. On one hand, the turbulence permeates the interface
and induces mixing across these interfaces. On the other hand, the turbulence blends
the upwelling or downwelling boundary layer fluids with the nearby mixed layer fluid,
resulting in a persistent unstably stratified density gradient within the mixed layer region.
Consequently, the presence of this unstably stratified density gradient in the mixed layer
should be regarded as a signature of turbulent mixing in the staircase structure.

3.3. Staircases maintained in the turbulence-dominated system
In the previous two subsections, we have discussed the structure of the staircases
maintained in the double-diffusion-dominated regime and the hybrid regime. In this
subsection we discuss the staircases maintained in the turbulence-dominated regime. In
this regime, the energy is supplied by external forcing and the potential energy becomes a
sink rather than source of the kinetic energy.

As in the previous two sections, we provide a brief sketch of the staircase structure
to illustrate the key physical mechanisms that contribute to maintaining its stability.
This sketch is shown in an exaggerated manner in figure 10. The turbulence-maintained
staircase structure is relatively simple: it consists of a weakly stratified mixed layer and a
strongly stratified interface. The strongly stratified interface is still dominated by molecular
diffusion, just like the previous two structures; however, the weakly stratified mixed layer
sustains fluxes due to stratified turbulence. Since the mixed layer is weakly stratified, high
values of diapycnal diffusivities are permitted to exist, which provide the fluxes needed to
balance the diffusion-dominated fluxes across the high-gradient interfaces. The boundary
layer structure, which played a dominant role in the previous two regimes, is absent in
the turbulence-driven regime. This absence is due to the high density ratio in this regime,
ensuring that the stably stratified salinity component consistently prevails over the unstably
stratified temperature component, as demonstrated in figure 10. In fact, the presence of the
boundary layer structure is always associated with the release of potential energy, which
will not occur in the turbulence-driven regime by definition.

The proposed structure is validated by the depth-dependent profiles observed in
simulations R8P5 and R∞P5, as illustrated in figure 11. In figure 11(a) corresponding to
the R8P5 simulation, both Θ and S, as well as ρ, consistently decrease with height. This
monotonic decrease permits the use of a log-scale x-axis to more effectively capture the
variations of stratification in figure 11(b). Notably, these turbulence-maintained staircases
lack any boundary layer structures, consistent with the argument we made previously.
A very similar staircase structure is evident in the R∞P5 simulation, as depicted in
figures 11(d) and 11(e). For the R∞P5 scenario, the system reverts to a single-component
system where the stratification is only influenced by salinity. A comparison of the salinity
stratification between R8P5 and R∞P5 reveals that incorporating a minor temperature
component in R8P5 does not drastically alter the balanced salinity stratification observed
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Weakly stratified

mixed layer

Strongly stratified

interface

ΘS

ρ

Figure 10. Schematic illustration of the staircase in the turbulence-driven regime. Note that both potential
temperature Θ and S are in density units so that the equation of state takes the form of ρ = S − Θ .

in R∞P5. However, it does act to weaken the density stratification within the mixed layer
as the temperature component is unstably stratified.

The fact that staircases can be maintained in the single-component system R∞P5
demonstrates that the underlying mechanism that maintains the stable staircase structure
in this regime is unrelated to double-diffusion and the maintenance mechanism operative
in the single-component scenario is fundamental to the persistence of these staircases.
The resemblance in staircase structure between R8P5 and R∞P5 showed that the
additional temperature component in the large-Rρ turbulent-driven staircases (e.g. R8P5
and R8P10) could be perceived as a deviation from the dominant balance established in
the single-component system.

The persistence of the staircase structure in the turbulence-driven regime relies on the
balance of fluxes between the mixed layer and interfaces. This was previously discussed in
MP22, and we provide a brief overview here. As shown in figures 11(c) and 11(g), turbulent
diapycnal diffusivities are markedly high within the mixed layers. Notably, the diffusivities
for both heat and salt are nearly identical, which is consistent with the characteristics
of high-Reb stratified turbulence in the weakly stratified environment (e.g. Shih et al.
2005). Meanwhile, the diapycnal diffusivities at the interfaces are close to the values
of molecular diffusivities for heat and salt, respectively, as shown in the vertical dashed
lines. Given that vertical heat and salt fluxes are the product of turbulent diffusivities and
the corresponding vertical gradient, the pronounced diapycnal diffusivities present in the
low-gradient mixed layers can produce fluxes that offset the diffusive fluxes transported
through the high-gradient interfaces.

While balancing the fluxes is essential, it is not the only requirement for maintaining the
staircases. The structure also needs to remain stable in the face of perturbations. In the rest
of this subsection, we analyse the stability of turbulence-maintained staircases, providing
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Figure 11. Examples of the structure of staircase maintained in the turbulence-dominated regime in our
numerical simulation. Depth dependence of temperature and salinity profile Θ(z) (red), S(z) (blue) (a,e),
buoyancy frequency N2(z), negative temperature and salinity gradients −Θz (red) and −Sz (blue) (b, f ),
turbulent diapycnal diffusivities KΘ and KS (c,g) and viscous dissipation (e,h) for simulation R8P5 (a–d) and
R∞P5 (e–h), respectively. All these quantities are non-dimensionalised versions of the corresponding physical
quantities as defined previously in (3.2). The dashed lines in (c,g) represent the non-dimensional values for the
molecular diffusivities for heat and salt in the current system.

(at least) a qualitative understanding of why the staircase structure is consistently disrupted
under strong forcing, as depicted in figure 2.

To comprehend the stability of the turbulence-maintained staircases, we consider three
simplifying assumptions.

(i) The influence of temperature on density is disregarded (i.e. Rρ = ∞). As we
discussed previously, the single-component system contains the essential dynamics
in which staircases are maintained and large Rρ simulations can be regarded as
perturbations from this specific scenario.

(ii) The dissipation rate ε is assumed to be a constant ε0, which is determined
by the external forcing p and remains the same value in mixed layers and at
interfaces. This assumption is supported by our numerical simulations, as illustrated
in figure 11(d,h).

(iii) The diapycnal diffusivities in both the mixed layers and the interfaces are
presumed to be governed by the parameterisation scheme proposed by Bouffard &
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Boegman (2013). Specifically, Bouffard & Boegman (2013) introduced a
parameterisation based on an extensive dataset from numerical simulations, which
relies on the buoyancy Reynolds number Reb and the Prandtl number Pr:

KBB
ρ (Reb, Pr) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

κ, if Reb < 102/3Pr−1/2,
0.1

Pr1/4 νRe3/2
b , if 102/3Pr−1/2 < Reb < (3 ln

√
Pr)2,

0.2νReb, if (3 ln
√

Pr)2 < Reb < 100,

2νRe1/2
b , if Reb > 100 ,

(3.3)

where κ is the molecular diffusivity for density in the single-component
fluid. The parameterisation presented forms the foundation of the thermohaline
turbulence instability theory proposed in MP21. In MP22, it was demonstrated
that this parameterisation provides a reasonable representation of mixing in
the vortical-mode-forcing system (refer to figure 5 in MP22). Crucially, the
parameterisation scheme reveals the existence of four distinct mixing regimes, where
diapycnal diffusivities depend on varying power laws of Reb. In increasing order of
Reb, these regimes are termed as ‘molecular regime’, ‘buoyancy-controlled regime’,
‘transitional regime’ and ‘energetic regime’, signifying the governing physics that
define the respective power laws. For simplification purposes, we employ Greek
letters I, II, III and IV to denote these four regimes in ascending order of Reb.

Considering these three assumptions, the density fluxes for both the interface and mixed
layer can be directly calculated by incorporating a Pr value of 70 for salinity (the value
chosen for our simulations in the current paper) into the given equation, which yields

FBB
ρ (Reb) = −KBB

ρ ρz =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.014
ε0ρ0

g
Re−1

b , if Reb < 0.56,

0.035
ε0ρ0

g
Re1/2

b , if 0.56 < Reb < 41,

0.20
ε0ρ0

g
, if 41 < Reb < 100,

2.0
ε0ρ0

g
Re−1/2

b , if Reb > 100 .

(3.4)

The functional dependence mentioned previously is plotted in figure 12(a,b), which
distinctly exhibits four different regimes of flux variations based on the value of Reb. For
mixed layers, the stratification is weak, resulting in a high enough Reb to reach region
IV (marked by letter ‘L’ in figure 12a,b). However, depending on the actual value of the
density gradient at the interface, Reb at the interfaces may be in either region I (figure 12a)
or region II (figure 12b). In both cases, there is a possibility for Fρ at the interface to
balance that in the mixed layers.

Consider the perturbation (solid line) that we assumed to the original density
stratification (dashed line) in figure 12(c,d). Such a perturbation results in an increase
of the density gradient |ρL

z | in the mixed layer, as well as a decrease of |ρI
z | at the interface.

In the mixed layers, the increase of |ρL
z | leads to a smaller Reb and consequently an

increase in FL
ρ . In the case illustrated by figure 12(a), where the interface remains in

region I, the decrease of |ρI
z | causes a reduction of FI

ρ . The differences between FL
ρ and FI

ρ
contribute to the accumulation of density below the interface and the depletion of density
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Figure 12. (a,b) Dependence of buoyancy flux Fb on the buoyancy Reynolds number Reb in the
salinity-stratified fluid, based on the parameterisation by Bouffard & Boegman (2013) with Sc = 70. The
red dots labelled ‘I’ and ‘L’ represent the possible positions of interfaces and layers in the parameter space,
respectively. Panel (a) illustrates an example of a stable configuration, while panel (b) depicts an example of an
unstable configuration. (c,d) Schematic representations of the stable staircase structure vs the unstable staircase
structure. The dashed black curve displays the original density profile, and the solid black curve represents the
perturbed density profile. The effect of density perturbations on Fb is indicated by the change in vertical arrows
from black to orange.

above the interface, thus generating a negative feedback to the perturbation. Similarly,
an analogous argument applies to the inverse type of perturbation, where |ρL

z | decreases
and |ρI

z | increases. In this case, the resulting flux laws will cause an increase of FI
ρ and

decrease FL
ρ , thereby also creating a negative feedback mechanism. Consequently, under

both types of perturbations, the staircase structure depicted in figure 12(a) remains stable.
Conversely, in the situation presented in figure 12(b), the decrease of |ρI

z | leads to an
increase in FI

ρ . Under this condition, it is possible to have a specific perturbation (ρI
z , ρ

L
z )

such that FI
ρ becomes even larger than FL

ρ , as shown in figure 12(d). These fluxes induce
positive feedback to the perturbation, causing the continuous decrease of the interface
gradients, which eventually disrupts the staircase structure.

Therefore, in order to maintain a stable staircase structure, the interface must be strongly
stratified, ensuring it remains in region I. Physically, the staircase structure will remain
stable if the turbulence strength is weak, allowing the interfacial transport to be dominated
by molecular diffusion. However, the staircase structure will become unstable if the
turbulence is strong enough to penetrate the interface and initiate a positive feedback loop.
This explains why the staircase is disrupted at a strong turbulence level.

Several aspects should be emphasised regarding the stability model for turbulence-
maintained staircases presented previously. First, it is important to note that the model does
not necessitate Bouffard & Boegman’s (2013) parameterisation to be precisely accurate.
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Provided that the four mixing regimes exist and exhibit the correct trends of increasing
or decreasing fluxes with respect to changes in stratification, the argument remains valid
and offers a reasonable explanation for the stability of turbulence-maintained staircases.
Second, it should be highlighted that the simple stability analysis above cannot yet be
utilised to establish a quantitative criterion distinguishing between staircase disruption
and maintenance regimes. This is due to the uncertainty surrounding the current value of
Reb = 0.56, which separates regimes I and II in (3.3) (see the discussion in Ma & Peltier
2022a), and the lack of a precise understanding of the factors determining the interface
thickness in this context (it may be related to the Ozmidov scale, but sufficient data to
support this claim are not available). Third, it is worth commenting on the relationship
between the layer formation criterion derived in MP22 and a potential criterion for
layer stability. Strictly speaking, the questions of whether the layering mode would
spontaneously form from linear Θ and S gradients and whether the staircase structure
can stably exist are independent. However, if no stable configurations are present between
a linear-gradient state and the staircase state in the system, it is plausible that whenever the
linear-scalar-gradient configuration is unstable to the thermohaline turbulence instability
described by MP22, it would always lead to the stable staircase structure. This possibility
is partially supported by the observation that stable turbulence-maintained staircases are
found in the parameter space of P ∼ O(10) and P ∼ O(1), which is consistent with the
thermohaline-turbulence instability criterion of 0.6 < Reb < 40, given that P ∼ Reb when
the system is dominated by turbulence (see (2.3)).

It is worth mentioning that our model of turbulence-maintained staircases in the
diffusive-convection regime, as described in this subsection, is not solely relevant to
oceanographic staircases; it also provides a comprehensive description of the density
staircases observed in laboratory experiments (e.g. Linden 1979; Ruddick, McDougall &
Turner 1989). The single-component system characterising the density staircase problem
represents a limiting case of our turbulence-maintained diffusive-convection staircases,
where Rρ approaches infinity and the fluid’s density is determined entirely by its salinity.
Our simulations with Rρ = ∞ can be regarded as representations of these lab experiments,
given that initial laboratory experiments (e.g. Linden 1979) were conducted with salt
concentration as well. Consequently, the thermohaline-turbulence theory presented in
MP21 and MP22 also accurately describes the layer formation process of density
staircases, which has been a critical topic in the study of stratified turbulence (see, e.g.
Peltier & Caulfield 2003; Taylor & Zhou 2017; Caulfield 2021). In this subsection, we
have further elaborated on the structure and stability of these density staircases. However,
the primary focus of this paper remains on the thermohaline staircases in the Arctic
Ocean, and we provide more details on what our numerical simulations imply for the
diffusive-convection staircases found in the Arctic thermocline in the next section.

4. Implications for Arctic staircases

In §§ 2 and 3, we have systematically presented our simulation results and analysed the
staircase structures obtained from these simulations. In this section, we connect these
discussions to the actual staircase structures observed in the Arctic Ocean.

4.1. An estimation of timescales for the formation and disruption of Arctic staircases
In order to interpret the implications of our numerical simulations, it is necessary to
perform a dimensional transformation to compare our numerical simulation results with
the actual Arctic Ocean staircases.
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Event Non-dimensional time Dimensional time

Staircase formation 2000–10 000 4–20 days
Staircase merging 1000–5000 2–10 days
Disruption by turbulence (P = 0.1) 100–300 5–13 hours
Disruption by double-diffusion NA O(4 months)

Table 2. Summary of non-dimensional and dimensional characteristic timescales of typical events of
staircases in simulations.

As discussed in § 2, we have employed the characteristic length L0 and the buoyancy
frequency N to non-dimensionalise our numerical system, with the Reynolds number Re =
(U0L0)/ν = (L2

0N)/ν fixed at 1000 in all of our simulations. Using the typical buoyancy
frequency of N ∼ 0.006 s−1 in the Arctic pycnocline where staircases are present (e.g.
Timmermans et al. 2008) and ν = 1.8 × 10−6 m2 s−1, we can immediately calculate L0
as

L0 =
√

Re ν/N = 0.55 m. (4.1)

Note that in MP22, we calculated L0 based on the typical dissipation rate ε in the Arctic
Ocean, arriving at a similar length scale value (L0 ∼ 0.33m). Compared with that in
MP22, the current dimensional transformation is more robust, considering that the spatial
and temporal variations of N are much smaller than the variations of ε.

By multiplying the non-dimensional step size and layer thicknesses by the above
dimensional length scale, it can be estimated that the step sizes of the staircases are
about 1–3 m, consistent with the step sizes of 1–5 m staircases measured in the Arctic
Ocean (e.g. Timmermans et al. 2008). The thicknesses of the interfaces are approximately
0.05–0.15 m (temperature interfaces are slightly thinner than salinity interfaces), also
in line with the measured interface thickness of 0.1 m (Padman & Dillon 1989). These
consistencies, mentioned in MP22, are emphasised again here.

Using the timescale N ∼ 0.006 s−1 (e.g. Timmermans et al. 2008), we determined
the timescales linked to the staircase formation, merging and disruption observed in our
simulations. These details are presented in table 2. In addition, the table also shows the
timescale for disruption caused by double-diffusion. Even though we did not simulate
this process fully, we can estimate its timescale based on a typical length of 2 m and a
temperature diffusivity of 10−7 m2 s−1.

Although our simulations employed a compromise value of Sc = 70, the theory of
thermohaline-turbulence instability described in MP22 suggests that these timescales
would not significantly differ with a more typical value of Sc = 700 (or higher) in our
numerical models. Specifically, MP22 demonstrates, through simulations of the layer
formation process in scenarios R2P10, R5P10, R8P10 and R∞P10, that the rate of
staircase formation and merging hinges on the growth rate derived from thermohaline
instability theory. This rate, initially described in (2.6) of MP21, is shown to be
independent of Sc as long as the Reb values remain within the buoyancy-dominated regime
defined by Bouffard & Boegman (2013) (the boundaries of this regime depends on Sc).
Furthermore, our analysis in § 3.3 indicates that the growth of disturbances potentially
disrupting the staircases is influenced by the Kρ–Reb scaling coefficient from the Bouffard
& Boegman (2013) parameterisation, which is also independent of Sc. Thus, variations
in Sc values would minimally affect these timescales according to our theoretical model.
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However, this theoretical argument is established based on our simplified model, which
requires confirmation through future simulations employing higher Sc values.

Interestingly, the timescale for staircase formation in our simulations is considerably
shorter than what previous theories have estimated, which typically span several months
to years (see, for example, Radko (2016) and Bebieva & Timmermans (2017)). While
these earlier explanations lean towards timescales largely dictated by diffusivities nearing
molecular diffusion rates, our theory and simulations suggest a much faster timescale
determined by turbulent diffusivities as a consequence of involving active turbulence
in our models. In our simulations, staircases can emerge within just a month, and
their disruption can be even more rapid, taking place within a single day under strong
turbulence. These fast response timescales imply that diffusive-convection staircases are
acutely sensitive to surrounding turbulence levels. If this picture describes the Arctic
environment, we should anticipate a robust correlation: strong turbulence likely correlates
with the absence of staircases, whereas weaker turbulence is more conducive to their
presence.

A clear indication of the staircases’ response to changes in ambient turbulence levels
is provided by the study of Guthrie et al. (2017). This work analysed four measurements
taken in the Amundsen Basin of the Arctic Ocean between 2007 and April 2014. Notably,
the authors observed extensive thermohaline staircases only in the 2013 survey. During this
time, the turbulence levels, as gauged by microstructure measurements, were particularly
low compared with other periods. This significant correlation between subdued turbulence
and the existence of staircases aligns well with our previous discussion. However, it
is worth noting that in the Arctic measurements, instances of staircase formation and
disruption remain infrequent. An area worth further investigation is the distinct boundary
separating regions with and without staircases, as highlighted in Boury et al. (2022). It is
in these transitional areas where events leading to the formation or disruption of staircases
might be more prevalent, although they were not observed in the initial survey of Boury
et al. (2022).

4.2. An updated criterion for stably persisting staircases in the Arctic Ocean
As demonstrated in MP21 and MP22, thermohaline-turbulence instability is responsible
for transforming linear temperature and salinity stratification into a staircase configuration
when the buoyancy Reynolds number (Reb) lies within the approximate range of 0.1 to
100. During the initial phase of staircase formation, stratified turbulence predominantly
drives the system. Fb remains positive before staircases form, and double-diffusion is
not a significant factor. Consequently, staircase formation depends exclusively on the
background Reb determined by the mean gradients of heat and salt, which could be
regarded as an indicator of the external forcing P that drives the small-scale turbulence
in real-world oceanographic settings.

However, as the system transitions into a staircase state, the sharp temperature and
salinity gradients at the interfaces drive the formation of unstable boundary layers, and
this is the point at which double-diffusion starts to play a role. The stability of the staircase
state is subsequently also determined by the density ratio Rρ . When Rρ is below the
critical value Rcr

ρ ≈ 10, the staircases can endure provided the turbulence intensity remains
moderate Reb < 100 and insufficient to disrupt them. Due to the substantial intermittency
of Arctic turbulence, the value of Reb may fluctuate, occasionally causing turbulent mixing
to decrease substantially. Nevertheless, as demonstrated in our phase diagram (figure 2),
low mixing levels will not result in staircase disruption as long as Rρ is below the critical
value Rcr

ρ .
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Conversely, if Rρ > Rcr
ρ ≈ 10, staircases will be disrupted by diffusion when Reb

remains too low and formed again when Reb stays at the range that satisfies thermohaline
turbulence instability. Due to the strong intermittency of the Arctic turbulence (e.g. Dosser
et al. 2021), the value of Reb can vary over more than 3–4 order of magnitude and
constantly to low values that are below O(1). Therefore, the system experiences ongoing
layer formation and disruption as the forcing strength varies considerably, and it is not a
suitable regime for a persisting staircase structure to exist.

As a result, in order to find the persisting staircase structure in the Arctic Ocean, the
following criterion that is based on both Reb and Rρ needs to be satisfied:

Reb < 100, 1 < Rρ < 10. (4.2)

The turbulent strength measured by P needs to be smaller than approximately 100, and the
background density ratio Rρ has to be smaller than 10 as well.

In the Canada Basin where staircases are most abundant, the density ratio Rρ has
typical values of 2–9 (e.g. Shibley et al. 2017), which is smaller than Rcr

ρ ≈ 10, suggesting
that most of the observed staircases should be either considered as being in the
double-diffusion-dominated regime or the hybrid regime in our phase diagram shown in
figure 2, which is generally consistent with the criterion in (4.2). However, to achieve a
more accurate comparison between our proposed criterion and the actual observations,
more detailed analyses for Reb and Rρ need to be calculated in specific regions in the
Arctic based on micro-structure measurements (e.g. Fine et al. 2022).

4.3. Implications on the parameterisations of vertical heat transport
In this section, we discuss the implications of our numerical simulations for estimating
heat transport in the Arctic staircases. The vertical heat flux across these staircases is a
crucial factor in Arctic mixing, as the warm Atlantic water stored beneath the surface
Arctic water has the potential to melt the entire Arctic sea ice if released to the surface
(e.g. Rudels et al. 2004). The Arctic staircase structures, which are abundant in the Arctic
thermocline, govern a significant portion of these heat fluxes.

Previous studies (e.g. Timmermans et al. 2008; Guthrie et al. 2015; Shibley et al.
2017) typically estimated heat flux across the Arctic staircases from the temperature
and salinity profiles using the laboratory-based flux parameterisation of Kelley (1990)
or the simulation-based flux parameterisation scheme of Flanagan et al. (2013). These
parameterisation schemes have been found to underestimate the heat transport from the
microstructure measurements. For example, Guthrie et al. (2015) showed that the observed
fluxes across staircase structures were consistently higher than the parameterisations of
both Kelley (1990) and Flanagan et al. (2013) by a factor of 2–4.

In light of our previous discussions, a potential source of discrepancy between
parameterisation schemes and observations becomes evident. The foundational laboratory
experiments by, e.g. Turner (1965) and Marmorino & Caldwell (1976), as elaborated upon
in Kelley (1990), along with the numerical investigations in Flanagan et al. (2013), did
not incorporate external forcing or background turbulence into the system. According
to the classification proposed in the present study, such systems can be characterised as
being solely driven by double-diffusion. As we illustrated in § 2.3, the vertical heat flux
in regimes driven by both double-diffusion and turbulence can exhibit an enhancement
of 2–6 times when juxtaposed against those driven by double-diffusion. Historically,
the significant ramifications of turbulence on heat flux have been underrepresented in
parameterisation approaches, a factor which can profoundly affect the assessment of the
heat budget in Arctic surface waters.
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The parameterisation schemes employed in ocean models, such as the KPP
parameterisation, involve even more subtleties. In the KPP scheme, effective temperature
diffusivities in the ocean interior below the mixed layer are introduced as follows:

KTOT
θ = KBG + KS + KC + KSF + KDC, (4.3)

where KBG represents the background dissipation assumed to be induced by unresolved
internal wave breaking, KS corresponds to mixing driven by shear instability, which
depends on the gradient Richardson number, KC denotes mixing driven by convective
instability, and KSF and KDC represent double-diffusive mixing due to salt-fingering and
diffusive-convection, respectively. In the KPP scheme, KDC is included to capture the heat
transported by diffusive staircase structures. Its functional form is based on the laboratory
experiment of Marmorino & Caldwell (1976) and the simple model of Fedorov (1988),
taking the following form:

KDC = 0.909ν exp(4.6 exp(−0.54(Rρ − 1))). (4.4)

Although the KPP parameterisation was initially proposed in the 1990s, the decomposition
method in (4.3) and the functional form of (4.4) are still employed to describe the
contribution from diffusive-convection staircases, as seen in the POP ocean model by
Smith et al. (2010) and the CVMix project by Griffies et al. (2015).

Irrespective of the specific functional formulas adopted, a potential concern may arise
from the parameterisation of diffusivities in (4.3). This approach attempts to distinguish
and treat mixing due to turbulence separately from the mixing influenced by the staircases.
However, as underscored in our preceding discussion, the maintenance of staircases is
intricately linked to the prevailing turbulence level in the system. Even within regimes
where staircases are maintained, the mechanisms of heat transport vary significantly across
different regions of the phase diagram (figure 2). Thus, it is imperative that the turbulence
level be appropriately incorporated.

Based on our classification of different types of diffusive-convection staircases, we
propose an alternative parameterisation method to be employed in ocean models to
represent the underresolved vertical fluxes contributed from the staircases.

(i) A criterion should be introduced to determine whether staircases may form at
subgrid scales. This could be a form that depends on the turbulent levels and the
background density ratio Rρ , for example, shown in our (4.2).

(ii) If the criterion predicts a non-staircase environment, the original mixing
parameterisation form in (4.3) may continue to be used, but the KDC component
should be removed. Including this term in a region where staircases would not
form could lead to an overestimation of vertical fluxes in global ocean models. For
example, Peltier, Ma & Chandan (2020) found that KDC significantly influences
the fast warming transition in the Dansgaard–Oeschger relaxation oscillation by
controlling the vertical heat flux that melts sea ice. The potential overestimation
of KDC in this example might explain the shorter period of Dansgaard–Oeschger
oscillation cycles predicted in models.

(iii) If the criterion predicts that staircases might form, a separate, unified functional form
of KStair should be used instead to replace KBG + KS + KDC in (4.3). The KStair will
depend on both the estimated Reb and background density ratio Rρ .

This alternative approach to parameterising diffusivities for ocean models would
necessitate continuously forced, staircase-resolved DNSs capable of supporting a low
diffusivity ratio of at least τ ∼ 0.01. With our current model, achieving this is
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computationally challenging due to the heightened resolution needed to accurately capture
turbulence at the Batchelor’s scale for salinity. Nonetheless, we are optimistic that this
pathway holds promise for future investigations. As numerical methods advance or
computational capacities expand, this could pave the way for a more accurate staircase
parameterisation.

5. Summary and conclusions

In order to investigate the structure of the diffusive-convection staircases and the vertical
heat transport across the staircases, we have performed a series of numerical simulations
to explore the influence of density ratio Rρ and the external forcing strength P on the
staircase state that forms spontaneously in our numerical systems. By adjusting the value
of P after a staircase is spontaneously formed from the thermohaline-turbulence instability
described in Ma & Peltier (2022b) and Ma & Peltier (2022c), we found that the initial
staircase state can either be maintained or disrupted when P is adjusted. Based on the
energy sources of the system, we have further categorised all of our simulations into
five regimes: the staircases can either be maintained in the double-diffusion-dominated
regime, maintained in the turbulence-dominated regime, maintained in the hybrid regime,
disrupted by diffusion or disrupted by turbulence.

We have then performed detailed analyses of the physical mechanism that maintained
the staircase structure, in each of these regimes. In the double-diffusion driven regime,
which corresponds to numerical simulations with no or weak external forcing, we have
found that our numerical simulations are basically consistent with the theoretical model
discussed initially by Linden & Shirtcliffe (1978). As described by Linden & Shirtcliffe
(1978), the double-diffusion staircases are maintained by the critical structure of unstably
stratified boundary layers above and below the interfaces. The buoyant or heavier elements
contained in these boundary layers are then released into the unstably stratified mixed
layers in the form of thin plumes. The boundary layers would only provide sufficient
fluxes to balance the diffusion at the centre of the interface if the condition Rρ < Rcr

ρ
is satisfied, which is also confirmed in our numerical simulations. In the regime driven by
both double-diffusion and turbulence, these boundary layers are still present. However, the
introduction of turbulence mixes the plumes from boundary layers well into mixed layers,
making the mixed layers unstably stratified. The fluxes transported by these staircases are
also enhanced by the formation of an unstable density gradient in the mixed layers in
this regime. Finally, in the turbulence-maintained regime, the boundary layer structure
does not exist, and the staircase structure forms simply because the strongly stratified
interface can reach the same flux level as the weakly stratified mixed layers. By performing
a qualitative stability analysis under the idealised assumption of Bouffard & Boegman
(2013), we have shown that the turbulence-maintained staircases may become unstable
when the turbulence strength is high, in a way that is consistent with our numerical
simulations.

The theoretical models presented in this paper provide a comprehensive perspective
on the various interactions between turbulence and the diffusive-convection staircases.
Turbulence does not just disrupt the diffusive-convection staircases; it also plays a pivotal
role in sustaining them, whether in low or high Rρ regimes. Its effect on staircase
structures is evident in the nuances of the mixed-layer region. Depending on the primary
mechanism supporting the staircases, the vertical density gradient within these layers can
vary, becoming positive, negative or neutral, all influenced by the strength of turbulence
introduced.

In this paper, along with our previous work Ma & Peltier (2022c), we have provided
comprehensive explanations for the complete lifecycle of staircase structures in the ocean,
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encompassing their formation, maintenance and eventual disruption. Our earlier studies
established that layer formation is predominantly driven by thermohaline-turbulence
instability, with a significant contribution from turbulence rather than double-diffusion.
However, our current findings highlight the crucial role of double-diffusion in shaping
the structure of these layers post-formation, particularly through the creation of boundary
layer structures. Notably, these staircases are susceptible to disruption under strong
ambient turbulence. In contrast to previous assumptions (e.g. Boury et al. 2022), we find
that both the formation and disruption of these staircases occur at a much faster pace,
primarily due to the influence of turbulence. By examining the conditions necessary for the
formation and sustenance of layers, we propose a revised criterion for identifying persistent
diffusive-convection staircases in the ocean. This criterion suggests that staircases are
likely to persist when the buoyancy Reynolds number Reb is less than 100 and the density
ratio Rρ is below 10.

Our work demonstrates a plausible approach for the calibration of the vertical fluxes
contributed from staircase structure. We have shown that the staircase system driven by
double-diffusion is fairly tolerant to the presence of finite-strength turbulence, which
is consistent with the recent work by Brown & Radko (2022). This fact necessitates
the accurate representation of the influence of turbulence on vertical heat flux across
diffusive-convection staircases in parameterisations. Previous parameterisations based
solely on double-diffusion-driven models may only provide a lower-bound estimation
of vertical heat flux. A revised parameterisation that properly accounts for the role of
turbulence on vertical heat flux through Arctic staircases is urgently needed to provide
unbiased estimates.

The most straightforward future development of the current work, which we have
mentioned several times in this paper, is to extend the diffusivity ratio τ to the
oceanographically relevant value of approximately 0.01 in order to accurately describe the
real Arctic environment. By doing this, we will be able to obtain a more precise criterion
for the conditions under which staircases can stably persist, as well as a more accurate
parameterisation scheme for the vertical fluxes characteristic of these staircase structures.
However, this would require much higher resolution in the numerical simulations, which
we cannot afford to do at this time. Beyond the issue of the resolution, it is imperative to
acknowledge that our simulations, as they stand, are somewhat tethered to the specific type
of forcing employed. It could be valuable to assess the model’s responses by experimenting
with alternative forcing mechanisms. For instance, incorporating forcing in wave forms, as
illustrated in Howland et al. (2020). The wave-form forcing channels energy into both the
vertical kinetic and potential energy reservoirs, which could offer insightful juxtapositions
for future studies.
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Figure 13. Comparison of horizontally averaged profiles for temperature (in red) and salinity (in blue) across
different simulations. The intermediate-resolution simulations are represented by dashed lines, whereas the
high-resolution simulations are depicted using solid lines. Profiles have been horizontally shifted to facilitate a
clearer comparison. (a) R2P0, (b) R2P5, (c) R2P100 and (d) R8P5.

Appendix. Influences of resolutions on vertical heat flux and salt flux in the
simulations

In the main text, we conducted simulations at two distinct resolutions to investigate
various aspects of the problem. An intermediate resolution of 350 × 350 × 350 was
employed to capture the long-term evolution of the system, whereas a higher resolution
of 700 × 700 × 700 was utilised to examine the staircase structure and fluxes. The
high-resolution simulation has a grid size of approximately 0.009L0 (L0 represents the
non-dimensionalised length scale of our system). Although this grid size is smaller than
the Kolmogorov scale, which varies from 0.01L0 to 0.03L0 depending on the value of
p, it remains 2–8 times larger than the Batchelor scale for salinity of the system. Owing
to computational power constraints preventing us from resolving the smallest scale of the
system, it is crucial to examine the influence of resolution on our simulations by comparing
the results between our intermediate- and high-resolution simulations.

The increase in resolution did not alter the staircase state of the system; specifically,
upon increasing the resolution, no noticeable differences were observed in the horizontally
averaged vertical profiles of temperature and salinity, as shown in figure 13. Nevertheless,
the fluxes characterised by the Nusselt numbers Nuθ , Nus and the flux ratio γ may be
affected as the resolution changes. This is shown in figure 14(a,b), which displays the
evolution of these quantities in the intermediate-resolution simulation and high-resolution
simulation for R2P10, which is a configuration maintained in the hybrid regime. When the
resolution was increased, the system re-equilibrated within a relatively short time frame
(O(100) time units). In this new equilibrium state, Nuθ , Nus and γ stabilise at a new level,

984 A25-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

22
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.224


Y. Ma and W.R. Peltier

102

101

0 2000

t

t
0 100

t
0 100

350 700 1050

Grid number

102

101

N
u s

, 
N
u θ

102

101

102

101

N
u s

, 
N
u θ

(b)(a)

(d )(c)

Figure 14. Evolution of Nuθ (red), Nus (blue) and γ in the intermediate-resolution simulation (a),
high-resolution simulation (b) and a higher-resolution simulation (c) of R2P10, respectively. The two vertical
dashed line in each figure marks the range of the equilibrium state that we use to calculate the average and
standard deviation for each quantity. We presented a comparison of fluxes across different resolutions in
panel (d), where the error bars depict the standard deviations.

which slightly differ from the original equilibrium values. To ensure flux convergence, we
conducted a ‘higher-resolution simulation’ using a grid of 1050 × 1050 × 1050 in each
dimension. This was achieved by extending the simulation from the equilibrium state of
the high-resolution model. Owing to its intensive computational demands, we were only
able to test this for the R2P10 simulation, as depicted in figure 14(c). Both the heat and
salt fluxes stabilised to values nearly identical to those from our high-resolution simulation.
This alignment confirms that our high-resolution simulations are closely representative of
the converged value.

In table 3, we present the average values for Nuθ , Nus and γ at the equilibrium state
for both intermediate- and high-resolution simulations. We specifically highlight the
quantities that are significantly influenced by the choice of resolution, which we define
as an increase or decrease of more than 15 % when the resolution increases. In general, the
fluxes are considerably influenced by resolutions in the double-diffusion-driven regime
(e.g. R2P1, R2P5, R2P10, R3P0, R3P10 and R4P10). This might be due to the fact
that the thin boundary layer structure above and below the interfaces, which occurs in
the double-diffusion-driven regime, can only be accurately captured with sufficiently
high resolutions. This is illustrated in figure 15, where the grid overlays the plumes close
to the thin boundary layer, as detailed in the enlarged-view panel of figure 15(b). While
the double-diffusive plumes are well-captured, the thin boundary layer, characterised by
sharp density gradients, is represented with a more limited grid resolution. Conversely,
in the turbulence-driven regime, particularly in simulations with high turbulence (e.g.
R2P100, R5P50 and R5P100), an increase in resolution does not significantly affect the
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Simulations Resolution Average period Nuθ Nus γ

R2P0 Intermediate 500–4272 14.4 ± 1.1 37.9 ± 4.4 0.52 ± 0.03
High 120–318 15.4 ± 0.9 34.5 ± 3.3 0.45 ± 0.02

R2P1 Intermediate 750–1504 17.4 ± 1.5 46.4 ± 5.2 0.53 ± 0.02
High 80–249 19.6 ± 1.4 43.1 ± 4.2 0.44 ± 0.02

R2P5 Intermediate 200–1020 22.2 ± 1.9 69.9 ± 6.9 0.63 ± 0.02
High 150–248 28.0 ± 2.7 69.8 ± 8.1 0.50 ± 0.02

R2P10 Intermediate 2600–3098 28.2 ± 2.1 105.1 ± 10.7 0.74 ± 0.03
High 80–160 37.2 ± 2.4 112.4 ± 11.4 0.60 ± 0.03
Higher 140–182 39.8 ± 2.2 110.1 ± 9.0 0.55 ± 0.02

R2P50 Intermediate 1200–1478 88.5 ± 7.0 424.7 ± 39.4 0.96 ± 0.03
High 120–190 101.7 ± 7.6 443.8 ± 36.2 0.87 ± 0.02

R2P100 Intermediate 250–510 148.1 ± 10.8 1309.6 ± 109.0 1.77 ± 0.02
High 40–110 150.8 ± 12.2 1363.6 ± 122.7 1.81 ± 0.02

R3P0 Intermediate 500–1998 15.4 ± 2.8 25.5 ± 6.0 0.49 ± 0.04
High 120–377 14.3 ± 3.0 20.2 ± 6.3 0.42 ± 0.04

R3P10 Intermediate 11 500–12 526 32.7 ± 3.7 91.7 ± 10.9 0.84 ± 0.02
High 120–207 42.8 ± 3.4 96.4 ± 8.7 0.68 ± 0.02

R4P10 Intermediate 10 000–10 918 28.5 ± 2.3 76.4 ± 7.2 1.07 ± 0.04
High 270–319 31.7 ± 2.5 65.5 ± 6.1 0.83 ± 0.03

R5P5 Intermediate 600–2068 19.0 ± 1.5 36.0 ± 3.4 0.95 ± 0.03
High 170–275 19.2 ± 1.8 31.3 ± 3.3 0.81 ± 0.03

R5P10 Intermediate 6000–8112 26.8 ± 2.3 69.5 ± 6.9 1.29 ± 0.05
High 270–407 30.7 ± 2.7 63.5 ± 6.4 1.04 ± 0.04

R5P50 Intermediate 300–898 75.2 ± 4.8 396.6 ± 32.7 2.64 ± 0.10
High 120–163 81.8 ± 5.8 409.6 ± 39.2 2.50 ± 0.08

R5P100 Intermediate 550–666 141.0 ± 9.6 1139.7 ± 87.7 4.04 ± 0.06
High 90–146 141.8 ± 10.9 1200.1 ± 104.0 4.23 ± 0.06

R8P5 Intermediate 500–1944 16.4 ± 1.4 30.2 ± 3.2 1.47 ± 0.06
High 250–391 16.9 ± 1.4 26.9 ± 2.6 1.27 ± 0.05

R8P10 Intermediate 5300–6298 25.1 ± 2.1 64.0 ± 6.3 2.04 ± 0.08
High 350–400 27.4 ± 1.5 53.8 ± 4.8 1.57 ± 0.08

R∞P5 Intermediate 750–1674 NA 24.8 ± 2.8 NA
High 140–294 NA 22.2 ± 2.6 NA

R∞P10 Intermediate 10 000–10 090 NA 56.4 ± 6.1 NA
High 200–394 NA 50.7 ± 6.2 NA

R∞P50 Intermediate 300–540 NA 404.9 ± 38.3 NA
High 45–151 NA 402.4 ± 34.3 NA

R∞P100 Intermediate 300–426 NA 1177 ± 100 NA
High 40–91 NA 1296 ± 149 NA

Table 3. Averaged value for Nusselt numbers Nuθ and Nus and flux ratio γ at the equilibrium stage for our
simulations. The error bars are calculated as standard deviations of each physical quantities in the equilibrium
state. The values that increase/decrease over 15 % during an increase of resolution is highlighted using bold
fonts.

fluxes, suggesting that the fluxes obtained from our simulations are more reliable for these
scenarios.

Several other trends in table 3 are worth noting. We observe that an increase in resolution
consistently leads to an increase in Nuθ . In contrast, Nus decreases with resolution when
P is small but increases with resolution when P is as large as 50 or 100. The underlying
mechanism for how the change in numerical resolution leads to this systematic alteration
of vertical fluxes remains unclear to us. However, this observation provides a means to
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Figure 15. (a) Pseudo-colour plot of density field for the equilibrium staircases in the high-resolution
simulation of R2P0. This plot shows the two-dimensional slice of the same field of figure 4 in the main text.
(b) Enlarged view of panel (a) with mesh information plotted on top.

narrow down the possible true values for fluxes when inaccuracies arise from insufficient
resolution.

Finally, we want to emphasise that the potential inaccuracies in the Nusselt numbers
discussed here do not undermine the discussions in the main text of our paper. Our primary
objective was not to provide a simulation-based parameterisation for fluxes across the
Arctic staircase that can be directly employed in the observations. Instead, the goal of this
paper is to establish a robust theoretical framework to describe the complex interactions
between turbulence and diffusive-convection staircase, as well as to lay the foundation for
the possibility of obtaining properly designed simulation-based parameterisation schemes
in the future.
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