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POSITIVE PERTURBATIONS AND UNITARY 
EQUIVALENCE 

C. R. PUTNAM 

1. Preliminaries. Let T be a (not necessarily bounded) self-adjoint operator 
on a Hilbert space H with the spectral resolution T = §°^JtdEt. The set of 
elements x in H for which ||E*x||2 is absolutely continuous is a subspace, Ha, 
of H which reduces T. (See Halmos [1, p. 104]; Kato [2, p. 516].) If Ha ^ 0, 
the restriction of T to DT C\ Ha is called the absolutely continuous part of T; 
in case H = Ha, T is said to be absolutely continuous. Recall also that T is said 
to be half-bounded if for some real number c, either T ^ ci (that is, (Tx, x) ^ 
c(x, x) for all x in DT) or T ^ ci. 

2. Main Results. First we prove the following 

THEOREM 1. A half-bounded self-adjoint operator T has an absolutely con
tinuous part if and only if there exists a bounded operator D ^ 0, 9e 0, and a 
unitary operator U such that 

(2.1) T + D=UTU* and a(U) 9* {z :• \z\ = 1}. 

Proof. In order to prove the "only if" part of the theorem, suppose first that 
T is absolutely continuous. The assertion is then an immediate consequence of 
Theorem 5.15 of Kato [2, p. 561]. In fact, for any absolutely continuous self-
adjoint operator T = T\ (not necessarily half-bounded) and for any a > 0, 
this result implies the existence of an operator D\ ^ 0, even of rank 1, and a 
unitary operator U\ such that T\ + Dx = U1T1U1* and \\Ui — I\\ < a. In 
case Ha 9e H, the "only if" assertion follows by considering the direct sum 
representation T = 7\ © T2 on H = Ha © H a

x and putting D = D\ © 0 
and U — Ui ® I. The "if" part follows immediately from Theorem 2.12.2 of 
Putnam [4, p. 38]. 

As noted above, the "only if" portion of Theorem 1 is valid for any self-
adjoint operator, half-bounded or not. We do not know whether the "if" part 
holds in general. However, if there exists a D ^ 0, 9e 0, for which (2.1) holds 
and for which ( — 00, 00) — a(T) contains an open interval of length greater 
than \\D\\, it follows from [4], loc. cit., that T must have an absolutely con
tinuous part. 

We mention the following open question: 
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(*) Suppose that T is an arbitrary self-adjoint operator and that there exists 
a bounded D ^ 0, ^ 0, and a unitary U satisfying (2.1). Does it follow that 
such a T always has an absolutely continuous part, even if the complement of 
<r(T) does not contain an open interval of length exceeding \\D\\} as is the case 
for instance if a(T) = ( — 00,00)? 

THEOREM 2. There exists a bounded absolutely continuous self-adjoint T and a 
compact D H for which T + D is unitarily equivalent to T and such that 
d{U) = {z : \z\ = l j for every unitary operator U satisfying T + D = UTU*. 

Proof. Let P = — id/dx denote the self-ad joint differential operator on 
L2( — co , 00 ) with domain 

Dp = {/ : / absolutely continuous, / and / ' in L2 ( — 00 , 00 )} ; 

cf. Stone [5, p. 441]. Then P2 + I = -d2/dx2 + 1 on L2(-oo, 00 ) has spec
trum [1, 00). If V(x) = (1 + |x|c)_1 , where 1 < c = constant < 2, the 
operator of multiplication by V(x) is bounded and non-negative, and, in 
addition, 

V G L ( - o o , 00 ) and lim inf (b - a)~z J V~\x)dx = 0. 

If follows from Theorems 5.16.1 and 5.16.2 of [4, pp. 122-123], that P2 + I 
and P2 + I + V are absolutely continuous and unitarily equivalent, and that 
(T(U) = {z : \z\ = 1} if U is any unitary operator for which 

(2.2) P2 + I = U(P2 + I+V) U*. 

Since (P2 + I + V)f - (P2 + / ) / = Vf for a l l / in the domain of P2 , then 
(P2 + I)-1 - (P2 + I + V)-1 = (P2 + I)~lV(P2 + I + V)~\ as an equa
tion for bounded operators. (Cf. [3, p. 149] for a similar argument.) Also, 
P 2 + / + V ^ P 2 + / (as an operator inequality) and hence (P2 + J ) - 1 ^ 
(P2 + I + V)-1; cf. [4, pp. 36-37]. Thus, if T = (P2 + I + V)~l and 
D = (P2 + I)~W(P2 + I + V)~\ we see that D ^ 0, ^ 0 , and that, by 
(2.2), T + D and T are unitarily equivalent. In addition, if U is any unitary 
operator for which T + D = UTU* then <r(U) = {z : \z\ = 1}. Finally, since 
V(x) —-> 0 as \x\ —» 00, an argument similar to that in [3, p. 150], shows that 
D is compact. This completes the proof of Theorem 2. 

The absolutely continuous T of Theorem 2 is of course of a special type. We 
note the following open question: 

(**) If T is any bounded absolutely continuous self-adjoint operator, does 
there always exist some compact non-negative perturbation D for which T + D 
is unitarily equivalent to T and such that <r(U) = \z : \z\ = 1} whenever U 
is a unitary operator satisfying T + D = UTU*? 

Clearly, any D in (**) must satisfy D ^ 0 since, otherwise, one could satisfy 
T + D = UTU* by choosing U = I. 
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3. An example. Consider the differential operator P = — id/dx on 
L2( — ooyoo) discussed above. Let m(x) be any real-valued, measurable func
tion on ( — 00,00) with the property that T = P + m is self-adjoint on 
L2( — 00, 00 ). (A sufficient condition, for instance, is that m(x) be bounded.) 
Next, let q(x) be a real-valued, measurable function on ( — 00, 00) satisfying 

(3.1) 0 < q(x) < constant 

If D denotes the self-adjoint operator corresponding to multiplication by 
q(x), then D is bounded and D ^ 0, ^ 0. Further, T + D is unitarily equiva
lent to T. In fact, it is easily verified that 

(3.2) T + D = UTU* where U = exp i - i J q(t)dt\ (= unitary). 

(See [2, pp. 528~529].) Also, a similar argument shows that for any constant 
c, P + m + c is unitarily equivalent to P + w, so that the spectrum of 
T = P + m is invariant under translations and hence a{T) — ( —00, 00 ). If 
now q(x) is chosen so as to satisfy f-œq(t)dt < w, in addition to (3.1), it is 
clear that a(U) 5* {2 : |z| = 1} for the unitary U of (3.2). 

Consequently, a negative answer to the question (*) would follow if there 
exists a function m(x) with the property that P + m is self-adjoint on 
L2( — 00, 00 ) but has no absolutely continuous part. Of course, it is necessary 
that such a function m not be summable on some finite interval. Otherwise, 
exp( — ijlm(t)dt) would effect a unitary equivalence of P + m and P (cf. 
(3.2)), and the latter operator is well-known to be absolutely continuous. We 
do not know whether the mere self-adjointness of P -\- m implies that P + m 
is absolutely continuous or even that it has an absolutely continuous part. 
Obviously, however, an affirmative answer to (*) would imply the latter 
assertion. 

4. Unitary absolute continuity. The concept of the absolutely continuous 
part of a unitary operator with the spectral resolution U = jlTeudEt can be 
defined in a manner analogous to that for a self-adjoint operator. As a con
sequence of Theorem 2.12.2 of [4, p. 38], we note that if T is any self-adjoint 
operator (whether or not it has an absolutely continuous part), if D is 
bounded, ^ 0 and 7e 0, and if the complement of a(T) contains an open 
interval of length exceeding \\D\\ (in particular, if T is half-bounded, as in 
Theorem 1), then any unitary operator U satisfying T + D = UTU* must 
have an absolutely continuous part. Further, if 

(4.1) 0 is not in the point spectrum of D(D ^ 0), 

then U is absolutely continuous. Consequently, since the operator D con
structed in the proof of Theorem 2 satisfies (4.1), it follows that one may 
require that any U in the statement of that theorem also be abso
lutely continuous. 
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Added in Proof. We are indebted to Professor T. Kato for communicating 
to us a proof that the local integrability of the function m occurring in Section 3 
above is also a necessary (as well as a sufficient) condition for the self-adjoint-
ness of the operator P + m on L2(—oo , oo). 
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