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ALMOST POLAR-DENSE LATTICES 

BY 

R. H. REDFIELD 

ABSTRACT—We introduce almost polar-dense lattices and prove 
that the generalized interval topology of an almost polar-dense, 
modular lattice is equivalent to its interval topology. Furthermore, 
for totally ordered sets, the converse holds: if the generalized 
interval topology is the interval topology, then the set is almost 
polar-dense. 

1. Introduction. We suggested in [6] that, instead of intervals in an arbitrary 
partially ordered set, one should consider generalized intervals (defined below). 
Replacing intervals by generalized intervals in the definition of the interval topology 
[4] proved to give a topology which was preserved by cardinal products of dually 
directed sets. However, this generalized interval topology did not necessarily 
contain the usual interval topology. By adjusting the definition of the generalized 
interval topology, we defined the generalized star-interval topology, which, for 
dually directed sets, was precisely the topology generated by the generalized 
interval topology and the interval topology. 

In [6], we specified a condition (having trivial polars) which implied that the 
generalized interval and star-interval topologies were equivalent for dually directed 
sets. In this note, we define a condition (being almost polar-dense) which is weaker 
than the previous condition and which implies the equivalence of the two topologies 
on modular lattices. Furthermore, a totally ordered set satisfies this condition if 
and only if the two topologies are equivalent. 

Terminology left undefined may be found in [1], [2], or [8]. If {Pa | a eA} 
is a collection of partially ordered sets, then we denote the cardinal product of 
the Pa by | I I |{P a | aG^}; thus, |II| {Pa | ae>4} is the product of the Pa 

ordered pointwise, i.e. by : f<g if and only if &f<(%g for all a e A. If A is finite, 
say ^4={1, 2 , . . . , n}, then we denote the cardinal product by Px | X | P21 x | • • • 
I x | Pn. We use N to denote the natural numbers, Z the integers, and R the real 
numbers. We let N, Z, and R have their usual order, and we let R+={r e R | r >0}, 
Z+={* eZ | ;>0}, and Z~={ieZ | KO}. 

Generalized intervals were designed to incorporate into the idea of "interval" 
the "relatively perpendicular" elements which may exist in non-to tally ordered 
sets. Our method of achieving this depends on the idea of polar, which is borrowed 
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from the theory of /-groups (see [3], [7]), where generalized intervals were originally 
defined [5]. 

Let (L, < ) be a lattice. Let r, s, t eLbe such that r<s<t. The upper polar oft 
with respect to s is the set 

(s, t)L = {leL\ lAt = s}; 

the lower polar ofr with respect to s is the set 

(5, r ) T = {leL\ I V r = 5}. 

Star-polars are defined as follows: *(s9t)-
L = (s,t)± if s<t9 and *(s9t)

1—{s} if 
,s=f; *(r,s)T = (r,s)T if r<s, and *(r, .y)T = {,s} if r=s. 

A generalized initial segment of L is a set of the form 

(— 00, s, t] = {x e L I x < t V b for some fc G (5, t)1}, 

where s, t e L are such that s<£. A generalized final segment of L is a set of the 
form 

[r, 5, 00) = {x G L I x > r A è for some 6 G (S, r)y}, 

where r, s e L are such that r < s . Generalized final and zmY/tf/ star-segments are 
defined analogously, with the polars replaced by the corresponding star-polars. 

The generalized interval topology (or gi-topology) on L, denoted by ^(L) , 
takes as a subbase for its closed sets, L, cj>, and all the generalized final and initial 
segments. Similarly, the generalized star-interval topology (or gi-*topology) on 
L, denoted by ^*(L), takes as a subbase for its closed sets, L, </>, and all the general­
ized final and initial star-segments. Recall that the interval topology [4] on L, 
denoted by </(£), takes as a subbase for its closed sets, L, cf>, and all z>z/;/a/ and 
final segments, i.e., all sets of the forms 

(— 00, /] = {x eL I x < /} , 

[/, 00) = {x G L I x > /} , 
for all / e L . 

In [6], we proved that @(L) and ^*(L) are intrinsic topologies, and that 
SF*(L)2/(I ) . 

Intervals, of course, are sets of the form [r, £] = [r, co) n (— 00, t]. Analogously, 
we may define generalized intervals and generalized star-intervals to be sets of the 
forms 

[r, s, f] = [r, 5, 00) n (— 00, s, f], 

*[r, s, t] = *[r, s, 00) n * ( -oo , s, r], 

respectively. If we consider all segments to be intervals as well as the sets defined 
above, t h e n ^ L ) is the coarsest topology whose closed sets contain the intervals. 
We may characterize @(L) and ^*(L) similarly. 

https://doi.org/10.4153/CMB-1975-049-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1975-049-x


1975] ALMOST POLAR-DENSE LATTICES 257 

We will use only the first part of the following result; we include the second part 
for its intrinsic interest, i.e., to show how well-behaved distributive lattices are 
with regard to generalized segments. 

PROPOSITION 1.1. Let (L, < ) be a lattice. Let r,teLbe such that r<t. If Lis 
modular, then 

(i) for all x e (— oo, r, t] n [t, oo), there exists b e (r, t)L such that x=t v b. 
If L is distributive, then 

{n) for all x e (— oo, r, t] n [r, oo), there exists be{r,t)L such that x = 
( J C A / ) V b. 

Proof, (i) Since x e (— oo, r, t], there exists de{r,t)L such that x<ty d. 
Let b=x A d. Since x e [t, oo), r<x, and hence 

r = dAt>bAt = xAdAt>r, 

i.e. b e (r, t)1. Furthermore, since L is modular, since t<x, and since b<x, we 
have that 

r v b = (x A t) v 6 

= x A ( l V i ) 

= x A (t V (d A x)) 

= X A(tV d) Ax 

= X. 

(ii) As in (i), we may find b e (r, t)L such that b=x A dfor some de (r, t)L 

with x < r v d. Since L is distributive, 

(x A 0 V b = (x A t) V (x A d) = x A (t V d) = x. 

2. Almost polar-dense lattices. A lattice (L, < ) is said to have trivial polars 
[6] if for all / e L, there exist r,teL such that r<l<t, (r, I)1 ={r}, and (f, / ) T = {f}. 
We proved in [6] that if (L, < ) is a lattice which has trivial polars, then @(L)= 

However, it is not difficult to see (cf. the proof of Proposition 2.5) that, since R+ 
is dense-in-itself and totally ordered, <^(R+)=J(Rlr)=^^{R+), and it is clear 
that JR+ does not have trivial polars. Thus, in view of Proposition 1.1, one might 
consider polar-dense lattices defined as follows: a lattice (L, < ) is polar-dense 
if for all x,yeL with x<y, there exists deL such that x<d<y and y$dy 
(x, d)L. However, a polar-dense lattice must clearly be dense-in-itself, and thus Z 
is not polar-dense. But clearly, Z has trivial polars, and hence ^ ( Z ) = ^ * ( Z ) . 

Therefore, we are lead to weaken the notion of polar-density as follows: A 
lattice (L, < ) is almost polar-dense if, whenever x,y e L are such that x<y and 
for all x<d<y, y edy (x, d)1, there exist c,e eL such that c<x<y<e, y £ 
x v (c, x)L, and x $ y A (e, y)T. 
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(We note that clearly, replacing polars by star-polars in the above definitions 
gives equivalent conditions.) 

We first show that we have in fact generalized lattices with trivial polars. 
PROPOSITION 2.1. Let L be a lattice. If L has trivial polars, then L is almost 

polar-dense. 

Proof. Let x<y, and suppose that for all x<d<y, yedy (x, d)L. Since L 
has trivial polars, there exist c<x<y<d such that (c, s)1={c} and (d, y)T={d}. 
Then 

y $ {x} = x V (c, x)1, 

*${y} = y A(d, y)T. 

Thus, L is almost polar-dense. 
Our next result shows that being polar-dense and being almost polar-dense are 

self-dual properties, and indicates several other, equivalent ways to define these 
two conditions. 

PROPOSITION 2.2. Let (L, < ) be a lattice and suppose that x,y, z e L are such 
that x<y<z. Then the following two statements are equivalent: 

(i) zeyv (x,y)L; 
(ii) xey A (z,y)T. 

Proof. Clearly, (i) and (ii) are both equivalent to : (iii) there exists b e L such 
that z=y v b and x=y A b. 

The following examples show that the distinctions made in the above definitions 
are not trivial. 

EXAMPLE 2.3. We give an example of an almost polar-dense lattice with elements 
x, y such that x<y and for all d<x, y e x v (d, x)1. 

Let L=R+ | x | R. In L, (0, 0)<(1 , 0), and if (a, £)<(0, 0), then a=0 and b<0. 
Thus 

(a, 6) = (0, b) = (1, b) A (0, 0), 

i.e. (1, b) G ((a, b), (0, 0))\ Since (1, 0) = (1, b) v (0, 0), (1, 0) e (0, 0) v ((a, b), 
(0, O))-1. Clearly, however, L is almost polar-dense. 

EXAMPLE 2.4. We give an example of an almost polar-dense lattice with elements 
x9 y such that x<y, the cardinality of [x, y] is infinite, and for all x<e<y, y e 
e v (x, e)L. 

For each neN, let P n = Z . Let L=|IT| {Pn | n e N}. Let x, y e L be the constant 
functions nx=l and ny=2 for all neN. Then x<y. Suppose that x<e<y. Let 
e' e L be defined by 

1 if ne = 2 

2 if ne = 1. 
ne = 
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Clearly, e A e'=x and e v e'=y, and hence y e e v (*, e)1. Clearly, the cardin­
ality of [x, y] is infinite, and clearly, L is almost polar-dense. 

We now show that, at least for modular lattices, being almost polar-dense 
retains sufficient power from having trivial polars to force the ^/-topology to be 
equivalent to the gi-*topology. 

PROPOSITION 2.5. Let (L, < ) be an almost polar-dense, modular lattice. Then 
&(L)=&*(L). 

Proof. Let x e L. Clearly it suffices to show that 

(1) [x, oo) = (fl {[x, r, oo) | x < r}) n (fl {[s, x,co)\s< x}), 

(2) ( - G O , x] = (fl {(-oo, r, x] | r < x}) n (fl {(-oo, x, s] \ x < s}). 

It is easy to see (e.g. [6; Proposition 3.2]) that 

(~oo, x] s (fl {(-oo, r9x]\r< x}) n (Pl f t -oo, x,s]\x< 5}). 

Conversely, suppose that y <£ (— 00, JC]. Then j v x>x. Suppose that there exists 
x<d<y v x such that y v x$dv (x, d)L. Since L is modular, then y v x $ 
(—co,x,d] by Proposition 1.1 (i). Clearly, if y e (— 00, x, d], then yyxe 
(—00, x, rf], and hence y $ (— 00, x, */]. Suppose that no such d exists. Then, 
since L is almost polar-dense, there exists ceL such that c<x<y v A: and j v 
x$xv (c, x)1 . Using Proposition 1.1 (i) again, we can see that y v x $ (— 00, c, x], 
and hence that j ^ (— 00, c, x]. Therefore, 

( - 00 , x] 2 ( f l { ( -oo , r , x , ] | r < x}) n (fl {(-00, x, s] \ x < s}), 

and hence (2) holds. Similarly, (1) holds. 
Since, as we noted above, R+ is polar-dense but does not have trivial polars and 

Z has trivial polars but is not polar-dense, neither of these conditions is necessary 
for the equivalence of the generalized interval topology and the interval topology 
on totally ordered sets. However, as we show next, a totally ordered set whose 
interval and generalized interval topologies are equivalent must be almost polar-
dense. 

PROPOSITION 2.6. Let The a totally ordered set. Then the following are equivalent: 

(i) ^ (T) = 9*(T); 

(ii) 9(T)=S{T)\ 

(iii) T is almost polar-dense. 

Proof. Since T is totally ordered, <&*(T)=J{T) by [6; Corollary 3.4]. Thus 
(i) is equivalent to (ii). By Proposition 2.5, (iii) implies (i). Thus, it suffices to show 
that (ii) implies (iii). 
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Hence, suppose that ^(T)=J(T), and let x, y e Tbe such that x<y. Clearly, 
if there exists deT with x<d<y, then 

y${d} = dv (x, d)±. 

Thus, suppose that [x,y]={x,y}. Suppose further that (— oo, x]={x}. Let 
s, t e Tbe such that s<t. lîs—t, then 

yeT = [s, t, oo) = (-oo,s, *]. 

Suppose that «s^ . Since T is a lattice, and since (— co, *]={;*:}, then x<.y<f. 
Thus, since T is totally ordered, and since [x,y]={x,y}, y<t. Hence ye 
(—00, s, t]. If x e [>, f, oo), then clearly j G [>, t, oo). We conclude that y is a 
member of the closure of {x} with respect to @(T), and hence that @(T) is not TV 
Since J(T) is J7!, this contradicts our hypothesis that (^(T)=Jr(T). Therefore, 
(—oo, x]?£{x}, i.e., there exists c e Tsuch that c<x. Then clearly 

y£{x} = xv (c, s)L. 

Similarly, there exists d G T with y<d such that 

x${y} = yA (d, y)T. 

Therefore, J7 is almost polar-dense. 
We conclude this note by showing how to construct many natural examples 

of almost polar-dense lattices. 
Let {Ly | y G V} be a collection of lattices. Let XeF, le LA, and 

fe \U\ {Ly\ye V}. Define / ' G |II| {Ly \ y e T} by 

il if y = X 

\yf otherwise. 

PROPOSITION 2.7. Let {Ly\y e Y) be a collection of lattices. If at least one Ly 

is almost polar-dense, then | II | {Ly | y e T} is almost polar-dense. 

Proof. (A) Suppose first that / , g e \U\ {Ly | y e T} are such that f<g and for 
some XeF there exists leLk such that Xf<l<Xg and Xg^ly (A/,/)-1. Then 

f<lf<g. If * G (/, /Ox , then Xx e (Xf / ) x , and hence 

Xg^lN (Xx) = (A/0 V (Xx) = A(i' V x), 

i.e., £?*/' v x. Thus g$l'y (/, /0-K 
(B) Now suppose that f g e\Ii\ {Ly\y eY} are such that f<g and for all 

f<h<g, gehy (f h)L. Then by (A), for all y e I \ for all yf<Kyg, ygely 
(//, Z)-1. Let A G T be such that Lx is almost polar-dense. Then there exist c,e eLx 

such that c<Xf<Xg<e, Xg $ Xfv (c9 Xf)1-, and A/<£ Xg A (e, Ag)T. Clearly, 
cf<f<g<eg, and by (A) and its dual, g $fv (cf,f)L a n d / £ # A (e°, g)T. 

Therefore, | IT | {Ly \ y e V} is almost polar-dense. 

yV = 
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A partially ordered set (P, < ) is unbounded if for allp eP, there exist r,teP 
such that r<p<t. 

COROLLARY 2.8. Let {Ty\y e T} be a collection of totally ordered sets. If at 
least one Ty is unbounded, then |II| {Ty | y e T} is an almost polar-dense, distribu­
tive lattice. 

Proof. Since at least one Ty is unbounded, at least one Ty has trivial polars. 
Thus, by Proposition 2.5, at least one Ty is almost polar-dense. The result follows 
from Proposition 2.7. 

We note that neither Z+ nor Z-* is almost polar-dense. However, Z+ | x | Z~ is 
easily seen to be almost polar-dense, and thus the converses of Proposition 2.7 
and Corollary 2.8 fail to hold. Furthermore, Z + | x | Z+ is an example of a cardinal 
product that is not almost polar-dense. 
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