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ALMOST POLAR-DENSE LATTICES

BY
R. H. REDFIELD

ABsTRACT—We introduce almost polar-dense lattices and prove
that the generalized interval topology of an almost polar-dense,
modular lattice is equivalent to its interval topology. Furthermore,
for totally ordered sets, the converse holds: if the generalized
interval topology is the interval topology, then the set is almost
polar-dense.

1. Introduction. We suggested in [6] that, instead of intervals in an arbitrary
partially ordered set, one should consider generalized intervals (defined below).
Replacing intervals by generalized intervals in the definition of the interval topology
[4] proved to give a topology which was preserved by cardinal products of dually
directed sets. However, this generalized interval topology did not necessarily
contain the usual interval topology. By adjusting the definition of the generalized
interval topology, we defined the generalized star-interval topology, which, for
dually directed sets, was precisely the topology generated by the generalized
interval topology and the interval topology.

In [6], we specified a condition (having trivial polars) which implied that the
generalized interval and star-interval topologies were equivalent for dually directed
sets. In this note, we define a condition (being almost polar-dense) which is weaker
than the previous condition and which implies the equivalence of the two topologies
on modular lattices. Furthermore, a totally ordered set satisfies this condition if
and only if the two topologies are equivalent.

Terminology left undefined may be found in [1], [2], or [8]. If {P, | o€ A}
is a collection of partially ordered sets, then we denote the cardinal product of
the P, by |II|{P,| x € 4}; thus, |II|{P,|axe€ A4} is the product of the P,
ordered pointwise, i.e. by: f<g if and only if af<ag for all « € 4. If 4 is finite,
say A={1,2,...,n}, then we denote the cardinal product by Py |X| P, |X |- - -
| x| P,. We use N to denote the natural numbers, Z the integers, and R the real
numbers. We let N, Z, and R have their usual order, and we let R*={r € R | r>0},
Z+={ieZ|i>0}, and Z~={i e Z | i<0}.

Generalized intervals were designed to incorporate into the idea of “interval”
the “relatively perpendicular” elements which may exist in non-totally ordered
sets. Our method of achieving this depends on the idea of polar, which is borrowed
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from the theory of I-groups (see [3], [7]), where generalized intervals were originally
defined [5].

Let (L, <) be a lattice. Let r, s, t € L be such that r<s<t. The upper polar of ¢
with respect to s is the set

(s,)t={leL|lrnt=s};
the lower polar of r with respect to s is the set
(s,r)r ={leL|IVr=s}

Star-polars are defined as follows: *(s, £)1=(s, £)* if s<¢, and *(s, )*={s} if
s=t; *(r, ) =(r, 5); if r<s, and *(r, ). ={s} if r=s.
A generalized initial segment of L is a set of the form

(—oo,s,t] ={xeL|x < tVvbforsome b€ (s, 1)},

where s, t € L are such that s<t. A generalized final segment of L is a set of the
form

[r,s,0) = {xeL|x>rAbforsomebe(s,r)r}

where r, s € L are such that r<s. Generalized final and initial star-segments are
defined analogously, with the polars replaced by the corresponding star-polars.

The generalized interval topology (or gi-topology) on L, denoted by %(L),
takes as a subbase for its closed sets, L, ¢, and all the generalized final and initial
segments. Similarly, the generalized star-interval topology (or gi-*topology) on
L, denoted by ¥*(L), takes as a subbase for its closed sets, L, ¢, and all the general-
ized final and initial star-segments. Recall that the interval topology [4] on L,
denoted by £ (L), takes as a subbase for its closed sets, L, ¢, and all initial and
final segments, i.e., all sets of the forms

(—oo,ll={xeL|x <1},
[l,o)={xeL|x>1},
forallle L.

In [6], we proved that %(L) and ¥*(L) are intrinsic topologies, and that
G*(L)=2S(L).

Intervals, of course, are sets of the form [r, f]=[r, ) N (— o0, t]. Analogously,
we may define generalized intervals and generalized star-intervals to be sets of the
forms

[r,s, t] = [r,s, ©) N (—o0,s,t],

*[r, s, t] = *[r, s, 00) N *(— 0, s, 1],

respectively. If we consider all segments to be intervals as well as the sets defined
above, then # (L) is the coarsest topology whose closed sets contain the intervals.
We may characterize ¢ (L) and ¢*(L) similarly.
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We will use only the first part of the following result; we include the second part
for its intrinsic interest, i.e., to show how well-behaved distributive lattices are
with regard to generalized segments.

PRrOPOSITION 1.1. Let (L, <) be a lattice. Let r, t € L be such that r<t. If L is
modular, then

() for all x € (— o, r, t] N [¢, ), there exists b € (r, t)* such that x=t v b.
If L is distributive, then
(ii) for all x€(—oo,r,t] N [r, ), there exists be (r,t)- such that x=
(xADvb.

Proof. (i) Since x € (—oo,r,t], there exists de (r, 1) such that x<tv d.
Let b=x A d. Since x € [¢t, ), r<x, and hence

r=dAt>bAt=xAdAt>r,

i.e. b € (r, t)1. Furthermore, since L is modular, since t<x, and since b<x, we
have that
tVb=(xAt)VDb

=xA(VDb)
=xA(tV(dAx)
=xA(VdAx
= x.

(i) As in (i), we may find b € (r, 1) such that b=x A d for some d € (r, t)*
with x<t v d. Since L is distributive,

xXADVDEb=xA)V(xAd=xA@Vd=x.

2. Almost polar-dense lattices. A lattice (L, <) is said to have trivial polars
[6]if for all / € L, there exist r, ¢ € L such that r</<¢, (r, ) ={r}, and (z, D={t}.
We proved in [6] that if (L, <) is a lattice which has trivial polars, then ¥(L)=
G*(L).

However, it is not difficult to see (cf. the proof of Proposition 2.5) that, since R*
is dense-in-itself and totally ordered, ¥(R*)=JS(R")=%*(R"), and it is clear
that R* does not have trivial polars. Thus, in view of Proposition 1.1, one might
consider polar-dense lattices defined as follows: a lattice (L, <) is polar-dense
if for all x, y € L with x<y, there exists d € L such that x<d<y and y¢dv
(x, d)*. However, a polar-dense lattice must clearly be dense-in-itself, and thus Z
is not polar-dense. But clearly, Z has trivial polars, and hence ¥(Z)=%*(Z).

Therefore, we are lead to weaken the notion of polar-density as follows: A
lattice (L, <) is almost polar-dense if, whenever x, y € L are such that x<y and
for all x<d<y, yedv (x,d)*, there exist c, e € L such that c<x<y<e, y ¢
xV (¢, x)t, and x ¢y A (e, )+
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(We note that clearly, replacing polars by star-polars in the above definitions
gives equivalent conditions.)

We first show that we have in fact generalized lattices with trivial polars.

ProproSITION 2.1. Let L be a lattice. If L has trivial polars, then L is almost
polar-dense.

Proof. Let x<y, and suppose that for all x<d<y, yedv (x,d)*. Since L
has trivial polars, there exist c<x<y<d such that (c, s)-={c} and (d, »r={d}.
Then

yE{x} =xV(cx)"h
x¢{y} =y Ay
Thus, L is almost polar-dense.
Our next result shows that being polar-dense and being almost polar-dense are

self-dual properties, and indicates several other, equivalent ways to define these
two conditions.

PROPOSITION 2.2. Let (L, <) be a lattice and suppose that x,y,z € L are such
that x<y<z. Then the following two statements are equivalent:

() zeyv (x4
(i) xey A (z, ),
Proof. Clearly, (i) and (ii) are both equivalent to: (iii) there exists b € L such
that z=y v b and x=y A b.
The following examples show that the distinctions made in the above definitions
are not trivial.

ExaMPLE 2.3. We give an example of an almost polar-dense lattice with elements
x, y such that x<y and for all d<x, y € x v (d, x)*.
Let L=R*|x|R.In L, (0,0)< (1, 0), and if (a, )< (0, 0), then a=0 and b<0.
Thus
(a, b) = (0, b) = (1, b) A (0, 0),

ie. (1,8) € ((a,b), (0,0)*. Since (1,0)=(1,5)v (0,0), (1,0)€(0,0)v ((a, b),
(0, 0))*. Clearly, however, L is almost polar-dense.

ExaMPpLE 2.4. We give an example of an almost polar-dense lattice with elements
x, y such that x<y, the cardinality of [x, y] is infinite, and for all x<e<y, y €
ev (x, et

Foreachn e N, let P,=Z. Let L=|1I| {P, ] n € N}. Let x, y € L be the constant
functions nx=1 and ny=2 for all n € N. Then x<y. Suppose that x<e<y. Let

e’ € L be defined by
{21 if ne=2
ne' =
if ne = 1.
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Clearly, e A ¢'=x and ev ¢'=y, and hence y eev (x, e)'. Clearly, the cardin-
ality of [x, y] is infinite, and clearly, L is almost polar-dense.

We now show that, at least for modular lattices, being almost polar-dense
retains sufficient power from having trivial polars to force the gi-topology to be
equivalent to the gi-*topology.

PRrOPOSITION 2.5. Let (L, <) be an almost polar-dense, modular lattice. Then
Y(L)y=9*(L).

Proof. Let x € L. Clearly it suffices to show that

1 [x, ©) = (N{[x r, ®) |x <r) N (O {5 %, ) | s <x}),
(2) (--OO, x] = (n {(—OO’ r, x] I r< x}) N (n {(_ @0, X, S] I x < S})
It is easy to see (e.g. [6; Proposition 3.2]) that

(-OO,X] s (n{(—OO, r’x] I r< x}) n(n{(—'oo7 X, s]]x < S})-

Conversely, suppose that y ¢ (— oo, x]. Then y v x>x. Suppose that there exists
x<d<yv x such that y v x¢dv (x,d)" Since L is modular, then y v x ¢
(—o0, x,d] by Proposition 1.1 (i). Clearly, if ye(—o0,x,d], then yv xe
(=, x,d], and hence y ¢ (—o0, x, d]. Suppose that no such d exists. Then,
since L is almost polar-dense, there exists ¢ € L such that c<x<yv x and y v
x ¢ x v (c, x)*. Using Proposition 1.1(i) again, we can see that y v x ¢ (— oo, ¢, x],
and hence that y ¢ (— o0, ¢, x]. Therefore,

(—0,x12 (N{(=w, r,x]|r < x}) N (N {(= o0, % 5] | x < s},
and hence (2) holds. Similarly, (1) holds.

Since, as we noted above, Rt is polar-dense but does not have trivial polars and
Z has trivial polars but is not polar-dense, neither of these conditions is necessary
for the equivalence of the generalized interval topology and the interval topology
on totally ordered sets. However, as we show next, a totally ordered set whose
interval and generalized interval topologies are equivalent must be almost polar-
dense.

PROPOSITION 2.6. Let T be a totally ordered set. Then the following are equivalent:
() 4UT) = %(T);

(i) ¥(T) = A(T);

(iii) T is almost polar-dense.

Proof. Since T is totally ordered, ¥*(T)=.#(T) by [6; Corollary 3.4]. Thus
- (i) is equivalent to (ii). By Proposition 2.5, (iii) implies (i). Thus, it suffices to show
that (ii) implies (iii).
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Hence, suppose that (T)=.#(T), and let x, y € T be such that x<y. Clearly,
if there exists d € T with x<d<y, then

y¢{d} =dv(x,d)* .

Thus, suppose that [x, y]={x, y}. Suppose further that (—oo, x]={x}. Let
s, t € T be such that s<¢. If s=t¢, then

yeT =[s,t, ©) = (—0,s, t].

Suppose that s#¢. Since T is a lattice, and since (— o0, x]={x}, then x<s<t.
Thus, since T is totally ordered, and since [x,y]={x,y}, y<t. Hence ye
(—oo,s,t]. If x€[s,t, ©), then clearly y € [s, #, ). We conclude that y is a
member of the closure of {x} with respect to ¢(T), and hence that ¥(T) is not T}.
Since 4 (T) is Ty, this contradicts our hypothesis that %(T)=J(T). Therefore,
(—o0, x]#{x}, i.e., there exists ¢ € T such that c<x. Then clearly

yé{x} =xV(cs)t
Similarly, there exists d € T with y<d such that

x¢{y} =y A ).
Therefore, T is almost polar-dense.
We conclude this note by showing how to construct many natural examples
of almost polar-dense lattices.
Let {L, |y€Tl} be a collection of Ilattices. Let AeI', /€L, and
fell|{L, |y eT}. Define I’ € [II| {L, | y € T’} by
I ify=24
W= ’
yf otherwise.
ProPOSITION 2.7. Let {L, |y € T'} be a collection of lattices. If at least one L,
is almost polar-dense, then |11| {L, | y € I'} is almost polar-dense.

Proof. (A) Suppose first that £, g € [TI| {L, | y € '} are such that f<g and for
some A€l there exists /€ L; such that Af<I/<Ag and Ag¢lv (Af,])~. Then
f<LUI<g If x € (f, I)*, then Ax € (Af, I)*, and hence

dg # IV (%) = (W) v (Ax) = AP V x),

ie., g#l'v x. Thus g ¢ I’ v (f, ).
(B) Now suppose that f, g € [II| {L, | y € T'} are such that f<g and for all
f<h<g, g€hv (f, *. Then by (A), for all y e T, for all yf<I<yg, ygelv
(»f, D*. Let A € T" be such that L, is almost polar-dense. Then there exist ¢, e € L,
such that c<Af<Ag<e, Ag¢Afv (c, A)*, and AféAgA (e, 2g);. Clearly,
c’<f<g<e?, and by (A) and its dual, g ¢ /v (¢/, /)" and f¢ g A (¢?, g).
Therefore, |II| {L, ] y € I'} is almost polar-dense.
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A partially ordered set (P, <) is unbounded if for all p € P, there exist r, t € P
such that r<p<t.

COROLLARY 2.8. Let {T,|y €T’} be a collection of totally ordered sets. If at
least one T, is unbounded, then |11| {T, | y € I'} is an almost polar-dense, distribu-
tive lattice.

Proof. Since at least one T, is unbounded, at least one T, has trivial polars.
Thus, by Proposition 2.5, at least one T, is almost polar-dense. The result follows
from Proposition 2.7.

We note that neither Z+ nor Z~ is almost polar-dense. However, Z+ | x| Z~ is
easily seen to be almost polar-dense, and thus the converses of Proposition 2.7
and Corollary 2.8 fail to hold. Furthermore, Z+ | x| Z* is an example of a cardinal
product that is not almost polar-dense.
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