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SPECIAL RAYS IN THE MORI CONE

OF A PROJECTIVE VARIETY

MARCO ANDREATTA and GIANLUCA OCCHETTA

Abstract. Let X be a smooth n-dimensional projective variety over an alge-
braically closed field k such that KX is not nef. We give a characterization of
non nef extremal rays of X of maximal length (i.e of length n− 1); in the case
of Char(k) = 0 we also characterize non nef rays of length n− 2.

§1. Introduction

Let X be a smooth n-dimensional projective variety over an alge-

braically closed field k of arbitrary characteristic.

We assume that KX is not nef, in particular that there exists an ex-

tremal ray R in the cone NE(X)KX<0.

The length of the ray R is the integer defined as l(R) = min {−KX .C :

[C] ∈ R}; the set Locus(R) is the set of closed point x ∈ X such that there

is a curve x ∈ C ′ ⊂ X with [C ′] ∈ R.

A ray R is said to be nef if D.R ≥ 0 for all effective divisors D ⊂ X, or

equivalently if Locus(R) = X; if a nef ray exists the variety X is therefore

uniruled.

The main result of the paper is the following characterization of the

blow-up of a smooth point in terms of extremal rays.

Theorem 1.1. Let X be a smooth n-dimensional projective variety.

There exists a non nef extremal ray R of length ≥ (n − 1) if and only if

there exists a morphism ϕ : X → X ′ into a smooth projective variety X ′

which is the blow-up of X ′ at a point.

Let us point out that in the case Char(k) > 0 the existence of a map

ϕ : X → X ′ which contracts all the curves in an extremal ray has not been

proved in general; if Char(k) = 0 this is the so called Kawamata-Shokurov

contraction theorem.
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A straightforward application of this result is in the so called adjunction

theory: namely if L is an ample line bundle on a smooth n-dimensional

projective variety X one can study the ampleness of the adjoint bundle

KX + (n − 1)L: this is ample unless there exist extremal rays of length

≥ (n − 1).

If these rays are nef they will determine the uniruled variety X; this

is the case if l(R) > (n − 1), see [KK00], or if Char(k) = 0, see [Fuj87];

if l(R) = n − 1 the precise characterization of X is still open in positive

characteristic (see Remark (4.3)).

If there are non nef rays one can apply the above theorem and the

following happens:

Theorem 1.2. Let X be a smooth n-dimensional projective variety

with n ≥ 3 and L an ample line bundle on X.

If there is a non nef ray in the cone NE(X)(KX+(n−1)L)≤0 then, with

the only exception given by the blow-up of P3 in one point, π : BlxP3 → P3,

and L = π∗(O�
3(2)) − [π−1(x)], all rays in this cone are non nef and they

can be simultaneously contracted into a smooth variety X ′, with a morphism

ϕ : X → X ′ expressing X as blow-up of X ′ at a finite set of points B.

Moreover there is an ample line bundle L′ on X ′ such that L⊗([ϕ−1(B)])
= ϕ∗L′ and KX′ + (n − 1)L′ is ample.

A similar statement holds for the case n = 2 where extra care is needed

for conic bundles. Actually the adjunction theory and the above theorem

in case of surfaces were developed exactly a century ago in a paper of

Castelnuovo and Enriques ([CE01], Firenze, fall 1900).

The above theorem was proved in the case Char(k) = 0 by A. Sommese

who called the map ϕ : X → X ′ the first reduction of (X,L) (see [BS95] for

a more general account as well as for applications of adjunction theory).

We will actually prove a more general version of the theorem (see (4.1)),

where we consider a rank (n − 1) ample vector bundle E and we study the

non nef rays in the cone NE(X)(KX+det(E))≤0 (this version of the theorem

if Char(k) = 0 was proved in [ABW92]).

In Section 5 we restrict to the case Char(k) = 0; here we first generalize

theorem (1.1) with a characterization of blow-up of smooth subvarieties in

term of extremal rays (see 5.1). In particular we prove a conjecture stated

in [AW97] for extremal rays whose associated contraction is divisorial.

Then we characterize non nef extremal rays of length (n−2) (see (5.2)). In
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particular this result generalizes the theorem which guarantees the existence

of the second reduction of a pair (X,L) in the language of [BS95, Section

7.5].

The proof of our main theorem is strongly based on a recent result by

Y. Kachi and J. Kollár [KK00]; we report this result in Section 2.

§2. Set-up and preliminaries

In this paper we will constantly use the notations and the definitions

presented in the book of János Kollár, [Kol96], to which we will frequently

refer. For the reader’s convenience we recall here the principal ones.

Let X be a smooth n-dimensional projective variety over an alge-

braically closed field of arbitrary characteristic. A rational curve on X is an

irreducible reduced curve C ⊂ X whose normalization is f : P1 → C ⊂ X.

As we said in the introduction we assume that KX is not nef, in partic-

ular that there exists an extremal ray R = R+[C] in the cone NE(X)KX<0

(see [Kol96, III.1.2]). We will choose the curve C generating the ray to be

rational and minimal with respect to the intersection with −KX ; sometimes

we will say that such a C is a minimal extremal rational curve. For such a

curve C the integer l(R) = −KX .C is called the length of the ray R.

We will denote by V ⊂ Hombir(P
1,X) a closed irreducible subvariety,

which is closed under Aut(P1) and which contains C; by the minimality of

C we have that V is an unsplit family of rational curves (see [Kol96, IV.2]).

We can define Locus(V ) to be the image in X of the natural morphism

associated to the family of rational curves V (see [Kol96, II.2.3]) and

Locus(V, 0 → x) to be the image of Vx := {f ∈ V : f(0) = x}; since V

is unsplit Locus(V ) is a proper closed subscheme.

We have the following fundamental inequality

Proposition 2.1. ([Kol96, IV.2.5 and 2.6.]) In the above notation

and for a general x ∈ Locus(V ) we have

dimLocus(V )+ dimLocus(V, 0 → x)+ 1 = dim V ≥ dim X + deg(−KX)(V ).

We stress the fact that the equality holds since V is an unsplit family.

The formulation and the proof of this inequality is due to P. Ionescu and

J. Wísniewski, coming out from the fundamental construction of S. Mori.

One can prove (see [Kol96, III.1.4]) that, given an extremal ray R on

X, there exists a Cartier divisor HR on X such that

https://doi.org/10.1017/S0027763000008400 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008400


168-09 : 2002/12/6(17:42)

130 M. ANDREATTA AND G. OCCHETTA

1. HR is nef.

2. If z ∈ NE(X) then HR.z = 0 iff z ∈ R.

Such an H is called a supporting divisor for the extremal ray R.

Proposition 2.2. ([Kol96, III.1.6]) In the above notation one of the

following two possibilities can occur

1. (HR)dim X > 0 iff there is an irreducible divisor E ⊂ X such that

R.E < 0. In particular Locus(R) ⊂ E; in this case we say that the

ray R is not nef.

2. (HR)dim X = 0 iff Locus(R) = X (thus X is uniruled). In this case

we say that the ray R is nef.

Finally we recall the main result of the paper [KK00] which we will use

in the proof of 1.1:

Proposition 2.3. ([KK00, Lemma 8]) Let X be a normal projective

variety and x ∈ X a smooth point. Let H be an ample Cartier divisor on X
and let {Ct : t ∈ T} be an (n − 1)-dimensional family of curves through x.

Assume that (Ct.H) = 1 and (−KX .Hn−1) > (n − 1)(Hn). Then X ∼= Pn,

H = O�
n(1) and the Ct are lines through x.

§3. Non nef extremal rays with maximal length

In this section we prove the main theorem (1.1) stated in the introduc-

tion.

The if part of the theorem is trivial.

Assume therefore that R is a non nef extremal ray of length ≥ (n− 1);

thus by (2.2) there exists an irreducible divisor E such that Locus(R) is

contained in E and E.R < 0.

Let V be an unsplit family of deformations of C, a minimal extremal rational

curve generating the ray and let x be a general point in Locus(V ); applying

the inequality in (2.1) we obtain that

dim Locus(V ) + dim Locus(V, 0 → x) + 1 = dim V ≥ 2n − 1.

On the other hand Locus(V ) ⊆ Locus(R) ⊆ E and thus

2n − 2 ≥ dimLocus(V ) + dim Locus(V, 0 → x),
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forcing Locus(V ) = Locus(V, 0 → x) = E, dimV = 2n − 1 and −KX .C =

n − 1.

Let f ′ : P1 → Γ ⊂ E be a curve of the family which intersects the

smooth locus of E; since every element of Hom[f ′](P
1, E) is also an element

of Hom[f ′](P
1,X) and Locus(V ) = E we can take an irreducible compo-

nent of Hom[f ′](P
1, E), call it W , which is contained in V ; this implies that

2n − 1 = dim V ≥ dimW .

On the other hand, since E is a locally complete intersection, being a divi-

sor in a smooth variety, we can apply [Kol96, Theorem II.1.3] which gives

dimW ≥ −KE .Γ + n − 1; combining the two inequalities we get

−KE .Γ ≤ n.

Recalling that E.R < 0, by the adjunction formula KE = (KX + E)|E ,

we have that E.Γ = −1 and −KE.Γ = n.

Note that we can apply [Kol96, IV.3.13.3] to the scheme E and the

family V ; in fact for a generic point x ∈ E we have seen that Locus(V, 0 →

x) = E.

Thus we obtain that the Picard number of E is one and −KE is nu-

merically equivalent to −nEE. Let π : Ẽ → E be the normalization of E;

we have that

−K �
E

= −π∗KE + (conductor of π)

where the conductor of π is an effective divisor which is zero iff π is an

isomorphism ([Har77, Ex. III.7.2]). Thus

−K �
E
(π∗(−EE))n−2 ≥ −KE(−EE)n−2 = n(−EE)n−1 = n(π∗(−EE))n−1.

We lift the curves of V to Ẽ and we apply [KK00, Lemma 8], see 2.3, which

gives Ẽ = Pn−1 and π∗(−EE) = O� (1). Since

−K �
E

= −π∗KE + (conductor of π) = nπ∗(−EE) + (conductor of π)

the conductor of π is zero, i.e. π is an isomorphism.

To conclude the proof of the theorem we apply the following

Theorem 3.1. (Castelnuovo) Let E ⊂ X be a Cartier divisor in a

smooth projective variety X with E ∼= Pn−1 and EE = O� (−1); then there

exists a morphism ϕ : X → X ′ into a smooth projective variety X ′ which

is the blow-up of X ′ at a point such that E is the exceptional divisor.
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The theorem was stated and proved in the case dim X = 2 by Castel-

nuovo; the same proof (see for instance [Har77, V.5.7]) applies in the general

case.

§4. An application: the first reduction

An immediate application of the main theorem gives the following fun-

damental result for the so called adjunction theory ; in the case Char(k) = 0

the theorem was proved in [ABW92].

Theorem 4.1. Let X be an n-dimensional smooth variety over an al-

gebraically closed field k with n ≥ 3; let also E be an ample vector bundle

on X of rank (n − 1) such that KX + det E is nef and big, but not ample.

Then there exists a smooth variety X ′ and a morphism ϕ : X → X ′ ex-

pressing X as blow-up of X ′ at a finite set of points B and an ample vector

bundle E ′ on X ′ such that E ⊗([ϕ−1(B)]) = ϕ∗E ′ and KX′ +det E ′ is ample.

The pair (X ′, E ′) is called the first reduction of (X,E).

Proof. By Mori’s cone theorem there exists an extremal face F ⊂
NE(X)KX<0 on which KX + det E is trivial; in other words KX + det E is
the supporting divisor of a face F . By assumption every extremal ray in F
is non nef and has length ≥ (n − 1) (use Propositions 2.2 and 2.1), hence
we can apply the above theorem to each of these rays.

If Ri and Rj are two different rays in F then the respective Loci, Ei and
Ej , are disjoint. In fact, assume the contrary; then, by Serre’s inequality,
we have

dim(Ei ∩ Ej) ≥ dimEi + dim Ej − n ≥ n − 2 ≥ 1

so that the intersection of Ei and Ej would contain a curve B and this is a
contradiction.

Finally let E ′ be a rank n−1 vector bundle such that E⊗(
∑

Ei) = ϕ∗E ′;
it is easy to check that E ′ and KX′ + det E ′ are ample, using the Kleiman
ampleness criterium, and that KX + det E = ϕ∗(KX′ + det E ′).

This result implies the one stated in the introduction taking E =

⊕(n−1)L and using the following simple result:

Lemma 4.2. Let X be an n-dimensional smooth variety over an alge-

braically closed field k with n ≥ 3; let also E be an ample vector bundle on X
of rank ≥ (n− 1). If there is a non nef ray in the cone NE(X)(KX+det E)≤0

then, with the only exception given by the blow-up of P3 in one point,
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π : BlxP3 → P3, and E = ⊕2(π∗(O�
3(2)) − [π−1(x)]), all rays in this cone

are non nef.

Proof. Assume we have a non nef ray R1 and a nef one R2 as in
the lemma. The ray R1 satisfies the assumptions of Theorem (1.1), thus
in particular Locus(R1) = Pn−1. Let V2 ⊂ Hombir(P

1,X) be the family
associated to R2 described in section 2 and let x ∈ Locus(R1) be a general
point; since by (2.1) dim Locus(V2, 0 → x) ≥ n − 2 we have, by Serre’s
inequality, that the intersection Locus(V2, 0 → x) ∩ Locus(R1) contains a
curve, unless n = 3 and dimLocus(V2, 0 → x) = 1.

In the general case this is a contradiction; in the special one, since
extremal rays and their contractions are known in all characteristic in di-
mension 3 (see [Kol91]), we have that the contraction of the extremal ray
R2, ϕ : X → Z gives X a structure of a P1 bundle of which Locus(R1) = P2

is a (multi)section. Let π : X → X ′ be the contraction of R1 and x′ =
π(Locus(R1)); the images of the fibers of ϕ via π are irreducible rational
curves passing through x′ and covering X ′, hence we can apply [Kol96,
IV.3.13.3] to deduce that the Picard number of X ′ is one. By the blow up
formula −KX′ is ample so X ′ is Fano; then one can compute that the length
of the unique ray of X ′ is 4 and therefore that X ′ ' P3, by the classification
of Fano threefolds [SB97].

Remark 4.3. The description of the nef rays in NE(X)(KX+(n−1)L)≤0

(or, more generally, in NE(X)(KX+det E)≤0) is well understood in character-
istic zero ([Fuj87] and [ABW92]). In positive characteristic the description
of such rays was recently given if l(R) > (n − 1), see [KK00].

If l(R) = n − 1 we cannot at the moment say too much, the main
problem being the lack of a general contraction theorem for Mori rays.

Studying the families of rational curves arising from extremal rays we
can prove that, if there exists a ray of this kind, either the Picard number of
X is one and −KX is numerically equivalent to (n− 1)H or there exists an
unsplit covering family V of rational curves such that dim Locus(V, 0 → x)
=n − 2, for a general x ∈ X.

§5. Non nef extremal rays of high length

In this section we restrict ourselves to characteristic zero. In this case

to each extremal ray R is associated an extremal contraction ϕR : X → X ′,

that is a morphism onto a normal projective variety X ′ with connected

fibers and such that if C ⊂ X is a curve then ϕ(C) is a point if and only
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if [C] ∈ R. Denoting by E(ϕ) the exceptional locus of ϕ and by S an

irreducible component of a (non trivial) fiber, the inequality in 2.1 can be

read as

dim E(ϕ) + dim S ≥ dim X + l(R) − 1.

We first prove that the same argument in the proof of theorem (1.1)

can be used to prove Conjecture (2.6) in [AW97] in the case of divisorial

contractions:

Theorem 5.1. Let X be a smooth n-dimensional projective variety

over an algebraically closed field of characteristic zero; the two following

facts are equivalent :
1) There exists an extremal ray R such that the contraction associated to R
is divisorial and the fibers have dimension = l(R).
2) There exists a morphism ϕ : X → X ′ into a smooth projective variety

X ′ which is the blow-up of X ′ along a smooth subvariety of codimension

l(R) + 1.

Proof. We will only prove that 1) implies 2), the other implication
being trivial. We observe also that it is enough to prove that there exists
a line bundle L on X such that L.C = 1; in fact, if this is the case, the
contraction of R will be supported by a divisor of the type KX + l(R)L
with L a ϕ-ample line bundle. Then the theorem will follow from [AW93,
Theorem 4.1.iii].

Let then R be an extremal ray as in 1). Since R is not nef, there exists
an irreducible divisor E such that E(ϕ) = Locus(R) is contained in E and
E.R < 0; let V be an unsplit family of deformations of C. Since by the
assumptions the inequality in (2.1) is an equality we have that

dim V = n + l(R) = n − KX .C.

On the other hand we can think of V as a family in E, as in the proof of 1.1,
thus, if we apply [Kol96, Theorem II.1.3], we have dimV ≥ −KE.C +n−1.
Combining the two formulas we get

−KE.C ≤ l(R) + 1.

Recalling that E.R < 0 and that by the adjunction formula KE =
(KX + E)|E , we have that E.C = −1.
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In the special case of characteristic zero we can further extend our

classification of non nef extremal rays with high (but not maximal) length

as in the following theorem.

Theorem 5.2. Let X be a smooth n-dimensional projective variety

over an algebraically closed field of characteristic zero and R = R+[C] a non

nef extremal ray. Let ϕ : X → X ′ be the birational elementary contraction

associated to R and E = Exc(ϕ) its exceptional locus. If l(R) = n− 2 then

one of the following cases occur :
1) ϕ(E) is a point and (E,−EE) ' (Pn−1,O� (2)).
2) ϕ(E) is a point and (E,−EE) ' (Qn−1,O � (1)), where Qn−1 is a possibly

singular quadric.

3) X ′ is smooth and ϕ is the blow-up along a smooth curve ϕ(E) ⊂ X ′.

Proof. Also here it is enough to prove that there exists a line bundle L
on X such that L.C = 1; then the theorem will follow from [Fuj87, Theorem
4] and [AW93, Theorem 4.1.iii].

Since R is not nef, there exists an irreducible divisor E such that
Locus(R) is contained in E and E.R < 0.

Let V be the unsplit family of deformations of C, a minimal extremal
rational curve; by the inequality in (2.1) we have that Locus(R) = E and
dimV = dimLocus(V )+dim Locus(V, 0 → x)+1 is either 2n−1 or 2n−2.
On the other hand we can think at V as a family in E, as in the previ-
ous proofs. Thus, if we apply [Kol96, Theorem II.1.3], we have dimV ≥
−KE.C + n − 1. In particular we get

−KE .C ≤ n.

Recalling that E.R < 0 and that by the adjunction formula KE =
(KX + E)|E , we have that E.C = −1 or −2.

In the first case we are done; the second one, on the other hand, can
occur only if dimV = 2n−2 and dim Locus(V, 0 → x) = n−1. In particular
we have that Locus(V, 0 → x) = E, so we can apply [Kol96, IV.3.13.3] to get
that the Picard number of E is one. Let π : Ẽ → E be the normalization
of E; lifting the family V to Ẽ we obtain a new family which, together
with −π∗EE, satisfies on Ẽ the assumptions of [Keb00, Theorem 3.6]. This
yields that Ẽ ' Pn−1 and −π∗EE ' O� (2). Let HE be the ample generator
of Pic(E); in the numerical equivalence we can write −EE = eHE, −KE =
(ne

2 )HE, π∗HE = O� (2/e); then

−K �
E

= −π∗KE + (conductor of π),
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hence
ne

2
O� (2/e) = −K �

E
= π∗(

ne

2
)HE + (conductor of π)

so that the conductor is zero and π is an isomorphism.
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[AW93] M. Andreatta and J. A. Wísniewski, A note on nonvanishing and applications,

Duke Math. J., 72 (1993), 739–755.

[AW97] , A view on contraction of higher dimensional varieties, In “Algebraic

Geometry – Santa Cruz 1995”, Proc. Sympos. Pure Math. 62, 153–183. Amer.

Math. Soc., Providence, RI, 1997.

[BS95] M. C. Beltrametti and A. J. Sommese, The adjunction theory of complex

projective varieties, Exp. Math. 16, de Gruyter, Berlin, 1995.

[CE01] G. Castelnuovo and F. Enriques, Sopra alcune questioni fondamentali nella

teoria delle superficie algebriche, Annali di matematica pura ed applicata, VI

(1901), 165–225.

[Fuj87] T. Fujita, On polarized manifold whose adjoint bundles are not semipositive,

In “Algebraic geometry, Sendai”, Adv. Studies in Pure Math. 16, 167–178,

Kinokuniya-North-Holland, 1987.

[Har77] R. Hartshorne, Algebraic Geometry, GTM 52, Springer-Verlag, 1977.

[Keb00] S. Kebekus, Families of singular rational curves, J. Algebraic Geom., 11

(2002), 245–256.

[KK00] Y. Kachi and J. Kollár, Characterization of � n in arbitrary characteristic,

Asian J. Math., 4 (2000), 115–122.

[Kol91] J. Kollár, Extremal rays on smooth threefolds, Ann. Sci. Ecole Norm. Sup., 24

(1991), 339–361.

[Kol96] , Rational Curves on Algebraic Varieties, Ergebnisse der Math. 32,

Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1996.

[SB97] N.I. Shepherd-Barron, Fano threefolds in positive characteristic, Compositio

Math., 105 (1997), 237–265.

Marco Andreatta
Dipartimento di Matematica
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