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Abstract

Generalizing known results for special examples, we derive a Khintchine type decomposition
of probability measures on symmetric hypergroups. This result is based on a triangular central
limit theorem and a discussion of conditions ensuring that the set of all factors of a probability
measure is weakly compact. By our main result, a probability measure satisfying certain re-
strictions can be written as a product of indecomposable factors and a factor in I0(K), the set
of all measures having decomposable factors only. Some contributions to the classification of
IQ{K) are given for general symmetric hypergroups and applied to several families of examples
like finite symmetric hypergroups and hypergroup joins. Furthermore, all results are discussed
in detail for a class of discrete symmetric hypergroups which are generated by infinitely many
joins, for a class of countable compact hypergroups, for Sturm-Liouville hypergroups on [0, oo[
and, finally, for polynomial hypergroups.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 60 B 15, 60 E 07,
60 E 10, 33 A 65.
Keywords and phrases: Khintchine decomposition, infinitely divisible measures, indecompos-
able measures, symmetric hypergroups, polynomial hypergroups, Sturm-Liouville hypergroups,
hypergroup joins.

Introduction

Several authors have proved factorization theorems for the commutative
topological semigroup (M1 {K), *) of all probability measures on some spe-
cial symmetric hypergroups, where the notation of hypergroups was usually
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418 Michael Voit [2]

suppressed (see, for example, Bingham [4, 5], Finkh [18], Kingman [27],
Lamperti [29], Ostrovskii [36], Ostrovskii and Truhina [37], Schwartz [41],
Truhina [45] and, for a more general background, Rusza and Szekely [40]).
Having discussed infinitely divisible probability measures on commutative
hypergroups in [47], we wish to extend these investigations and establish fac-
torization results for arbitrary commutative hypergroups. But, since we are
still far from being able to transfer many crucial properties of locally compact
abelian groups to arbitrary commutative hypergroups, we shall prove here
the main results on decompositions of probability measures, infinitely divis-
ible measures and probability measures having no indecomposable factors
only for symmetric hypergroups satisfying an additional condition. These
restrictions ensure that the factor sets of probability measures on K are
compact in the usual sense. For locally compact groups this compactness is
equivalent to the compactness of the group, and therefore the main results
contained in this paper cannot be applied to most locally compact abelian
groups. Nevertheless, our restrictions seem to be admissible and convenient,
since Khintchine type decomposition theorems are well known for locally
compact abelian groups (see Parthasarathy [38]), and since the conditions
mentioned above are satisfied for many other symmetric hypergroups. For
instance, the main results of this paper can be applied to the important fam-
ilies of Sturm-Liouville hypergroups on R+, polynomial hypergroups and
compact symmetric hypergroups. In particular, the factorization results con-
tained in [4, 5, 18, 29, 41] appear as immediate consequences of the unified
treatment in this paper.

We briefly outline the structure of this article: In the first Section we intro-
duce some preliminary notations and facts about commutative hypergroups.
For further details and notations used throughout this article we refer to
the surveys of Heyer [22, 23], Jewett [25] and, in particular, Voit [47]. In
Section 2 we investigate conditions which imply the compactness of the set
of all factors of probability measures on K. These results are used in Sec-
tion 3 to derive the announced Khintchine type decomposition of probability
measures into an infinitely divisible part and a product of indecomposable
factors. Section 4 contains some supplementary general results about the set
of all probability measures having no indecomposable factors. Since this set
cannot be characterized for general symmetric hypergroups, we shall discuss
only some particular and preparatory general results in Section 4. This section
deals also with some special results for hypergroup joins and finite symmetric
hypergroups. A complete determination of I0(K) is contained in Sections
5-8 separately for different further families of examples. In this way, we
shall treat symmetric hypergroup structures on No which are constructed by
an infinite chain of hypergroup joins (Section 5), their dual compact hyper-
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group structures (Section 6), Sturm-Liouville hypergroups on E+ (Section 7)
and, lastly, polynomial hypergroups (Section 8). For these classes of exam-
ples we shall also reformulate the general decomposition theorems of Section
3 and the Levy-Khintchine representation for infinitely divisible probability
measures.

It should be finally noted that Section 8 also contains some results concern-
ing the dual space and the support of the Plancherel measure of a polynomial
hypergroup. These results may be of interest independently of our decom-
position results, but some of these facts are needed to apply the theorems of
Sections 2 and 3 to polynomial hypergroups.

1. Preliminaries

A hypergroup (K, *) (or K, for short) consists of a locally compact space
K and a convolution * on the Banach space Mb(K) of all bounded measures
on K such that (Mb(K), *) becomes a Banach algebra and such that there
exist a neutral element e e K (that is, the Dirac measure 5e is the neutral
element of the Banach algebra Mb{K)) and a continuous involution ~~ :
K -» K that corresponds to the inverse mapping on a topological group.
If this involution is the identity mapping on K, then K is said to be a
symmetric (or hermitian) hypergroup. From the hypergroup axioms (see, for
example, Jewett [25]) it follows immediately that every symmetric hypergroup
is commutative, that is, the convolution * is commutative.

If L is a locally compact space, let Mb(L) be the space of all bounded
Borel measures on L, Mb(L) the space of all nonnegative bounded measures
on L and Ml (L) the space of all probability measures on L. The spaces
C{L), Cb{L), C0(L) and CC{L) will be as usually defined.

For a given commutative hypergroup K let K be the dual space of K,
m (up to a multiplicative constant) the Haar measure on K and n the
Plancherel measure on K associated with m .

Finally we introduce two important characters: 1 stands for the iden-
tity character and a0 for the uniquely determined positive character that is
contained in supp n (for details we refer to Voit [46]). In many cases (for
example, for groups) we have a0 = 1. In Sections 2 and 3 the existence of
a0 will be used to derive results for general commutative hypergroups from
results for commutative hypergroups that satisfy 1 e supp n . The existence
of a0 was applied earlier by Schwartz [41] to obtain factorization results for
polynomial hypergroups.
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420 Michael Voit [4]

1.1. NOTATION. Let K be a commutative hypergroup. Then Ml(K)
equipped with the weak topology is a commutative topological semigroup.
We shall introduce some natural notations for elements of Ml (K).

(1) v e Ml(K) is said to be a factor of fi e MX(K) if v * p = p. for some
measure p e Ml{K). For a measure n e MX{K), D(n) c Ml{K) stands
for the set of all factors of fi. For L c MX{K) let Z)(L) := U ^ L - 0 ^ ) •

(2) The Dirac measure Se is the neutral element of Ml(K).
(3) p e ^ ' (A:) is called a unit if there exists v e MX{K) such that

p*v = de. The set U of all units is a subgroup of the semigroup Ml(K) and
consists exactly of the Dirac measures 8X with JC ranging over the maximal
subgroup of K (see Jewett [25, 10.4]).

(4) n e Ml(K) is called an idempotent if n = fi*/j. and ji^ de . By Jewett
[25, 10.2E], n e MX(K) is an idempotent if and only if ft is the normalized
Haar measure of a compact proper subhypergroup L of K ('proper' is taken
to mean L # {<?} ).

(5) ft € M\K) is called infinitely divisible if for each n e N there exists
Hn 6 Mx (A) such that ft = fi"n . Let /(AT) be the set of all infinitely divisible
probability measures on K.

(6) fi € Mx (K) is called indecomposable if D(n) = U U {ft* p : p e U}
and if n is not a unit. Let I0(K) be the set of all probability measures on
K having no indecomposable factors.

1.2. PROPOSITION. Let K be a second countable commutative hypergroup.
Then K is a second countable locally compact space.

PROOF. Considering Jewett [25, 7.3], we only have to verify that K is
second countable. But, if K is second countable, then Ll(K) is obviously
a separable Banach algebra. Thus the unit ball B := {<p e Ll(K)* : \\(p\\ < 1}
of all linear functional on Ll(K) that are bounded by 1 is a compact and
metrizable space with respect to the a{Ll(K)*, L1(A'))-topology. Since any
compact metric space is second countable and since K is homeomorphic to
the structure space A(L1(AT)) c B of Ll{K) (Jewett [25, 6.3]), the assertion
follows.

The following proposition is useful to discuss some examples of the Sec-
tions 5 and 8.

1.3. PROPOSITION. Let K be a commutative hypergroup, and let a e
KnLl(K). Then a is a discrete point in K, a is contained in supprc
and a/||a||2 is a nontrivial idempotent in LX(K).
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PROOF. Since

<*(*)• / a{y)p{y)dm{y) = f a(x *y)f3(y)dm(y)
JK JK

= f a(y)P(x*y)dm(y)
JK

= fi(x)'fa(y)fi(y)dm(y)
JK

for all x € K and f3 e K, it follows that a(P) = 0 for every $ e AT\{a}.
Therefore, since d(a) = ||a||2 > 0 and since a is continuous, we see that a
is isolated in K and that a e Ll(K). Now the inversion theorem (Jewett [25,
12,2C]) implies a = aw and hence a G supprc . Finally, (d/||a||2)2 = d/||a||2

and the injectivity of the Fourier transform (Jewett [25, 7.3E]) show that
a/HaJlj is a nontrivial idempotent in Ll(K).

2. Compactness of the set of all factors of a probability measure

In this section we discuss some conditions for commutative hypergroups
which ensure that D(L) is weakly compact for every compact set L c
Ml (K). These conditions will be applied in the Sections 5-8 to several
families of hypergroups in order to verify the compactness conditions which
are needed for the factorization results in the Sections 3 and 4. We first
present a property of a measure n e Ml (K) which is, under certain addi-
tional assumptions, equivalent to the weak compactness of D(n)\

2.1. DEFINITION. Let K be a symmetric hypergroup. Then fi e Ml(K)
has Property (D) if there exists a neighbourhood W of a0 in supp n such
that v is positive on W for each v e D(/i). We say K has Property (D) if
every fi e Ml{K) has Property (D).

2.2. PROPOSITION. Let K be a second countable commutative hypergroup.
If 1 e supp 71, then for every set L c Ml(K) the following statements are
equivalent.

(1) L is relatively compact with respect to the weak topology.
(2) For every e > 0 there exists a compact set H c K such that n{K\H) <

e for every ft e L.
(3) For every e > 0 there exists a neighbourhood W of 1 in supp % such

that Re/i(a) > 1 - e for all n 6 L and a e W.
Moreover, if 1 £ supp TT, then (1) and (2) are equivalent, and (1) implies

that for every e > 0 there is a neighbourhood W of 1 in K such that
Re fi{a) > \ - e for all n e L and a e W .
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PROOF. For (1) «• (2) see Parthasarathy [38, Theorem II.6.7].
Now assume (2). Fix e > 0 and choose H as described in (2). Then the

set W := {a e supp n : \a(x) - 1| < e Vx e H} is a neighbourhood of 1 in
supp n (or in K respectively) and satisfies

Re/i(c*) = / Re(a(x))dfi(x) > [ Re(a(x)) dfi(x) -
JK JH

>(l-e)-fi(H)-e> l - 3 e + e2

for any a e W and any fi e L. Thus (3) and the additional assertion follow.
Now let us assume that 1 € supp n and that for a given e > 0 there exists

a neighbourhood W as described in (3). Take a function h 6 CC(K) such
that h > 0, supp A n supp ft c W, fghdn = 1 and h{a) = h{a) for all
a e K. Then h e C0(K) is a real valued function satisfying h < h(e) = 1
(see [7, Theorem 2.4.1]). In particular, H := {h > 1/2} c K is compact and
satisfies

\n(K\H)< f (l-h)dn= l{\-p.)hdn= f(l-Refi)hdn<e.
JK JK JK

This finishes the proof of Proposition 2.2.

2.3. LEMMA. LetK be a second countable commutative hypergroup and L
a weakly closed set in M\K). If D{L) is relatively compact, then D(L) is
compact.

PROOF. We have to show that D(L) is closed. To do this, take a sequence
(vn)neti C D(L) that converges weakly to v e Ml{K). Then there exists a
sequence {pn)n£N c D{L) such that pn * vn = /xn e L for all n e N. Since
Mx (K) is a complete separable metric space with respect to the weak topology
[38, Theorems II.6.2 and II.6.5], we may assume that (pn)neN converges to
a measure p e Ml(K). Thus,

* P =

which proves v € D{L) as claimed.

2.4. COROLLARY. Let K be a second countable symmetric hypergroup
with 1 e supp n. Then fi e Ml(K) has Property (D) if and only if D(ji) is
compact.

PROOF. We first note that the symmetry guarantees that all characters on
K are real valued. Assume that fi £ Ml(K) has Property (D). Fix e > 0
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[7] Probability measures 423

and define

W := {a € K : fi{a) > 1 - e and v(a) > 0 Vv 6 D(ji)}.

Since fi e Cb(K) and #(1) = 1, W is a neighbourhood of 1 in K. Take

I/J , v2 e M^A") with i/j * v2 = ^ . Thus, since H^H^ = Halloo = *' w e

get £,(a) > #(a) > 1 - e for every a e W. Therefore, by Proposition 2.2,
D(n) is relatively compact with respect to the weak topology. Now Lemma
2.3 completes the first part of the proof.

The converse statement is an immediate consequence of Proposition 2.2.

In order to establish analogous results in Section 3 for commutative hy-
pergroups satisfying 1 0 supp n we introduce a modified hypergroup convo-
lution • on K that is connected with * in an intimate way. Let a0 be the
positive character that is contained in supp n. Defining

y y

we get a new commutative convolution on Mb(K) by bilinear and continuous
extension [46, Theorem 2.2]. Then (K, •) is a commutative hypergroup for
which 1 e supp 7T# holds (?r# stands for the Plancherel measure of (K, • ) ;
see Voit [46]). The following lemma describes some connections between the
semigroups (M^K),*) and (A/1 (K), • ) :

2.5. LEMMA. q>: (M' (K), *) -* (Ml (K), • ) , fi i-> aon/ju(ao), is a weakly

continuous injective semigroup homomorphism; <p(Ml{K)) is given by

\ueM\K):-veMb{K)\.
I "o i

Furthermore, (p(D{n)) = D9(<p{n)) for every ft e M\K), where Dt{v) de-
notes the set of factors of a measure u e Ml (K) with respect to • .

PROOF. For fi, v e Ml{K) and / e CC(K) we have

Iv Iv Iv U\CX.{\)V\OLf\)

Thus <p is a homomorphism. The injectivity of #> and the description of
(p{Mx(K)) are obvious.
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424 Michael Voit [8]

In order to prove that <p is weakly continuous, we first note that the map-
ping Ml(K) —> R, /z i-> p.(a0) = fKaod/i, is weakly continuous. Further-
more, the mapping Ml(K) -> M^{K), n i-> aon, is continuous with respect
to the vague topology. Thus, since on Ml(K) the weak topology coincides
with the vague topology, the weak continuity of q> follows.

Now let n, u{, v2 e Ml(K) satisfy i>, • v2 - cp{fi). Then (l/ao)i/l and
(l/ao)i>2 are positive Radon measures on K and satisfy

f Ldv f Ldv f f f -L-d{Sx.5){z)dvx{x)du2{y)

-L oo.

Thus from ( l /ao) i / , , {l/ao)i>2 £ M^(K) it follows that vx, v2 e <p{D{n)).
Therefore Dt{cp(n)) c <p{D{ft)). The converse inclusion holds trivially.

2.6. LEMMA. Let K be a second countable commutative hypergroup. As-
sume that there exists a sequence (ak)kefl c C0(K) DAT consisting of positive
characters that converges to 1. Then, for every compact set L c Mi (K),
D(L) is compact and the mapping <p : D(L) —* <p(D(L)) as defined in Lemma
2.5 is a homeomorphism.

PROOF. Since {v e M^{K), \\v\\ < 1} is compact and metrizable with
respect to the vague topology, every sequence (/*n)neN C D(L) has a subse-
quence (nn ) / 6 N that converges vaguely to a limit v e M£(K) with \\u\\ < 1.
Since

Hm fiHi(ak) = }\mJKakdMni = J^du = i>{ak)

for every k e N, we see that (fin )nGN converges pointwise to v on

{ak:keN}cK.
Proposition 2.2 shows that for every e > 0 there is a neighbourhood W of
1 such that Re/i(a) > l - e f o r a l l / * e . L and a e W. Therefore, if we use
the properties of the ak , for every e > 0 there exists an index kQ such that
p{<*k) > M<*k) > 1 - e f o r al l k > k0, n&L a n d p e D{n). I t fo l lows t h a t
v(ak) > 1 - e for k > kQ, and thus ||i/|| = v(l) = 1. Hence {nn ) / eN c D{L)

tends weakly to v e MX(K) which proves that D(L) is relatively compact.
Now Lemma 2.3 yields that D(L) is weakly compact. Since (p is continuous
by Lemma 2.5, the proof is complete.

At the end of this section we present a condition which implies Property
(D):
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2.7. LEMMA. Let K be a second countable symmetric hypergroup such that
there exists a net (Wa)a€A of connected subsets of K such that
{Wa n supp7r)a€^ is a neighbourhood base of a0 in supprc. Then K has
Property (D).

PROOF. We first note that £(a0) > 0 and fi € Cb(K) for any fi e MX{K).
Thus there exists Wa on which fit is positive. Hence v\w ^ 0 for every
v G D(fi), and, since Wa is connected, i>\ w > 0.

2.8. REMARK. Using Lemma 2.3 and Lemma 2.7, we see that for sym-
metric hypergroups with 1 e supp n and with the connectedness property of
Lemma 2.7, D(L) is compact for every compact set L c Ml(K). Further-
more, since Property (D) and the connectedness condition are preserved by
the modification introduced above, Lemma 2.5 tells us that we can reduce
pure algebraic factorization questions to the case 1 e supp n. This preserva-
tion property is the reason for having introduced Property (D) in the form
above.

3. A Khintchine type decomposition theorem for symmetric hypergroups

This section is devoted to a Khintchine type decomposition theorem for
probability measures on symmetric hypergroups. To derive this main result
which is formulated in Theorem 3.8 we shall need some preparatory results,
one of them being the following central limit theorem which is a consequence
of the fact that the set of all infinitely divisible probability measures is weakly
closed.

3.1. PROPOSITION. Let K be a symmetric hypergroup. Let («,),6N c N be

a sequence satisfying lim . ^^ n. = oo, and let the measures n, fii . e M' (K)
(i,jeN, 1 <i<nj) satisfy

lim Ylfitjia) = fi{a) and lim ma* | /i ,7(a) - 1| = 0

for every a € K. Then ft is infinitely divisible.

PROOF. For a e K we have

fi(a) = JKm exp
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Thus, by [47, Theorem 2.5], the sequence (expCEZi^tj ~ 1)));€N C MX{K)
converges vaguely (and hence weakly) to n G Ml(K), and this sequence
consists of infinitely divisible measures. Theorem 4.7 of Voit [47] finishes
the proof.

We next introduce some notation needed for the subsequent results.

3.2. NOTATION. Let A" be a second countable commutative hypergroup
and n e Ml(K) a fixed probability measure. Since then K is also second
countable (see Proposition 1.2), there exists a function / e Ll{K) n Cb{K)
such that /(a) > 0 and I (a) = T(a) for all aeK.

Now, using the convention l/oo = 0, we define the function

A:= / -min ( l , - l / l

Then h and h • ln|#| are contained in the space L (K) n Cb{K) and, since
0 > In \i>\ > In \fa\ for any v e D(/i), the function

6{v) :=- I \n\v\-hdn
JK

is well defined and weakly continuous on D(n). Let us note two obvious
properties of 6:

(1) 0(i/) > 0 , for all v£D{n);
(2) 6{v{ * v2) = 0(i/,) + 6(v2), for all i/,, i/2 6 Z>(/i).

3.3. LEMMA. /« f/ie situation above let fi G Ml(K) be a measure without
idempotent factors. Then, for every compactum L c K and every e > 0,
there exists d > 0 such that

v e /)(//), d(v) <d=> \v(a)\ > 1 - e Va 6 L.

/« particular, v e D{n) is a unit if and only if 6{v) = 0.

PROOF. Fix e > 0. If h is given as in 3.2, then h € C0(K) is real valued
and satisfies \h\ < h(e) [7, Theorem 2.4.1]. Also W := {x e K : \a(x) - 1| <
e/2 for all a € L} is an open neighbourhood of e e K. Moreover we have
c := inf{h(e) - h(x): x e K\W} > 0.

In order to prove this fact, we first note that

{x G K : h(x) = h(e)} = {x £ K : p{x) = 1 V£ e supp/iTt}

is a compact subhypergroup of K (see Bloom and Heyer [8, Proposition 3.1])
where the associated normalized Haar measure 0) satisfies

supp/ire = supphn c {P e K : &(£) = 1}.
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Hence, using [47, Theorem 2.3], we see that co is an idempotent factor of
H. Thus co = 8e, and therefore h(x) ̂  h(e) for every x e K\{e} . Lastly,
since S := {x G K : h{x) > 1/2} and S\W are compact, we conclude c > 0
as claimed.

Now if we define 8 := e • c /8, then v e D(fi) and 6{v) < 8 imply that

K\W
\d{v*v*)< / ki"e)~hd(v*u*) = - f{\-\i>2\)hdn

JK C c JK

< — [ln{\u\)-hdn<-d<e/4

and
r

1 -a)d{v *v*) +

for every ae L.
The last assertion also follows since v e Ml (K) is a unit if and only if

\v\ = 1 on K.

The elementary assertion of the following remark is needed for the proof
of Theorem 3.5.

3.4. REMARK. For n e N consider the group G = (Z/2Z)". Since the
product of all 2" elements of G is equal to the neutral element e of G,
any product of 2" elements of G that is not equal to e contains at least
two equal factors. We shall use this fact below via the obvious isomorphism
between G and the n-tuple of all signs of n nonzero real numbers.

3.5. THEOREM. Let K be a second countable symmetric hypergroup. Let
ft e Mi(K) be a measure with Property (D) such that no factor of n is
idempotent or indecomposable. Then there exists a unit p e Ml(K) such
that n* p is infinitely divisible.

PROOF. (1) Using Lemma 2.5, we may assume without loss of generality
that 1 e supp n (for the interrelation between (K, *) and (K, •) see Voit
[46]). Then D(/i) is weakly compact by Corollary 2.4. Using Notation 3.2,
we first observe that

inf e{v) = Q,

since otherwise the infimum would be attained at an indecomposable factor
of fi. Thus, since every factor of fi satisfies the conditions of Theorem 3.5,
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we get
inf 6{u) = 0{n)/2.
B()>e<)l2

Hence there exist ji{, fi2£ D{n), such that /i{ * n2 = n and 0(/*,) = 6{p.2).
A repetition of these arguments shows that for every n e N there exist factors
vn,l>un,2>--- ' "»,2" G DM S U c h t h a t

J / » , 1 * - "* I / « .2«=^ and 0(vHik) = 2-n>6(n) (k = 1, 2, . . . , 2").

(2) Fix m e N and let ax, ... ,am be different points of K such that
#(<*,•) # 0 for / = 1, . . . , m. We shall prove that there exists a unit
p G M\K) such that pfi is positive on {a,, . . . , am} . We may assume
that p. takes negative values on this set (otherwise take p = Se). Then, if
the measures vm x, vm 2 , . . . , vm 2m e D{/i) are given as described at the
end of part (1), Remark 3.4 shows that we may assume that i>m lvm 2 is
positive on {al, ... , am} . Therefore X{ '-=vm 3 * • • • * vm 2m e D(/i) has the
property that X has the same sign as fi. on {ai,... , am}, and that 0(A,) =
(1 - 2l~m) • 6{n). Since every factor of fi satisfies the conditions of The-
orem 3.5, a repetition of our arguments implies that for any k e N there
exist measures kk e D(n) such that 6{kk) = (1 - 2l~m)k • d(n) and such
that Xk has the same sign as jx on {ax, ..., am}. Since D(fi) is compact
and metrizable, there exists a subsequence (Ak ) / eN that converges weakly to
a measure p e D(fi). Since 6(p) = 0, Lemma 3.3 shows that p is a unit.
Moreover, since (Xk ) / e N converges pointwise on K to p [47, Theorem 2.6],
p has the same sign as p, on { a , , . . . , an} .

(3) By Proposition 1.2 there exists a countable dense subset {a, , a2 , . . .}
of K. For any m e N there exists a unit pm such that pm •// is nonnegative
on {a, , . . . , a m } . Since D(/i) is compact, the sequence (pm)meS has a
convergent subsequence where the limit p is again a unit and where /5 has
the same sign as ft, on {a{, a 2 , . . . } . Since /) and # are continuous on K,
this remains valid on K.

(4) Since the conditions of Theorem 3.5 hold for every factor of n, parts
(1) and (3) show that for every n e N there exist measures vn , , vn 2,

^ ( fivn,2" e D ^ s u c h t n a t n̂ i * """ * vn,2n = ^ * ̂  (P defined as at the end of
part (3)) and such that

e(unk) = 2~n-e(fi) and 0H>k{a)>0 (a G K, k = 1, 2, . . . , 2").

Now Lemma 3.3 and Proposition 3.1 complete the proof.

3.6. L E M M A . Let K be a commutative hypergroup. If n,v e Ml(K) have
no idempotent factors and satisfy n e D(y) and v e D(fi), then there exists
a unit p G Ml(K) such that fi = p*v .
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PROOF. Using the function 6 on D(fi) according to Section 3.2, from
ft = v*Xx and v = /**A2 we obtain d(ft) = 0(i/)+0(A,) = 6(/i)+6(Xx)+0(X2).
Since 0(A,), 0(X2) > 0, 0(A,) = 0(A2) = 0 follows. Therefore, by Lemma
3.3, A, and X2 are units.

3.7. COROLLARY. Let K be a second countable commutative hypergroup.
Let fi e MX(K) be without idempotent factors such that D(n) is compact.
If the sequence (vn)neJi C D(n) satisfies vn e D{vn+i) for every n e N,
then there exists a sequence (pw)n€N of units such that (Pn*vn)n€n is weakly
convergent.

PROOF, (cf. Parthasarathy [38, Theorem III.5.3]) D(ft) is a compact, met-
rizable space with a suitable metric d . Let v e D(fi) be the weak limit of
a convergent subsequence of (^n)neN . Denoting the set of units by U, we
show that

lim inf d{vn * p, v) = 0

which yields the assertion of the corollary. To show this, take a further sub-
sequence (vn )jfc€N which converges, without loss of generality, to a measure
v € D{n). Since D(u) and D{v) are closed, our assumption implies that
v e D(i>) and v e D(v). Therefore, by Lemma 3.6, v = p*i> where p e U.
Since this is true for every subsequence, the proof is complete.

3.8. THEOREM. Let K be a second countable symmetric hypergroup. Then
every measure n e Ml(K) with Property (D) and without idempotent factor
can be written as

H = vo*v1*v2

where vQ is a unit, vx e Ml(K) is an infinitely divisible measure without
indecomposable or idempotent factors and, lastly, v2 e M\K) is the con-
volution product of at most a countable number of indecomposable factors of
fi.

If v2 consists of infinitely many indecomposable factors (X()ieN, then
the partial products (A, * ••• * Xn)neN converge to v2 in the following
sense. {(p{Xx * ••• * Xn))neH converges weakly to <p{v2) where the mapping
<p : (Ml(K), *) - » ( M \ K ) , •) is as described in Lemma 2.5.

If 1 e supprc or if there exists a sequence (afc)fceN of positive charac-
ters vanishing at infinity such that (ak)k&s converges to 1 & supprc, then
(A, * • • • * An)neN itself converges weakly to v2.

PROOF. Using Lemma 2.5 and Lemma 2.6, we may without loss of gen-
erality assume that 1 e supp n. Moreover, Corollary 2.4 shows that the
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assumptions of Corollary 3.7 are true. Now, utilizing Theorem 3.5 and Corol-
lary 3.7, we can apply the arguments of Parthasarathy [38, Theorem IV. 11.3]
in order to obtain the desired decomposition.

3.9. REMARKS. (1) There are no known examples of symmetric hyper-
groups for which, in the preceding theorem, the partial products

of indecomposable factors are not convergent to v2 with respect to the weak
topology.

(2) Let the maximal subgroup G of a commutative hypergroup K be
noncompact. Then {dx : x e G} is a closed and noncompact subset of
D(/i) for every /i e Ml(K), and thus no measure n e Ml(K) has Property
(D). Therefore the theorems contained in Section 3 cannot be applied to
hypergroups with a noncompact closed subgroup.

(3) Since Ml(K) is weakly compact for every compact space K [21,
Corollary 1.1.4], Lemma 2.3 shows that D(n) is compact for every proba-
bility measure n on a compact commutative hypergroup K. Since for such
a hypergroup supp n = K is also true, all the conditions of Theorems 3.8
are satisfied for compact symmetric hypergroups. A family of examples is
contained in Section 6, and a further family is discussed briefly now:

(4) On the compact interval [ - 1 , 1] there exist many hypergroup struc-
tures, and every hypergroup structure on this compact interval must be sym-
metric (see Schwartz [42] and Zeuner [53]). The best known examples are
induced by linearization formulas for Jacobi polynomials (P%"'^)neIi (for
details see, for instance, Lasser [30, Section 4]).

In particular, for a = jJ > - 1 / 2 we have hypergroups associated with
ultraspherical polynomials. For this special case, factorization theorems and
results concerning the set IQ(K) were proved by Lamperti [29] and Truhina
[45]. Also the Levy-Khintchine representation for infinitely divisible mea-
sures follows for these examples immediately from the general results of
Lasser [32]. Further examples of hypergroup structures on [ - 1 , 1] that are
associated with eigenfunctions of Sturm-Liouville differential equations can
be found in some recent papers of Connett, Markett and Schwartz [14]. For
these examples, the Levy-Khintchine representation and the classification of
I0(K) seem to be still unknown.

The purpose of the next proposition is to generalize the preceding decom-
position results to measures having idempotent factors. But, unfortunately,
it is in general not possible to reduce the factorization problem completely,
and thus we are only able to prove the following partial result:
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3.10. THEOREM. Let K be a second countable commutative hypergroup
and fi € Ml (K). Then there exists a compact subhypergroup H of K such
that the associated Haar measure coH is the maximal idempotent factor of
ft, that is, coLe D(coH) holds for all idempotent factors coL offi. Moreover,
if {x} ^ {x} * L for every compact proper subhypergroup L c H and every
x e K, then fi can be written as \i = coH * v where v e Mx (K) has no
idempotent factor.

Conversely, if there are a compact proper subhypergroup L and x € K
such that {x} = {x} * L, then Sx has coL as maximal idempotent factor
and the convolution equation coL*v = 8X has in Ml(K) the unique solution

PROOF (cf. Parthasarathy [38, Theorem IV.l 1.1]). The set W := {a e K :
fi(a) ^ 0} satisfies n{W) > 0. Hence, by Bloom and Heyer [8, Proposition
3.1], the set H := {x e K : a(x) = 1 Va G W) is a compact subhy-
pergroup of K. For coH, the normalized Haar measure of H, we have
H = coH * n. In order to show that coH is the maximal idempotent factor of
H, we take a further compact subhypergroup L satisfying coL e D(n). Since
then 5x*n = n for every x e L (Bloom and Heyer [7, Theorem 3.3.5]), we
have a(x) = 1 for every a e W and every x £ L. Thus L c H, which
completes the proof of the first part.

To prove the second part, we denote the canonical projection from K onto
the second countable commutative hypergroup K/H (see Jewett [25, Section
14]) by n. By a Lemma of Mackey (see, for example, [38, Lemma 1.5.1])
there exists a Borel set B c K such that n\B is bijective. Then, by [38,
Corollary 1.3.3], the inverse mapping n~x : K/H H B is Borel measurable.
Now we define the measure v e Ml(K) by v{A) :— n(n~l(n(A n B))), A
being a Borel set in K. Since obviously O)H * v = ft, it suffices to show that
v has no idempotent factor in order to complete the proof. To do this, we
take a proper compact subhypergroup L of K where we can assume L c H.
Since then for every x e K the set B n {{x} * L) consists of at most one
point, our assumption on L implies that

0 < 1 - coL * 5X{B n (L * {x})) = (OL* SX(K\B) = coL* XK\B(X)

for all x e K, XK\B denoting the characteristic function of the set K\B.
Hence

0 < / OJL * xK\B dv = oiL* v{K\B).

Therefore, since v(K\B) — 0, we obtain coL & D(fi) as desired.
The last part of the proposition is obvious.
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3.11. REMARKS. (1) Remark 4.6(2) contains an example of a finite sym-
metric hypergroup K with a proper subhypergroup L and an x € K sat-
isfying {x} * L = {x}. Therefore, in contrast to locally compact abelian
groups, it is not always possible to decompose every probability measure into
an idempotent factor and a part without idempotent factors.

(2) It is not difficult to improve the assertions of Proposition 3.10 and to
find weaker assumptions concerning the measure n which ensure the desired
decomposition of ft. But, since necessary and sufficient conditions for this
decomposition admit a complicated description only, and since the idempo-
tent factors can be treated ad hoc for many examples, we omit further details
here.

4. Some supplementary general results about I0(K)

After having proved the Decomposition Theorem 3.8, we would now like
also to find Levy-Khintchine representations for infinitely divisible measures
and, after that, an explicit description of I0(K), the set of all probability mea-
sures having no indecomposable factors. The first problem is still unsolved
for arbitrary commutative or symmetric hypergroups. The Levy-Khintchine
representation is known only for locally compact abelian groups (see, for
instance, Berg and Forst [3]), for discrete symmetric hypergroups (see Propo-
sition 4.1), for hypergroups which are intimately connected with special dif-
ferential equations (see Chebli [11] and Section 7) and for hypergroups whose
dual spaces admit natural dual hypergroup structures (see Lasser [32]). Since
the Levy-Khintchine representation seems to be one essential basis for find-
ing I0(K) explicitly, and since explicit descriptions of I0(K) vary strongly
for different families of hypergroups (see Sections 5-8), it seems to be impos-
sible to determine I0(K) for general symmetric hypergroups. On the other
hand, since the Levy-Khintchine representation is available for many exam-
ples, we can compute I0{K) for many families of symmetric hypergroups
(see Sections 5-8). In order to make the discussion of the special cases as
easy as possible, we shall derive some general results about infinitely divisible
measures and measures without indecomposable factors in this section.

The first result we here present is a Levy-Khintchine representation for in-
finitely divisible measures on discrete hypergroups. The proposition slightly
generalizes well known results of this type (see Gallardo and Gebuhrer [19]
and Voit [47]). It is remarkable that it is possible here to separate the idem-
potent part of an infinitely divisible measure completely (in contrast to the
situation of Proposition 3.10).
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4.1. PROPOSITION. Let K be a discrete symmetric hypergroup and let n e
Ml(K) be infinitely divisible. Then there exists an idempotent coH e M\K),
v e Ml(K) and t > 0 such that

fi = coH * (e~ • exptu),

exp denoting the usual exponential Junction in the Banach algebra Mb(K).

PROOF, (cf. Parthasarathy [38, Theorem IV.7.2]) Since the subhypergroup
of K generated by supp/i is at most countable, we may without loss of
generality assume that K itself is at most countable. Let coH be the maximal
idempotent factor of ft where H = {e} is possible. Taking the notation of
Jewett [25, Section 14], we note that the canonical mapping

n* : Mb(K/H) ~ M{K \ H) := {v e Mb{K) :v*coH = v}

is an isomorphism (Jewett [25, 14.2E]). Since (n*)~l{n) is an infinitely
divisible measure on the discrete symmetric hypergroup K/H and has no
idempotent factors, Theorem 4.3 and Theorem 3.9 of Voit [47] imply that
(n*)~\n) = e~' • exptv with t > 0 and v e Ml(K/H). It follows that

ft = coH * e~ exp(tn*(u)).

4.2. PROPOSITION. Let K be a second countable symmetric hypergroup,
and let v e Mb(K) such that v + c8e & M+(K) for all c e R. If n e
M1 (K) can be written as n = e~v{-K^ • exp u, then ft is not infinitely divisible.
Moreover, if n has Property (D) then n has an indecomposable factor.

PROOF. Let fi be given as described above, and assume fi to be infinitely
divisible. Since fi = e"~"^ takes only positive values on K, fi has no
idempotent factor. Thus Theorem 4.3 and Theorem 3.7 of Voit [47] imply
that (i admits a representation fi. = e~f where / e C(K) is a real valued,
strongly negative definite function (in the sense of [47]). Comparing this with
the preceding representation of fi, we obtain f — v(l) - v . In particular,
/ must be bounded and can therefore be written as f = p{\) - p, p being
a positive bounded measure on K (see Voit [47, Theorem 3.9]). It follows
that v = p + {p{\)-0(\))Se contradicting our assumptions. Thus // cannot
be infinitely divisible.

Since every unit 6X e Ml(K) has the property that ^ ( a ) e {±1} for
all a € K., the injectivity of the Fourier transform implies that Sx takes
negative values on K for every unit Sx ^ Sg . Therefore, since every infinitely
divisible measure takes only nonnegative values, the measure n * dx cannot
be infinitely divisible for all units Sx^de. Since this fact is also true for Se
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by the considerations above, Theorem 3.5 entails that fi has indecomposable
factors.

4.3. THEOREM. Let K be a second countable symmetric hypergroup and
coH the normalized Haar measure of a compact subhypergroup H which
consists of more than two elements. If n e Ml(K) satisfies supp^f c H,
is minorized by coH (that is, there is a constant 0 < a < 1 such that
n(E) > acoH(E) for all Borel sets E c K) and has Property (D), then n
is decomposable and has indecomposable factors.

PROOF. Putting X := (fi-acoH)/(l-a), we have X e Ml(K), X*coH = <oH

and therefore

H = (1 - a)X + acoH = ((1 - a)8e + acoH) * X.

Hence, n is decomposable and has a factor of the form

e~'de + (1 - e~')coH = e~' cxp(t(oH) =:veMx (K)

where 1 - e~' = a. Since H contains at least 3 elements, we can choose
a closed set D c K satisfying e & D and 0 < (OH(D) =: d < 1/2. Now,
denning p as the restriction of o)H to D, we obtain that the measures

and

(coH-(l+ e)p) + j(coH - (1 + e)pf

= <oH [\ + |(1 -2rf(l +e))) - (1 +e)p + (l +e )V

(o)H - (1 + e)pf = wH{\ -3d{l+e) + 3d2(l + e)2) - (1+

are positive if e > 0 is sufficiently small. This statement is obvious for the
first two measures. For the third measure it is an immediate consequence of
the fact that p3 = (xD *Xp* XD)<°n (Xo being the characteristic function of
D) and that

\\XD*XD*XD\\OO <\\XD\U\XD\\2 = d2.

The positivity of the three measures above implies that

n=l

= em+E)d-l)expt(coH-(l+e)p)
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is a probability measure. Since this measure is a factor of n and since it
has indecomposable factors by Proposition 4.2 (note that this measure has
Property (D)), the proof is finished.

4.4. REMARKS. (1) Fel'dman has presented a similar result for locally
compact abelian groups in [17]. Since Fel'dman's paper contains only vague
references to the proof, we have included the complete proof of Theorem
4.3. Also the following Corollary 4.5 was given by Fel'dman [17, Theorem
4] for abelian groups.

(2) The assertion of Theorem 4.3 may fail for certain subhypergroups H
which consist of two elements. To present an example, we note that on the
set H = {0, 1} a hypergroup structure with neutral element 0 is determined
uniquely by

dl *<J, =bS0 + (l -b)6x,

b e]0, 1] being a fixed parameter. Now H is given by H = {1, a} where
the character a satisfies a(0) = 1 and a(l) = -b. Moreover, via the
mapping n i-» fi(a) we obtain a semigroup isomorphism between Ml(H)
and [-b, 1] where the second space is a semigroup with respect to the usual
multiplication. If b €]0, 1[, then —b is the only indecomposable factor
of [-b, 1] and x e [-b, 1] has -b as indecomposable factor if and only
if x e [-b, b2]. It follows that I0(H) = {rS0 + (1 - r)dx; r > b} for
b £]0, l[. Furthermore, for b = 1, we observe that Ml{H) ~ [ - 1 , 1] has
no indecomposable factor and thus that I0(H) = Ml(H) holds. In summary,
we see that the assertion of Theorem 4.3 fails in both cases.

Let us apply the preceding theorem to two classes of examples for which
I0(K) can be determined more precisely. The first class consists of the sym-
metric discrete hypergroups in which every element is contained in a finite
subhypergroup.

4.5. COROLLARY. Let K be a discrete symmetric hypergroup such that
every x e K is contained in a finite subhypergroup of K. If n e MX{K)
has Property CD) and has no idempotent or indecomposable factor, then there
exists a unit Sx e MX(K) such that s u p p ^ * /x) is a subhypergroup of K
consisting of at most two elements.

In particular, if K is finite and symmetric, then this conclusion is true for
every ft e Ml(K) without idempotent and indecomposable factors.

PROOF. Since the subhypergroup of K generated by supp^ is at most
countable, we may assume that K itself is at most countable. Now, using
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Theorem 3.5 and Proposition 4.1, we can write /n as n = Sx * e~' exp(tu)
where dx is a unit, t > 0 and v e MX(K). Take x , , x2 e suppi/\{e}.
Then there exists a factor /> = e~Xx~Xl • exp(ziSx + x2dx ) (T{ , T2 > 0) of
H which has Property (D) and which has no idempotent or indecomposable
factors. Since

supp/?= | J supp 5" * U
V«GN0 7 \«eN

is a finite subhypergroup by our assumption, Theorem 4.3 implies that supp p
consists of at most two points. Thus suppi/\{e} contains at most one ele-
ment, and supp(e~'exp(^)) is a subhypergroup consisting of at most two
elements.

4.6. REMARKS. (1) Since the hypergroups consisting of two elements are
very easy to handle (see Remark 4.4(2)), it is not difficult to determine the
set of all measures without idempotent or indecomposable factors explicitly
for concrete finite symmetric hypergroups.

(2) The assertion of Corollary 4.5 may fail for measures JU e I0{K) which
have idempotent factors. To illustrate this, we define a symmetric hypergroup
structure on K = {0, 1,2} with neutral element 0 by

Sl*dl=S0, dx *S2 = S2*Sl =62, S2*d2 = (SQ + S{)/2.

It is easy to see that {0,1} is a subgroup isomorphic to Z2, that every
H e M := {v e Ml(K) : suppi/ c {0, 1}} U {<52} is decomposable and that
D(n) c M for all fi 6 M. We thus have I0{K) = M and, in particular,
S2eI0(K).

The behaviour of the example considered in Remark 4.6(2) is intimately
connected with the fact that this hypergroup is just the hypergroup join

z2 v z 2 .
At the end of this section we shall deal with / 0 (^) for hypergroup joins

K = if V L, H being a compact and L being a discrete symmetric hyper-
group. For details on the definition of the hypergroup join we refer to Jewett
[25, Section 10.5], and to Vrem [52]. Before we present the main result, we
prove a technical lemma.

4.7. LEMMA. Let K :— H V L where H = {0, 1} is a hypergroup with
two elements and 0 as neutral element and where L is an at most countable
discrete symmetric hypergroup. If n e Ml(K) has Property (D) and if fi can
be written as fi = e'^xptv with t>0, v e Ml(K) and supp^ £ H, then
fi has an indecomposable factor.
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PROOF. Denote the neutral element of K by 0. Since K is discrete, we
may without loss of generality assume that v = 5 with x & H. Moreover,

implies that H is contained in, but not equal to supp fi.
We next show that fi has factors of the form (1 - c)S0 + c8x where c> 0

must be sufficiently small. To do this, we write fi as ft = codo + cldi + c2X
where c0, c{, c2 > 0 and X e Mx (K) with suppX n H = 0 . For fixed c > 0
we consider the convolution equation ((1 - c)SQ + cdx)* p — fi. After writing
p as p = dodo + dld1+ d2l (X € Mb(K) with supp A n H = 0 ) , we see that
this Convolution equation is equivalent to

(1 - c)p + cdodi + cdx(Sl *Sl) + cd2X - co3o + cx8x+ c2X.

Using Remark 4.4(2), we know that there is a constant b e]0, 1] such that
Sl*8l = bd0 + (1 - b)S{. Therefore the convolution equation above is equiv-
alent to

X = X, co = (l-c)dQ + bcdlf c1^{(l-c)+c(l-b))dl+cd0 and c2 = d2.

Since for c = 0 we have d0 = cQ > 0 and dx = cx > 0, an easy continuity
argument yields an e > 0 such that p = p{c) is a positive measure for all
c e [ 0 , e ] .

By a further continuity argument we see that there exists r > 0 such that
K := e~r expr^j = c(r)SQ + (1 - c(r))d{ where 0 < c(r) < e. Now the results
above imply that K e D{fi) and, in particular, er~'exp(tv - rdx) e D(fi).
Since this measure has indecomposable factors by Proposition 4.2, the proof
is complete.

4.8. THEOREM. Let K := H V L where H ^ {e} is a second countable
compact symmetric hypergroup and L is a symmetric discrete hypergroup.
If n € Ml (K) has Property (D) and has no indecomposable or idempotent
factor, then supp n c H.

PROOF. Since there is an at most countable subhypergroup L of L such
that supp fi is contained in HvLcHvL,we can assume that without loss
of generality L is at most countable and K second countable.

We have to consider two cases separately.
We first assume that H contains at least three elements. Denote, as usual,

the neutral element by e. Using Theorem 3.5, we can write fi as fi = 8X*X*X

where Sx is a unit and X e Mx (K). It is clear that x e H for every unit Sx .
Therefore, in order to complete the proof, it suffices to show that supp X <£. H
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implies that X * X has indecomposable factors. Assuming suppA <£. H, we
can write X as

x€L\{e}

where v e MX(K), suppy c H, ax < 1 and ax > 0. Therefore

aX8X + y

xeL\{e} x,y€L\{e}

= cxv * v + c2coH + c3q>

where <p e MX(K), supp^n/ / = 0 , cx > 0, c2, c2 > 0 and q +c2+c3 = 1.
We next consider the convolution equation

{coiH + ( 1 - c)8e) * p = X*X

for c e [0, 1[. Writing p as dx v*u+d2oiH+di <p , we see that the convolution
equation above is a consequence of

fi?j(l - c)i/ * v + (cd{ + d2)(oH + d3q> = cxv * v + c2coH

Since c2 > 0, we obtain that

dx=cj{\-c), d2 = c2-cdx and d3 = c3

are nonnegative for sufficiently small c > 0. Therefore, the measures ccoH +
(1 - c)Se are factors of X * X for sufficiently small c > 0. Since 7/ consists
of at least 3 elements, Theorem 4.3 implies that X* X has an indecomposable
factor.

Now assume that \H\ = 2. Since then K is discrete, we can write \i
as n = 8X * Sx * e~r expn/ (Sx a unit, v e M\K) and r > 0) by using
Theorem 3.5 and Proposition 4.1. Now Lemma 4.7 and the fact x e H
finish the proof.

4.9. REMARK. The example presented in Remark 4.6(2) shows that the as-
sertions of Theorem 4.8 may fail for measures n e I0(K) having idempotent
factors.

5. Examples: a class of discrete symmetric hypergroups

In this section we shall discuss a class of symmetric hypergroup structures
on No which are constructed by an infinite number of hypergroup joins.
Since for these examples the subsets { 0 , 1 , . . . , « } , n e N, form an in-
creasing sequence of finite hypergroups, this class of hypergroups is very in-
teresting to illustrate the preceding general decomposition results and also the
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problems which are connected with idempotent factors. For these examples
which were introduced by Jewett [25, Section 15.ID] we shall reformulate
the general results of the preceding sections and compute the sets I(K) and

/„(*)•
We start with the following
5.1. DEFINITION. For each n € N let bn be a number such that 0 < bn <

1. Let cQ = 1 and define numbers cn inductively by

Then a symmetric hypergroup structure on K := No is given by

sm*sn = sn*sm = dn for 0 < m < « and

where 0 is the neutral element.
Next we prove some preparatory results.

5.2. LEMMA. (1) supprc = K = {1} u {an; n e H) where

{ 1 fork<n,
-bn fork = n,
0 fork>n.

(2) D(n) is compact for all fi e Ml(K).

PROOF. (1) We first take an arbitrary character a e ^ \ { 1 } . Then there
exists n e N such that a(n) ^ 1 and a(m) = 1 for every m < n. Since
a(m) • a(n) = a(m) for n < m, we have a(m) = 0 for m > n. Lastly,
Q(«) 2 = 8n * Sn(a) = (1 - bn)a(n) + bn • 1 and a(n) ^ 1 imply a(n) = -bn .

In particular, we have shown that every character a ^ 1 is contained in
CC(K). Now Proposition 1.3 shows that a is a discrete point contained in
supprc. On the other hand, by Voit [46, Theorem 2.11], supprc itself is a
nondiscrete space so we must have 1 e suppre = K which completes the
proof of the first part.

(2) Fix n G Ml(K). Since cn_l > c0 + • • - + cn_2 implies that (cn_Jcn) +
(!-*„) > 1/2 for every n > 2 , w e obtain dk*d,([n, oo[) > \8k([n+\, oo[))
for all k, I, « e No. In particular, we have vx*v2{[n, oo[) > \vx ([« + 1 , oo[)
for every n € No and vx, v2 e MX(K). Now, if e > 0 is given, choose n G N
such that fi{[n - 1, oof) < e/2. Then the considerations above show that
v{[n, oo[) < e for every v e D{n). Therefore D(fi) is relatively compact
(Proposition 2.2) and closed (Lemma 2.3) with respect to the weak topology.
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We note that it is easy to see that K admits a canonical dual hypergroup
structure. This dual convolution structure will be studied in Section 6.

The following theorem summarizes the main factorization results for the
discrete hypergroups considered in this section:

5.3. THEOREM. (1) For every infinitely divisible measure fi&Mx{K) there
exist t > 0, v e MX(K) and an idempotent coH e Ml(K) such that fi =
coH * (e~' exptv).

(2) If bx e]0, 1[, then I0(K) consists exactly of the measures fi e M\K)
of the form fi = rdo + (l- r)5x with r e]b{ ,\].Ifbx = \, then

I0(K) = {u€ MX{K) : suppjv C {0, 1}} U {&,}.

(3) Every fi e Ml(K) can be written as

where vQ is a unit, vx e I0(K), v2 is the weakly convergent convolution
product of an at most countable number of indecomposable factors of fi and,
lastly, p is either the normalized Haar measure of a compact subhypergroup
of K or p is equal to Sn where n>2.

PROOF. (1) This is a direct consequence of Proposition 4.1.
(2) Since AT = { 0 , l } v { 0 , 2 ) 3 , 4 , . . . } is a hypergroup join, and since

every factor of ft e {u £ Ml(K): suppu c {0, 1}, v ^ w,0 j ,} is supported
by {0, 1} , we see that the classification of all measures having no indecom-
posable or idempotent factors is an immediate consequence of Theorem 4.8
and Remark 4.4(2). Now let us classify the elements of I0(K) which have
idempotent factors. To do this, we first note that then w,0 1} is a factor,
too. Since for b{ < 1 the idempotent w,0 „ has an indecomposable factor
(see Remark 4.4(2)), the classification is finished for bx < 1. Now, dur-
ing the rest of the proof of part (2), we assume b{ = 1. Then, defining
M := {fi e Ml{K): supp/z c {0, 1}} and observing

McD(co{0A})cD(d2)cMU{d2},

we get M c I0(K) and S2 e I0(K). In order to complete the proof, we shall
show that every fi = X^=0/^<5fc e Ml(K) satisfying co,0 ,, e D(fi), fi2 < 1
and fiQ+fi\ < 1 cannot be contained in I0{K). To do this, we consider three
cases. First, if fi0 = fix ^ 0, then the measure v := (fi0 + j*,)<$0 + YlT=2 H^k
satisfies v*aj,Q ,, = fi and suppi/ <£ {0, 1} and has no idempotent factors.
Therefore, by the results proved above, v g I0(K) and fi g I0{K). Moreover,
if fi0 = fix = 0 and fi2 > 0, then the measure v := fi2d1 +J2T=3 ̂ ^ sa ti snes
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v * S2 = fi and supp v c {0, 1} and has no idempotent factors. Again it
follows that n & I0(K). Lastly, if n0 = fil = fi2 = 0, then <w{0 , 2} is
a factor of fi which must have an indecomposable factor by Theorem 4.3.
This completes the proof of part (2).

(3) If n has no idempotent factors, then the assertion follows from Lemma
5.2 and Theorem 3.8. If fi has coH as maximal idempotent factor with
H = {0, 1, . . . , n}, then /x can be represented as fi = ccoH + (1 - c)p
where c e [0, 1], p e Ml(K) and supp/J n if ^ 0 . If c > 0, then ^ can
be written as n = coH * v where v := cdl + (1 - c)p has no idempotent
factors. Now the considerations above yield the desired decomposition for
c> 0. If c = 0, then the maximality of coH implies //({« + 1}) > 0. Hence
we can write fi as fi = Sn+l * v where v := fi({n + l})<50 + H^l n

has no idempotent factors which completes the proof.

6. Examples: a class of countable compact symmetric hypergroups

6.1. For a fixed sequence (6n)n€N let the discrete hypergroup K be defined
as in Section 5. We show in this section that K is in a natural way a compact
symmetric hypergroup, and we discuss some factorization results for these
examples. To determine the dual convolution structure, we first remember
Lemma 5.2 and identify K (as a topological space) with N U {1} , the one-
point-compactification of N, in the obvious way. Next, using the convention
that an empty sum is equal to 0 and an empty product equal to 1, we note
the formula

k=n+\ k l=n+\ ' l=n+\ '

for r, n e N, r > n, which can be proved by straightforward induction.
Therefore

°° b k b
n n \ n> n Z ^ A l l l + A k

k=n+\ k l=n+l '

for every n e N. Thus, using an • am = an for n < m, and taking the
character 1 as identity, we get an associative convolution structure on NU{1}
with

and

k=n+\ k l=n+\ I

https://doi.org/10.1017/S1446788700033012 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033012


442 Michael Voit [26]

Moreover, some straightforward arguments show that the remaining hyper-
group axioms are satisfied for (N U {1}, *) .

In summary, we have found a family of compact symmetric hypergroup
structures on N U {1} .

At the end of this introduction, we note that Proposition 2 of Lasser [30]
implies that K and £ = N U {1} are strong hypergroups.

6.2. THEOREM. (1) Every infinitely divisible measure n e Af^NU {1})
without idempotent factor admits a Levy-Khintchine representation of the form

£(a) = exp ( - £ ( 1 - a(*)MW) J (a e (N U {1})~ = K)
\ fc=o /

where the Levy measure v can be an arbitrary positive, not necessarily bounded
measure on K = No.

(2) Every infinitely divisible measure n e Mi(N u {1}) with maximal
idempotent factor coH ^ d{ can be written as n = coH * (e~' exptv) where
v e Ml(N u {1}) satisfies suppi/ c {1} u (N\i7).

(3)/O(NU{1}) = {<*,}.
(4) Every ft € A/'(N U {1}) can be written as n = vx*v2 where vx is

the weakly convergent convolution product of an at most countable number of
indecomposable factors of ft and v2 is an idempotent or v2 = Sn (n e N).

PROOF. (1) The Levy-Khintchine representation is a consequence of Voit
[47, Theorem 4.3], of Lasser [32, Theorem 3.9] and of the fact that the dual
hypergroup (N U {1})" = K has no quadratic forms or homomorphisms
(in the sense of Lasser [32]) except for the trivial one. This fact follows
immediately from the convolution defined in Section 5. Lastly, since for
every character a e (NU{1})~ there is a neighbourhood of 1 on which
a = 1 holds, we obtain that every positive measure on N can appear as a
Levy measure (see Lasser [32, Lemma 3.8]).

(2) Using the notation and methods introduced in the proof of Proposi-
tion 4.1, we can conclude from the finiteness of (N u {1})/H that nt{/j.) =
e~'expfi> holds where u e M\{NU{1})/H). Now, defining v e Af1(NU{l})
such that nt(u) = v and v(H\{l}) = 0, we obtain fi = o)H * (e~l exp tu) as
desired.

(3) Since NL){1} is compact, this hypergroup has Property (D). Since every
subhypergroup (^ {1}) consists of infinitely many elements, from Theorem
4.3 it follows that every nontrivial idempotent contains indecomposable fac-
tors. Thus, since for every n e N the hypergroup N U {1} can be written as
the join

NU{l} = { n , « + l e } V { 0 , l fl-l,e}
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(e being the neutral element), we can apply Theorem 4.8 and get

/O(NU{1}) = {<*,}.

(4) Write n € Ml(N U {1}) as fi = ccoH + (1 - c)v where c e [0, 1],
coH is the maximal idempotent factor of n and v e Af'(N U {1}) with
//nsuppi/ = 0 . If c> 0, then we have ^ = a>H*p where /> := cSl + (l-c)u
has no idempotent factor. If c = 0, then the maximality of cow ensures that
v{{n}) > 0 where H = {n+l, n + 2, ... ,1} . Thus /> := u({n})Sl + u\ N^{n}

has no idempotent factor and satisfies p*Sn = fi. Now, if we apply Theorem
3.8 and part (3) to p, then the proof is completed.

6.3. REMARK. The compact hypergroups considered in this section were
first introduced by Dunkl and Ramirez [16] for the special case bn = a/(l-a)
(0 < a < 1/2, n e N). These examples are studied also in Vrem [52].
In particular, for bn = \/{p - 1) (p e N being prime and n e N) these
hypergroups are isomorphic to the hypergroups which arise as orbit spaces,
when the compact groups Ap consisting of the units of the p-adic integers
act on the additive groups of the p-adic integers (for details see Dunkl and
Ramirez [16]).

7. Examples: Sturm-Liouville hypergroups on R+ = [0, oo[

The class of symmetric hypergroups studied in this section generalizes
the family of double coset hypergroups which are associated with noncom-
pact Riemannian symmetric spaces of rank 1. The convolution structures
on R+ := [0, oo[ which are derived from special Sturm-Liouville differential
equations on [0, oo[ were first introduced and investigated by Chebli [11,12].
Zeuner [53] recently proved that these convolution structures yield in fact
symmetric hypergroups structures on R+ . Following the notation of Zeuner,
we name these hypergroups Sturm-Liouville hypergroups (on R+). Before
we prove some factorization results for these hypergroups which generalize
some known results for some special examples (see Bingham [5], Ostrovskii
[36] and Finkh [18]), we recall some basic facts that are contained in the
papers of Chebli and Zeuner:

7.1. PRELIMINARIES. Let A : R+ —• R+ be an increasing C2-function that
satisfies the following conditions: ^4(0) = 0; \imx_iOOA(x) = oo; A'/A is
decreasing on ]0, oo[ and converges to 2p > 0 for x -> oo; A'(x)/A(x) =
a/x + B(x) in a neighbourhood of 0, where a > 0 and B is an odd C°°-
function on R.
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Let OA, A € C, be the unique solution of the Sturm-Liouville equation
on R+

K + ^ * i + (^ + P2)% = 0, OA(0) = 1, *i(0) = 0.
By Zeuner [53] (see also Chebli [11]) there exists a unique symmetric hyper-
group structure (R+, *) with neutral element e = 0 such that

supp(dx *6y) = [\x-y\,x+y]

and

%(x)%(y) = I <t>x(z)d(Sx * Sy)(z) (x, y e R+, k e C).
In particular using Theorem 4 of Chebli [12] and Theorem 4.3 of Voit [46],
we have

K = {OA : k > 0 or k = ix, x e [0, p]} and supp n = {OA: k > 0} .
In particular, O( = 1 is the trivial character, and <I>0 is the uniquely
determined positive character which is contained in supp n. Moreover,
Proposition 2 of Chebli [12] implies that a character OA is positive if and
only if k = ix where x e [0, p]. From [46, Equation (17)], it follows
that lim^^<b'x(x)/<l>x(x) = \k\ - p < 0 for A = ix, x e [0, p[. Thus
OA e C0(R+) for k = ix, x e [0, p[.

Lastly we note that the mapping R+ U {ix : x e [0, p]} -* K, k i-> OA, is
a homeomorphism. Via this homeomorphism we shall now identify K with
the set R + U { / ' T : T € [0, p]} .

7.2. THEOREM. (1) Every n e MX{K) can be written as n = vx*v2 where
I/J is infinitely divisible and has no indecomposable factors and v2 is the
weakly convergent product of an at most countable number of indecomposable
factors of ft.

(2) Every infinitely divisible measure ji e Ml (K) admits a Levy-Khintchine
representation of the form

ju(k) = e-
c{xW) • exp ( f (1 - OA(x)) dx(x)) (k € K)

V]0,oo[ /

where c > 0 and x is a positive measure on ]0, oo[ satisfying

io 1+x 2 dx(x) < oo.

(3) If n € Ml(K) is Gaussian with respect to this convolution structure,
which means the Fourier transform of n can be written as

fi{X) = e~
c{>1+p2) (c>0 fixed, keK),

then n has no indecomposable factor.
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(4) Assume that the hypergroup convolution * satisfies the following con-
dition: there exists a continuous function c :]0, oo[x]0, oo[i-»]0, oo[ and a
constant 0<R< 1/4 such that

is a nonnegative measure for every x, y > 0 (where XA means the restric-
tion of the Lebesgue measure to the measurable set A c R + ) . Then I0(K)
coincides with the set of all Gaussian measures on R+ .

PROOF. (1) Since supprc is homeomorphic to R+ , 2.7 shows that K has
Property (D). Furthermore the facts contained in Section 7.1 yield that either
1 e supp n (for p = 0) or that there is a sequence of positive characters
vanishing at infinity which converges to 1 (for p > 1). Thus we can apply
Theorem 3.8 in its strongest version. The proof is completed by observing
that there exist no idempotents or units except for the trivial one.

(2) This was proved by Chebli [11, Theorem 7]. Note just that Chebli uses
another parametrization of K.

(3) It suffices to show that every factor of a Gaussian measure is Gaussian.
To do this, we assume fi is given as in the theorem and n = vx * v2 where
i/,, v2 € Ml{K). Then vxi>2= (i on K. Defining i>.(x) := t>((\x\) ( x e R ,
i = l , 2 ) and fi(x) := fi{\x\) (x e R), we get real valued, continuous
functions on R. It is an immediate consequence of Chebli [12, Proposition 2]
that for every x e l + there exists a positive symmetric measure ux 6 Mb(R)
such that

J —

e mdv(t) for all A eR.

Thus we have
/•oo rx

*,.(z) = ut{\z\) = / / em dux{t) dvt(x) (1 = 1 , 2 , z e R)
J-oo J—x

which implies that for suitable constants at > 0 the functions aivi are
characteristic functions on the group R (in the usual sense) and satisfy

axvx{z) • a2i>2(z) = e~cz (z e R). Now the Theorem of Cramer shows that

afi^z) = e~c'z (z e R, / = 1, 2) where c, > 0 and c2 > 0 are suitable
constants. Finally, since a nonnegative bounded measure on R+ is deter-
mined uniquely by the restriction of its Fourier transform to supp n ~ R+

(see, for instance, Voit [47, Theorem 2.3]) and since i>((l) = v^ip) = 1, we

obtain vt{X) = e~Ci(x2+p2} (XeK, i = 1, 2) as desired.
(4) We shall prove that the condition stated in part (4) of the theorem

implies the following statement: for every x > 0 there exists y > x such
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that for every fi e M£(K) with supp/i c [x, y] the measure e'^^ exp/i e
Mx (K) has indecomposable factors.

In fact, the assertion of part (4) then follows from the preceding parts of
this theorem and from Theorem 3.5.
To prove the statement above, fix JC > 0. Since R < 1/4, we may choose
constants y > x and a, b > 0 such that the inequalities

b>y/2, b>a>y-x + 2Ry, b<2x{\-R)-y

and
b< 2x-y-R(x+y)

hold. This follows immediately from the fact that for R — 1/4 and y = x
the right hand parts of the four inequalities above are equal to x/2.

Now, after having fixed y, we take an arbitrary n e M^{K) with supp fi c
[x,y]. Let

ry ry
c := / c{u,v)dn{u)dn{v)>0.

Jx Jx

Now, using the assumption of part (4) and the inequalities

2x(l - R) < (1 - R)(u + v) and y - x + 2Ry > \u-v\ + R(u + v)

for M , v e [x, y], we observe that
* ft -

-IT
Jx Jx

Jx Jx

r2x(l-R) 1

6u*dv(f)-c(u,v) / f(z)dX(z)\ dn(u)dn(v)
Jy-x+2Ry J

6u*dv(f)-c(u,v)
/•(I —

J\u-v \+R(u+v)
f(z)dX(z) d/i(u)dn(v)

CC(R+) satisfying / > 0 and supp / c [y - x + 2Ry,

>0

for every / €
2x(l - R)]. Thus p:=fi*n-c/i- ^x+2Ry<2x(i-R)] i s a Positive measure.

We next take a function g e CC(R+) with suppg = [a, b] and g > 0
on ]a, b[. Since [a, b] c [y -x + 2Ry, 2x{ 1 - R)] by our assumption, the
positivity of the measure p shows that /i * n - eg • X is positive for every
sufficiently small e > 0. The above inequalities also yield [x - b, y + b] c
[y-x+2Ry, 2x( 1 -R)]. Hence, again from the positivity of p it follows that
H*fi-e{gX)*n is positive for every sufficiently small e > 0 . In this conclusion
we have used the fact that (gX) *fi£ CC(R+) is supported by [x-b,y + b].
Lastly, the inequalities above imply x < y < 2b . This inequality and some
straightforward considerations of the convolution * show that g * g * fi 6
CC(R+) is positive on [0,2b + y[. Since

#*g)c[0, 3b]c[0, 2b
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it follows that (gk) * (gX) * // - e(gX)3 is positive for every sufficiently small
e > 0. Now, summarizing the positivity results above, we obtain that the
measures

-egX + {n - egX)2 and (p - egX)2

are nonnegative for a sufficiently small e > 0. In particular, we see that for
this e the measures

oo

{H-egXf (n>2) and thus exp(/z - egX) = d0 + ^(/i - egXf
n=\

are positive. Now Proposition 4.2 shows that the probability measure

has indecomposable factors. Since this measure is a factor of ft, the proof
is finished.

7.3. REMARK. It is unknown whether the condition used in Theorem
7.2(4) is satisfied for all Sturm-Liouville hypergroups on R+ or whether the
assertion of part (4) can be proved without assuming this restriction. On
the other hand, the condition of Theorem 7.2(4) is true for all examples for
which * is explicitly known. Examples which are associated with Bessel and
Jacobi functions are presented below.

In order to make the check of the restriction used in Theorem 7.2(4) easier,
we note a further condition which implies the restriction above and which is
easier to verify:

7.4. REMARK. If there exists a function K :]0, oo[3i-> [0, oo[ such that
5X * Sy has the form K{x, y, -)X for all x, y > 0 and such that the kernel
K is continuous and positive on {{x, y, z): x, y > 0, \x — y\ < z < x+y} ,
then the condition introduced in Theorem 7.2(4) is true. In fact, for the
proof we have only to verify that

c(x, y) := min K(x, y, z)
ze[\x-y\+R(x+y),(x+y)(\-R)]

has the properties required in Theorem 7.2(4).

7.5. EXAMPLES: HYPERGROUPS ASSOCIATED WITH BESSEL FUNCTIONS. Fix

a > 1/2 and let A(x) := x2ct+i. Then we obtain a Sturm-Liouville hyper-
group on R+ with p = 0 such that the associated eigenfunctions OA are
modified Bessel functions. The convolution * is given by

d(Sx *6y){z) = K(x,y, z)z2a+l dX\llx_yUx+y](z)
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where

r(l/2)r(a+l/2)22a-l(xyz)2a

Using Remark 7.4, we see that the assumptions of Theorem 7.2(4) are satis-
fied. In fact, for this family of examples the assertions of Theorem 7.2 are
well known and can be found in the papers of Bingham [5], Kingman [27]
and Ostrovskii [36] and in the thesis of Finkh [18].

7.6. EXAMPLES: HYPERGROUPS ASSOCIATED WITH JACOBI FUNCTIONS. Fix

a > p > -1 /2 with a ^ -1 /2 and let A{x) := (sinh;c)2a+1 • (cosiut)2/?+1.
Then we get a Sturm-Liouville hypergroup on R+ with p = a + /? + 1 such
that the associated characters OA are Jacobi functions. The convolution *
is given by

d(Sx *dy){z) = K(x,y, z)A(z)dk\[lx_y{ x+y](z)

where

vi \ 2 ~ pT(a + 1) . . -2a
K(x, y, z) = —rp: ^ • (sinhx • smhy • sinh z)

l/2r(p)r(P + l/2)i
It

(1 - cosh x - cosh y - cosh z + 2 cosh x coshy cosh z cos f)+ ~
o

•(sintfdt

(for details see, for instance, Koornwinder [28, Equation (7.12)]). An easy
calculation and Remark 7.4 imply again that the assumptions of Theorem
7.2(4) are satisfied.

7.7. EXAMPLES: MODIFICATION OF STURM-LIOUVILLE HYPERGROUPS. Let

(R+, *) be a hypergroup structure as introduced in 7.5 or 7.6. Fix a constant
pQ e [0, oo[ and define a new Sturm-Liouville hypergroup structure (E+, •)
by

d{Sx"dy)iz) := *,xi*lwd{3x *Sy){z) {x'y'z^0)-
For details on this modified convolution structure we refer to Voit [46, Section
4]. Using Remark 7.4, the properties of the kernels introduced in 7.5 and
7.6 and, lastly, the continuity and positivity of the semicharacter ®ip , we
obtain that all the assertions of Theorem 7.2 are true also for this modified
examples.

7.8. REMARK. It is known (see, for instance, Zeuner [53]) that all hyper-
group structures on R+ which are isomorphic to double coset hypergroups
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are associated with noncompact Riemannian symmetric spaces of rank 1 and
that these hypergroups are contained in the both families studied in 7.5 and
7.6. For example, for /? = 0 and a = n - 1, n e N\{1}, the hyper-
groups investigated in 7.6 are isomorphic to the double coset hypergroups
S = SO(n, l)//SO(n) where SO(n, 1) is the Lorentz group of dimension
n +1. Furthermore, for a = n/2-l (n e N\{1}) the hypergroups presented
in 7.5 coincide with the double coset hypergroups M(n)//SO(n), M(n) de-
noting the Euclidean motion group in R" .

8. Examples: polynomial hypergroups

In this section we first introduce polynomial hypergroups and some techni-
cal conditions satisfied by almost every polynomial hypergroup. Then, after
having discussed some fundamental properties of the dual space of a polyno-
mial hypergroup (Theorem 8.2) and after having established some prepara-
tory results, we summarize the main factorization results for polynomial hy-
pergroups in Theorem 8.8. The examples contained in the Sections 8.11-8.18
show that the restrictions assumed in Theorem 8.8 are true for almost every
known polynomial hypergroup. Lastly, Theorem 8.19 is devoted to prove
that the set of all indecomposable measures is dense in M1 (No).

8.1. Let {an)n€ti, (bn)neN and (cn)n€N be sequences of real numbers
satisfying an , cn > 0, bn > 0 and an + bn + cn = 1 (n € N). Moreover
assume that a := l i m ^ ^ an, 0 := l i m ^ ^ bn and y := l i m ^ ^ cn exist
and satisfy a, y > 0 . Now, defining

and Pn+l = 1 ( ( P , - bn)PH - c ^ . , ) ,
uun

we get a sequence of orthogonal polynomials by Favard's theorem (see, for
instance, Chihara [13]). If in the linearization Pm- Pn = X^im-ni 8m „ k^k
all the linearization coefficients gm „ k are nonnegative, then

m+n

k=\m—n\

and bilinear continuous extension to Mb(N0) define a symmetric hypergroup
structure on No, called a polynomial hypergroup. Furthermore, the mapping

X : Ds := {x e R : (Pn(x))n^ is bounded} -> No, x » ax,

with ax(n) := Pn(x) establishes a homeomorphism between No and Ds. In
addition, up to this homeomorphism and up to normalization, the Plancherel
measure n on No agrees with the orthogonality measure associated with
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the sequence (Pn)n&ti (for the proofs of these facts see Lasser [30]). In
particular, since the dual space of a discrete hypergroup is compact, Ds must
be compact. In order to simplify the notation, we shall identify Ds with No

and n with the orthogonality measure.

8.2. THEOREM. In the above situation we have the following. (1) a > y.
(2) suppn = [ - 1 , 1 ] U L and No = [-xQ,x0]uL where x0 :=

(1 - f})/2y/ay > 1 and where L c [-1 - ft/yfiiy, -1 [ is at most count-
able and -1 is the only possible limit point of L. In particular, if P = 0
then supprc = [ - 1 , 1] and No = [-x0, x0]. Furthermore, x0 corresponds to
the identity character and 1 corresponds to a0 .

(3) a = y is equivalent to 1 e suppre and this is equivalent to K = suppTt.
(4) [1, x0] coincides with the set of all positive characters on (No, *), and

the characters contained in [1 , xo[ are zero at infinity.
(5) (No, *) has Property (D).

PROOF. (1) By Lasser [30, page 191], the Haar measure on (No, *) is given
by

*(0)=l, h(n)=Y[ak/flck («eN)
k=\ I k=\

and satisfies h{n) = g~\ 0 > 1 (« e N). This fact yields a > y.
(2) From the definition of the {Pn)nai and from the Plancherel formula

we see that the normalized polynomials (Pn)n&fi •— {Pn • \/hn)n€N are or-
thonormal with respect to n. They satisfy the recursion relation

Therefore the sequence (?n)n€y is contained in the class M(0, 1) of Nevai
[35, Section 3.1, Definition 6]. Now Nevai [35, Section 3.3, Theorem 7],
ensures that suppTt = [ - 1 , l ] U i where L is at most countable and ±1
are the only possible limit points of L. Furthermore, if Ln] 1, oo[# 0 , then
xx := sup^^ x £ L c supp n corresponds to a positive character on (No, *)
(see Chihara [13, Chapter 1.5]); but this is inconsistent with the fact that JC,
cannot be an isolated point in supp re (see Voit [46, Theorem 2.11]). Hence
it follows that L c ] - oo, - 1 [ .

In order to characterize Ds we note first that L U [ - 1 , 1] = suppre c Ds.
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Now fix x G R\supp7r. Then Nevai [35, Section 4.1, Theorem 13], yields

for |x| >x,
for \x\ < x,

It follows that Ds = Lu[-xo,xo]. Since supprc c ] - o o , 1], we have Pn(l)>0
for every n e No (see Chihara [13, Chapter 1.5]). Hence a0 corresponds to
the real number 1. Moreover it is easy to check that Pn(x0) = 1 for every
n e No and thus the identity character corresponds to x0. Finally, since
\a(z)\ < ao(z) for all a 6 supp?r and z e K = No (see Voit [46, Corollary
2.8]), the definition of P{ entails

= [-1 - , 1],L c supprc c {x G R : |-P,(;c)| <

which completes the proof of part (2).
(3) This is an immediate consequence of (2).
(4) The equation at the end of the proof of part (2) shows also that for

x0 > 1 all the characters that are contained in [1 , xo[ are zero at infinity.
Moreover, since supp n c ] - oo, 1 ] , it is clear that Pn (x) > 0 for any « e N 0

and x > 1. Thus, in order to complete the proof, we only have to show that
Pn(x) > 0, for all n G No, implies x > 1. Since there exists only one
positive character that is contained in supp n (cf. Voit [46, Theorem 2.11]),
and since it is given by 1, we may assume x & supprc. But x < - 1 and
x & supp n together imply

Pn(X) V a ™ pn(x)

(see Nevai [35, Section 4.1, Theorem 13]) which is impossible. This finishes
the proof of part (4).

(5) This follows from Lemma 2.7, part (2) and the fact that 1 G R corre-
sponds with the positive character contained in supp n.

8.3. MODIFICATION OF POLYNOMIAL HYPERGROUPS. Let (No, *) be a

polynomial hypergroup as introduced in Section 8.1. If r > 1 is fixed, then
we have Pn(r) > 0 for all n G No, and the sequences

/> (r)

Pn\r)P\V) PnKr)PiV)

define a new modified polynomial hypergroup with

(ne

_ P
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for details see Voit [51, Section 2.12] and [46, Section 2.18]. In particular,
r = 1 is equivalent to d = y and this is equivalent to the fact that 1 e supp n
for the modified convolution structure. Thus, for r = 1, the modification
procedure above agrees with the general modification of commutative hyper-
groups which was introduced in Section 2.

8.4. PROPERTY (T). We say a polynomial hypergroup (or the associated
sequence of orthogonal polynomials) has Property (T) if the following holds.

Let (Tn)neN be the Tchebichef polynomials of the first kind
which are defined by Tn{x) = cos(narccosx), x e [ - 1 , 1].

(T) Then the connection coefficients hn k, n, k e No, n > k,
which are uniquely determined by Pn = J2l=ohn k.Tk' a r e

nonnegative.

This condition was successfully applied in some recent papers of the author
[48, 49, 51] to derive some limit theorems for random walks on polynomial
hypergroups. This condition is true for every polynomial hypergroup known
to the author; see Sections 8.11-8.18 and the papers mentioned above.

Property (T) is needed here in order to ensure the following inequality.
If Er c C is the closed ellipse with foci ±1 and radius r > 1, then

\p
n(

z)\ ^ p
n(

r) for all r > 1, n G No and z e Er. In fact, writing Pn as
Pn = ZLohn,kTk with hn>k > 0, we obtain

\Pn(cosd)\<f2K^\Tk(^sd)\
Ar=O

hn k cosh(A: Im 0) = P (cos(/ Im 0))
)fc=0

for n e No and 0 e C. Since cos0 e Er is equivalent to cos(/lm0) < r
(r> 1), the inequality above follows.

We conclude this section by noting that Property (T) is preserved by the
modification procedure introduced in Section 8.3.

8.5. PROPOSITION. Let (No,*) be a polynomial hypergroup with Property
(T). Let n € N and let n € M'(No) be a probability measure of the form

where c,, c2, . . . , cn > 0. Then every factor of /i is of the form

exp ( J 2 d i ^ i ~ so)) wh^re < * , , . . . , <*„_, e R, d H > 0 .
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PROOF. Using Remark 8.3 and Lemma 2.5, we can assume without loss
of generality that 1 e supp n .

For r > 1 let •r be the modified convolution structure associated with
the positive semicharacter ar. By Lemma 2.5 we know that

<pr:(M
l(N0),.r) -

fc=O k=0 * fe=O *
is a weakly continuous semigroup homomorphism satisfying

pr(V(N0)) = L e V(N0): JTPk(r)p(k) < ool .
I fc=o J

If we define f = £"=oc, ' from iv = E" = 0 ( c , / 0^ e ^ . ( ^ ' ( N Q ) ) and the
continuity of cp it follows that fi - e~'exp(tv) e <pr(M

l(N0)). Since thus
D(n) c ^ ^ M ^ N Q ) ) by Lemma 2.5, we have shown that

oo

^2 Pk(r)p(k) < oo for all p e D{n) and r > 1.
fe=O

Since I ^ C x ^ i y r ) for all xeEr (see Section 8.4), p(z)'-='L'k'=oPk(z)P(k)
(z e C) defines an entire function on C for every p e D(fi). Moreover, for
p{, p2e D(p.) with /J, * p2 — ft we have

~px(x) • p2(x) = exp (i2ck{Pk{x) - 1)) (x G [ - 1 , 1]).
u=o /

Analytical continuation shows that this equation is true for all x e C. In
particular, since p2(r) > 1 for r > 1 and p2 e Z)(/z), it follows that

/ > ( / • ) < e x p ( t )
for all /? e £>(//) and r > 1. Therefore, using |Pfc(x)| < Pfc(r) for x e Er

and {r e C : |z| < r} c Erj—^, we have

i2ck ( j
for p e D(p.) and x G C satisfying |JC| < r . Since p has no zeros,
Hadamard's factorization theorem (see, for instance, Holland [24, Theorem
4.9]) implies that p(x) = exp(P(x)), P being a polynomial of degree not
greater than n . Since p = p on No, the injectivity of the Fourier transform
yields the desired representation of p where dn < 0 is impossible, since
otherwise l i m ^ ^ p(r) = 0 would be true.
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8.6. LEMMA. Let (No, *) be a polynomial hypergroup. If for every n e N ,
n > 2, there exists m e N such that supp<S™ = {0, 1 , 2 , . . . , nm), then
the probability measure e~'exp(tdn) has an indecomposable factor for every
t > 0 and every n>2.

PROOF. We shall prove that there exists e > 0 such that the measure
H(e) := e\p(t(Sn - ed^) is nonnegative. Using Proposition 4.2, we can then
conclude that e~'(1~£) • exp(t(Sn - ed^) e D(e~' • exp(tdn)) has an indecom-
posable factor which finishes the proof.

In order to prove the nonnegativity of n{s) for small e > 0, we write
H(e) as

k=\ 1=0 'v ''

Since the linearization coefficients gu v ,u_v, and gu v u+v are positive for
all H , t ) e N 0 , w e have
Since the linearization
all H , t ) e N 0 , w e have

{ 0 , l , . . . , / | . f c } * { l ! } = { 0 , l , . . . ,

Therefore the assumption of the lemma yields that

Since thus

supp<J* = {0, 1, . . . , n-k} for all k>m.

k-\

n D [J supp(^*(-e^) ) (k>m)

and
m ml

supp<^" D (J supp(Jn - £<?,)' = (J | J supp(^ * (-e^j)'"'),
1=1 1=1 (=0

and since the negative measures appearing on the right sides of these two for-
mulas are always multiplied by powers of e, we can find an e > 0 sufficiently
small such that the measures

{Sn-e8{)
k = ^2(k

l)s'n*(-ed1)
k~l for k = m + 1, m + 2,...,2m

i=o ^ '

and the measure
A

are non-negative. Since every k G N with k > m + 1 can be written as
) ak j e No > ^ e measures {Sn-edl)

k are nonnegative

for all k > m + 1. In summary, we obtain that /z(e) = £ £ l 0 ^(^ n - e^)* is
nonnegative as claimed.
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f { 0 , 2 , 4 , . . . ,
k'~ I { 1 , 3 , 5 , . . . ,

8.7. LEMMA. Let (No, *) be a polynomial hypergroup such that bk = 0
for all keN. For keN let

{0,2,4, . . . ,*} ifkiseven

*} ifkisodd.

If for every « e N , n > 3 , there exists m e N such that supp <S™ = Hnm,
then the probability measure e~l exp(tSn) has an indecomposable factor for
every t > 0 and every n > 3.

PROOF. Assume first that n is even and n ̂  2. Similarly to the proof of
Lemma 8.6 it suffices to show that

H{e) := exp(t(Sn - ed2)) = f ) L{3n - ed2f
fc=0

is nonnegative for sufficiently small e > 0. Since gu>v>\u_v\ and gu>v<v+u

are positive for all u, v e No , we have Hnk * {«} = Hn^k+1). This fact and
the assumptions of the lemma imply that

fc-i
supp<5^ D [j supp(d'n * {-s82)

k~l) (k > m)
1=0

and
k-\

supp^D U supp(^ - edj.

Now from the arguments used in the proof of Lemma 8.6 it follows that n(e)
is nonnegative for sufficiently small e > 0.

If n is odd and n ^ 1, then the methods used above also imply that
H{e) := exp(t(dn - e<5,)) is nonnegative for sufficiently small e > 0. Thus the
proof is complete.

8.8 THEOREM. Let (No, *) be a polynomial hypergroup.
(1) Every fi e MX(K) can be written as JU = vx*v2 where vx is infinitely

divisible and has no indecomposable factors, and v2 is the weakly convergent
product of at most countably many indecomposable factors of ft.

(2) Every infinitely divisible measure fi e Ml (K) admits a Levy-Khintchine
representation of the form

H = e~l • exp(fi/) where t > 0 and v e Ml (No).

(3) / / (No, *) has Property (T) and if for every n e N\{1} there exists
meN such that supp<5^ = { 0 , 1 , 2 , . . . , nm}, then

70(N0) = {n e M\\): n = e x p W ^ - So)) ,t>0}.
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(4) / / (No, *) has Property (T), if bn = 0 for all n e N , and if for every
n e N\{1, 2} there exists m e N such that supp<J™ = Hnm (Hnm given as
in Lemma 8.7), then

+ ^ 2 " Cl + '2)^0) ' h ' '2 £ °> •

PROOF. (1) By Theorem 8.2(5), (No, *) has Property (D). Since for a =
y, 1 e supp n is true and since for a > y the assumptions of Lemma 2.6
hold, part (1) follows immediately from Theorem 3.8.

(2) This follows from Proposition 4.1.
(3) Let t > 0. Using Proposition 8.5, we know that every factor of //, =

e\p(t(Sl -d0)) has the form exp(r(<J1 -So)) where T > 0. Hence ft e /0(N0).
In order to prove the converse inclusion, assume fi e A/^NQ) has no

indecomposable factor. Then Theorem 3.5 and part (2) imply that ft =

exp(E!tLi '*(<*i ~ so)) w h e r e h t 0 (k € N) and Y%Li h < °° • S i n c e f o r

k > 2 and tk > 0 the measure exp(tk(dk - So)) G D(fi) has indecomposable
factors by Lemma 8.6, we must have tk = 0 for k > 2. Thus the proof of
part (3) is finished.

(4) Let tx > 0 and t2 > 0. Using Proposition 8.5, we know that
every factor v of n = e\p(tl(Sl - So) + t2(S2 - d0)) has the form v —
exp(T,((J, - d0) + T2(62 - So)) where T, e R and T2 > 0. Since bn = 0 for
all n € N, Pj(—1) = —1 and P 2 ( - l ) = 1 are true (see Section 8.1). Thus
i>(-\) — exp(-2rf,). Thus, using |£(-1)| ^ 1 f° r the probability measure
v, we get Tj > 0. Therefore, 1/ has the same form as n which implies

/*€'o(No)-
In order to establish the converse inclusion, assume n e Ml (No) has no

indecomposable factor. Then Theorem 3.5 and part (2) imply that fi =
exp(££Li tk(Sl - <50)) where tk > 0 (k e N) and X3*Li ̂  < °° • s i n c e for

k > 3 and ^ > 0 the measure exp(^(<Jfc - So)) e D{n) has indecomposable
factors by Lemma 8.7, we must have tk = 0 for k > 3 . Thus the proof of
Theorem 8.8 is finished.

8.9. REMARKS. (1) The factorization result contained in Theorem 8.8(1)
was stated earlier by Schwartz [41, Theorem 9]. However the proof there
contains a little gap, which is filled here by using part (2) of Theorem 8.2.

(2) For the special case of polynomial hypergroups associated with ultras-
pherical polynomials, the results of Theorem 8.8 were established earlier by
Bingham [4] and Ostrovskii and Truhina [37]. In particular, the ideas of the
proof of Proposition 8.5 are taken from the paper of Ostrovskii and Truhina.

(3) Either part (3) or part (4) of Theorem 8.8 can be applied to almost
every known polynomial hypergroup. In this way, Property (T) holds for
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every polynomial hypergroup known to the author. The second condition of
part (3) or part (4) which claims that sufficiently many gm „ k are positive
is fulfilled for every known polynomial hypergroup except for the, unfor-
tunately very important, hypergroups which are associated with Tchebichef
polynomials of the first kind.

(4) It follows easily from Proposition 8.5 and the methods used in the
proof of Theorem 8.8(4) that for polynomial hypergroups associated with
Tchebichef polynomials of the first kind exp(f<52*) • e~' e I0(K) for all t > 0
and k e N. Therefore, one part of the assertion of Theorem 8.8(4) does not
hold in general.

To make the check of the assumptions of part (3) and (4) in Theorem 8.8
easier, we establish a lemma which treats these conditions. In 8.11-8.18 we
then give some examples.

8.10. LEMMA. Let (No, *) be a polynomial hypergroup. (1) If gn n i > 0
d Sn n,2n-\ > 0 for all n>2, then the assumptions of Lemma 8.6 hold.

Moreover, gn n l > 0 and gn>n2n-\ > 0 are true for all n>2 if and only if

n-\

bn>0 and bn + Y,(bn+k ~ bk) > ° for alln>2.
k=\

(2) Let bn = 0 for all n € N. / / gn „ 2 > 0 and gn,n,2n_2 > 0 for all
n > 3, then the assumptions of Lemma 8.7 hold. Moreover, gn n 2 > 0 and
gn n 2n_2 > 0 hold for all n>3 if and only if

ancn^+an_xcn-c{>0 and
n-2

anCn+l + an-XCn ~ Cl + 2 > « + * < W + l " UkCk+l) > °
fc=l

for all « > 3.

PROOF. (1) By the assumption we have s u p p ^ D {0, 1, 2/j - 1, 2n} for
n > 2. We next show that

k

suppcjf D {0, 1 , . . . , k) u [j{2ln -k,2ln-k+l,..., 2ln}
i=i

for all k e N by induction. In fact, this statement is true for k = 1 and the
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induction step is an immediate consequence of

({0, 1, . . . , k} U \J{2ln -k,2ln-k+l,..., 2ln}\ *{0, 1, In - 1, In)

k+\
D {0, 1 , . . . , k, k + 1}U \J{2ln -k-\,2ln-k,..., 2/n}.

/=i

Now, taking k = 2n, we obtain {0, 1, . . . , 4n2} c supp<$*" as desired.
In order to prove the equivalence of the conditions mentioned in Lemma
8.10(1), we first note that

*....,-ftv.<*/ft«-t.-ft*/ft*
which establishes that gn n x > 0 and bn > 0 are equivalent for all n e N.
Moreover, using glnn+x = an , g l n n = bn, the recursion formulas

e = e an+m-i
°m,n,m+n °m— 1 ,n,m+n— 1 „

"m-1

and
a i b — b

o = o . "+m-z , m+n—l n—l
°m,n,m+n—\ °m—\,n,m+n—2 n T * m - 1 ,

m—1
" m - 1

(for m, n e N, m > 2; see Lasser [30, page 188]) and induction, we obtain

n n+\ m+n-l

and
=

 anan+y-am+n-2 . L . ""'
^ftl y ft y ftt-\-H~~ 1 /I /J /J I "

1 2 w-J V fc=l /

Since ak > 0 for all k e N, the latter equation yields the equivalence of the
second pair of conditions in part (1).

(2) Since by the assumption supp(52 D {0, 2, 2n - 2, 2n} for n > 3 , the
same methods as used in the proof of part (1) imply that

k

supp<jf D {0, 2, 4 , . . . , 2k}u|J{2/n-2A:, 2ln-k + 2,..., 2/n-2, 2/n}
/=i

for all k eN. Now, taking k = n, we obtain { 0 , 2 , . . . , 2n2} c suppdn"
as claimed. In order to establish that the conditions mentioned in Lemma
8.10(2) are equivalent, we first note that

Sn,n,2 = I P2PnPndnI I P2 d* = 82,n,n ' I P l d n l f P2 d*
JR I JR JR I JR
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and

S2>n,n = (anCn+l ~ an-lCn ~ Cl)/°l
is true for n > 2. These facts ensure the equivalence of gn n 2 > 0 and
ancn+i-an-icn-ci > °- Moreover, using g2 „ „ = {^c^-a^-c^/a,,

n n+l *' m+n—l
Sm,n,m+n- a,a2---ax

the recursion formula

°
an+m-3

m ,n,m+n—2 °m-\ ,n,m+n—3 n
am-l

Cm+n-\ „ Cm-\

"m-1 am-l

(for m, n e N, m > 2; see Lasser [30, page 188]) and induction, we obtain

°m,n,m+n—2 n

anan+\ • • • am+n-3

*1 **i U M |
Y 4. rn— 1

( n-2
CL C , + f l iC — C + > (d

n n+l n—ln 1 Z—A n+i
k=l J

for all m, n e N with m > 2. This shows that the second couples of
conditions in part (2) are equivalent.

8.11. EXAMPLES: JACOBI POLYNOMIALS. Let a, fi eR with a > fi > - 1
and

(a + fi + 1)(Q + fi + 4)2(a + fi + 6)

> (a - £)2[(a + fi + I)2 - 7(a + fi + 1) - 24].

We define
2(n + a + fi+l){n + a+ l)(a + fi + 2)

. a-/? / (a
" 2(a+l)\ (2n + a

2)(a

and
c 2n(n + fi)(a
C"~ (2 + + fi

These sequences induce a polynomial hypergroup on No which is associ-
ated with Jacobi polynomials (^ a ' ^ ) , , e N • Moreover, the sequences defined
above define a polynomial hypergroup if and only if the indices a and fi
satisfy the restrictions above (for details see the survey of Gasper [20, The-
orem 3], and Lasser [30, Section 3(a)]). From Gasper [20, Theorem 4], it
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follows that every such polynomial hypergroup has Property (T). This fact
was earlier used in Voit [49, Section 5.1].

If a = /?, then we have ultraspherical polynomials and the inequal-
ity above can be reduced to a > - 1 / 2 . Since for a > - 1 / 2 the lin-
earization coefficients gm n m+n_2k

 a r e known and positive {m, n e No,
k = 0, 1, . . . , min(/n, n); see, for instance, Lasser [30, Section 3(a)], we
can apply Lemma 8.10(2) and obtain that the conclusions of Theorem 8.8(4)
are true. In fact, this result is just the main result of the paper of Ostrovskii
and Truhina [37]. For a = 0 = - 1 / 2 we have Tchebichef polynomials of
the first kind.

If a > ft, then the sequence (£n)neN is positive and increasing. Therefore,
the assumptions of Lemma 8.10(1) are fulfilled. Thus we can apply Theorem
8.8(3) here.

8.12. EXAMPLES: GENERALIZED TCHEBICHEF POLYNOMIALS. Let fi > - 1

and a > /? + 1. Define

bn = 0 and cn — 1 - an (n e No). Then we have a polynomial hypergroup
with Property (T) whose associated orthogonal polynomials are generalized
Tchebichef polynomials (for details see Lasser [30, Section 3(f)] and Voit
[48, Section 5.2]).

Let gm n k and g^'^\ respectively be the linearization coefficients of
the generalized Tchebichef polynomials and of the Jacobi polynomials (with
indices a and fi) respectively. Then, using Equation (18.1) of Lasser [30]
and the facts gf'/\j-i > ° a n d sf'fl > 0 for a > 0 (see Section 8.11), we
get

g2j,2j,*j-2 = g^%-l>0 and *„,„., = jfrfJX).
Similarly, from [30, Equation (18.4)] it follows that

X2J+1,2,+l ,4; ±

and

627+1,

Therefore, we can apply Lemma 8.10(2) and obtain that the conclusion of
Theorem 8.8(4) is true for generalized Tchebichef polynomials.

8.13. EXAMPLES: GRINSPUN POLYNOMIALS. Fix a e R, a > 2, and define
a{ = (a - l)/a, cx = I/a a n d an = cn = 1/2 (n = 2 , 3 , . . . ) . Th i s
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sequence defines a polynomial hypergroup which is associated with Grinspun
polynomials (see Lasser [30, 3(g)(ii)]). From Askey [1, Theorem 5], it follows
that this hypergroup has Property (T). Moreover, the explicit representation
of the linearization coefficients gm n k given by Lasser [30, 3(g)(ii)] and
Lemma 8.10(2) ensure that part (4) of theorem 8.8 can be applied for a > 2.
For a = 2 we have again Tchebichef polynomials of the first kind.

8.14. EXAMPLES: ^-ULTRASPHERICAL POLYNOMIALS. Fix fi, q with
- 1 < /? < 1 and 0 < q < 1, and define

a n d

Then the g-ultraspherical po lynomia l s Cn{x\ p \q) a re given b y

C_l(x;/l\q) = 0, Co(x;fi\q) = l,

x • Cn(x; fi\q) = AnCn+x{x;P\q) + CnCn_x{x; fi\q)

(see, for example, Bressoud [10]). The normalized orthogonal polynomials
Cn(x;fi\q) = Cn(x; 0\q)/CH(l; fi\q) (n € NO) then define a polynomial
hypergroup with Property (T) where the associated linearization coefficients
Sm,n,m+n-2k (m' n € N o ' & = 0, 1, 2, . . . , min(m, «)) are positive (see
Voit [49, Section 5.3]; the positivity of the linearization coefficients follows
from Bressoud [10, Theorem 1]). Therefore the conclusion of Theorem 8.8(4)
is true for ^-ultraspherical polynomials.

8.15. EXAMPLES: ASSOCIATED LEGENDRE POLYNOMIALS. For a fixed
v > 0 the associated Legendre polynomials P^(x) as defined in Section
3(b) of Lasser [30] bear a polynomial hypergroup structure with Property
(T) (Property (T) is proved in Voit [49, Section 5.5]). Moreover, for all
m, n € No and k = 0, 1,2, ... , min(m, n), the linearization coefficients
gm n m+n_2k a r e positive and thus the conclusions of part (4) of Theorem
8.8 are true for associated Legendre polynomials.

To prove the positivity of the linearization coefficients, we first note that up
to positive normalization factors the gm n m+n_lk are equal to the lineariza-
tion coefficients bmnm+n_2lc introduced in Lasser [32]. By the theorem in
Lasser [32], these coefficients can be written as

bm,n,m+n-2k = Rm,0 • c(m, n, m + n - 2k)
k-l
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where Rm 0 = 1, Rmj > 0 (; = 1 , . . . , k - 1; see [32, page 407]),
c(m, n, m'+n-2k) > 0 and c(m-2j, n, m+n-2k) >0 (; = 1 , . . . , k-l;
see [32, Proposition 1]). Hence bm n m+n_2k > 0 as claimed.

8.16. EXAMPLES: GERONIMUSPOLYNOMIALS. Fix a, b e R with a+b < 0
and ab + 1 > 0. If

n(gl)(bl) + 2-a-b
" (2 - a - b)(n(a - l)(b - 1) + I - ab)

then the associated orthogonal polynomials are Geronimus polynomials
which define a polynomial hypergroup structure with Property (T); for details
we refer to Voit [49, Section 5.4].

For a = -b the coefficients bn are equal to 0, and we have gn n 2 > 0
and gn>n>2n-2 > 0 by using [49, Equation (5.15)]. Therefore, part (4) of
Theorem 8.8 can be applied.

For a ^ -b we have gnnl > 0 and gn<n>ln-i
 > ® a 8 a m ^ v u s m 8

Equation (5.15) of [49]. ThusLemma 8.10(1) shows that part (3) of Theorem
8.8 is applicable.

For b = 0 and a = —k (k e No), the semigroup ( A / ^ N Q ) , *) is iso-
morphic to the semigroup of all isotropic probability measures on a special
infinite, finitely generated semigroup. For details we refer to Voit [48, Sec-
tion 5.1.2]. There are further infinite, finitely generated semigroups for which
the set of all isotropic probability measures are semigroups with respect to
the usual convolution and for which this semigroups are isomorphic to poly-
nomial hypergroups; see Soardi [43]. Since the polynomial hypergroups of
Soardi [43] are always connected with Tchebichef polynomials of the second
kind, Part (4) of Theorem 8.8 can be applied here (see Section 8.11, too).

8.17. EXAMPLES: POLYNOMIAL HYPERGROUPS ASSOCIATED WITH INFINITE

DISTANCE-TRANSITIVE GRAPHS. Fix a, b e E with a,b>2. Taking

U b ~ 2

O_ = —7T TT , C_ =

" {b\) "
" a " a{b-\) " a{b-\) v ;

we obtain a polynomial hypergroup with Property (T) which is associated
with generalized Cartier polynomials (see Voit [51, Sections 5.3 and 5.6]).

If b = 2 and a > 2, then bn = 0 for all n e N, and gm n m+n_lk > 0 for
m, n e No and fc = 0, 1 , 2 , . . . , min(/w, n) by Voit [51, Equation (5.6)].
Therefore part (4) of Theorem 8.8 can be applied.

If b > 2, then £m,«,".+„-! > 0 and Sm>n;|m_n|+, > ° b * I5 1 ' Equation
(5.6)]. Therefore, Lemma 8.10(1) ensures that Theorem 8.8(3) is applicable.
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For a = b = 2 we have Tchebichef polynomials of the first kind.
We conclude this section by noting that for a, b e N, a, b > 2, the poly-

nomial hypergroups above are isomorphic to the double coset hypergroups
which arise when we consider the automorphism groups of infinite distance-
transitive graphs and the stabilizer subgroups of fixed vertices. Moreover, all
polynomial hypergroups which are isomorphic to double coset hypergroups
are contained in the class introduced in this section; for details and further
references we refer to Voit [51, Section 5].

8.18. EXAMPLES: POLYNOMIAL HYPERGROUPS SATISFYING A CONDITION

OF ASKEY. Let («„)„£„, (bH)n& and (cJn £ N satisfy an,cn > 0, bn > 0,
an + bn + Cn = l a n d

a lC2^Cl ' anCn+X ^ an-lCn > bn*bn-l> * * H = 2 , 3 , . . . .

Then these sequences define a polynomial hypergroup with Property (T) (see
Voit [49, Section 5.7]).

If bn = 0 for all n € N, then the condition above also implies that the
assumptions of Lemma 8.10(2) are true. Therefore, the conclusion of part
(4) of Theorem 8.8 is true for the symmetric case. In particular, Theorem
8.8(4) can be applied to Pollaczek polynomials, since Askey's condition holds
for these orthogonal polynomials (see Lasser [30, Section 3(e)]).

Furthermore, if b2 > 0 (and thus bn > 0 for n > 2), then Askey's
condition entails the assumptions of Lemma 8.10(1). Hence, the conclusion
of part (3) of Theorem 8.8 is true for this nonsymmetric case.

We finish the treatment of the arithmetic of polynomial hypergroups by
noting the following theorem about indecomposable measures. As the pre-
ceding discussion of examples shows, the assumptions of the theorem are
true for all examples except for the polynomial hypergroups associated with
Tchebichef polynomials of the first kind.

8.19. THEOREM. Let (No,*) be a polynomial hypergroup. If either
Sm,n,m+n-i > 0 for all m, n 6 No or bn = 0 and gm,n<m+n_2 > 0 for
all m, n e N, then the set of all indecomposable factors is dense in M\N0)
with respect to the norm || • ||.

PROOF, (cf. Ostrovskii and Truhina [37, Theorem 2]) We first assume
that gm n m+n_i > 0 for all m, n e N. If n e Ml(N0) satisfies supp// c
{0, I,... , n}, n £ supp/i and n - 1 £ supp/i for some n > 1, then fi is
indecomposable. In fact, vx * v2 = n with vl ^ d0 ^ v2 would imply that
vx and v2 are finitely supported and that the numbers n( := maxsuppi/,
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0 = 1, 2) satisfy nl + n2 = n and n{ + n2 - 1 e s\ipp(Sn * 8n ) c supp/i

contradicting our assumption. Therefore, for arbitrary v = Y^ockdk e
Ml(N0) and iV e N sufficiently large, the measure

N \ l N

\*:=0 / fc=0

is indecomposable. Since \\v - vN\\ -* 0 for iV —> oo, the proof of the first
part is finished.

Since the proof of the second part is very similar to the first one (see also
[37, Theorem 2]), we omit it.

To conclude this section we would like to point out a remarkable property
of characters that are contained in the discrete set L:

8.20. PROPOSITION. For every x e supp7r\[-l, 1] the following state-
ments are equivalent:

(1) x<-*0;
(2) x is isolated in DS^NQ;
(3) the character ax e No corresponding to x (that is, ax{n) = Pn(x) for

n e No) is contained in Ll(N0, m), which means

n=0

PROOF. The equivalence of (1) and (2) follows from Theorem 8.2. Fur-
thermore, it follows from Nevai [35, Section 4.1, Theorem 18], that

lim V
n—*oo • y n-i-c

for x < -x0

for x G supp7r\[-l , 1]. This implies that (1) and (3) are equivalent for
JC ^ -xQ. Finally, since -JC0 is not isolated in Ds, Proposition 1.3 yields

8.21. REMARK. For some parameters, the polynomial hypergroups intro-
duced in Section 8.16 and Section 8.17 have an isolated character a which is
integrable with respect to the Haar measure by Proposition 8.20 (for details
on supprc and No see Askey and Wilson [2, Equations (4.28)-(4.30)], Voit
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[49, Section 5.4], and Voit [51, Section 5.6]). In particular, from Proposi-
tion 1.3 it follows that a/||a||2 • m is a nontrivial idempotent measure. This
yields examples of polynomial hypergroups, and therefore of commutative
hypergroups without proper compact subhypergroups, that have nontrivial
idempotent measures. This fact shows that the classification of the idempo-
tent measures on commutative hypergroups is much more complicated than
in the case of locally compact abelian groups (for groups see Rudin [39]).
For the classification of idempotent measures fi e Mb{K) with \\n\\ < 1 on
a commutative hypergroup see Bloom [6].
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