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Abstract. The origin, structure and evolution of sunspots are investigated using a numerical
model. The compressible MHD equations are solved with physical parameter values that approx-
imate the top layer of the solar convection zone. A three dimensional (3D) numerical code is
used to solve the set of equations in cylindrical geometry, with the numerical domain in the form
of a wedge. The linear evolution of the 3D solution is studied by perturbing an axisymmetric
solution in the azimuthal direction. Steady and oscillating linear modes are obtained.
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1. Introduction
On the visible surface of the sun, magnetic flux is pushed to the boundaries of granules

and supergranules where they (possibly) grow in field strength to becomes pores. These
pores have characteristic flow patterns around them (Sobotka et al. 1999) and may have
rudimentary penumbral structures (Sankarasubramanian & Rimmele 2003). Pores may
grow into sunspots, which can have lifetimes of up to several weeks. High-resolution
observations have shown that sunspots possess intricate magnetic structures and flow
patterns (Langhans et al. 2005, Rimmele 2004).

2. Mathematical model and numerical implementation
The initial temperature and density profiles are

T = T0(1 + θz), ρ = ρ0(1 + θz)m, (2.1)

with the 0 subscript defining the quantity at the top of the box (z = 0), θ the initial
temperature gradient, and m the polytropic index. Throughout we have used T0 = 1,
ρ0 = 1, θ = 10 and m ∈ {1, 1.495}, which gives a top layer of the solar convection zone
that lies between 500km and 6000km beneath the visible surface. We solve the equations
for fully compressible, nonlinear magnetoconvection:

∂ρ

∂t
+ ∇ · (uρ) = 0 (2.2)

∂u
∂t

+ u · ∇u +
1
ρ
∇P − θ(m + 1)ẑ − σK

ρ
∇ · τ +
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2Q

ρ
j × B = 0 (2.3)
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ρ
∇2T − ζ0K

ρ
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∂B
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ψ = 0 (2.6)
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The quantity ψ was introduced to help with divergence clearance (Dedner et al. 2002)
and is evolved by equation (2.6). Velocity ch is associated with the CFL condition and
c2
p = αch, where α is a chosen constant, the amplitude of which is chosen to minimize the

value of max(∇·B). The set of equations is evolved in a three-dimensional (3D) cylinder,
so that the velocity and magnetic field are u = u(r, φ, z) and B = B(r, φ, z). We use

P = ρT, ∇ · B = 0, j = ∇× B, (2.7)

with the notation: τ the rate of strain tensor; γ the ratio of specific heats; σ the Prandtl
number; K the dimensionless thermal conductivity; ζ0 the magnetic diffusivity ratio
at z = 0; Q the Chandrasekhar number. All quantities are dimensionless, with length
scaling proportional to the depth of the numerical domain, time proportional to the depth
divided by the sound speed at the domain top, and temperature, magnetic field, density,
pressure all scaling proportional to their initial values at the domain top.

The numerical grid is a 3D wedge of a cylinder (r, φ, z) with depth one unit and radius
Γ. The azimuthal number Mφ = 2π/φmax quantifies its width. The numerical model
operates with Mφ � 4. The top boundary conditions on the domain is as follows: the
magnetic field is vertical with the temperature obeying Stefan’s law. At the bottom of
the domain the magnetic field is vertical and the temperature is fixed. The outside wall
is slippery, perfectly conducting and thermally insulating, while the following regularity
condition applies to the central axis:

∂ρ

∂r
= ur = uφ =

∂uz

∂r
= Br = Bφ =

∂Bz

∂r
=

∂T

∂r
= 0. (2.8)

The numerical domain is periodic in the azimuthal direction. In the numerical simulations
we use a fourth-order Bulirsch-Stoer type time integration, with sixth-order compact
finite differencing (Lele 1992) in the (r, z) plane and a spectral treatment azimuthally.
The level of dealiasing increasing towards the central axis to maintain grid uniformity.

3. Ground state and linear azimuthal modes
The simulation is initialized with an axisymmetric, time independent ground state,

which has a well defined flux tube at the central axis and two convection cells towards
the outer boundary (Hurlburt & Rucklidge 2000, Botha, Rucklidge & Hurlburt 2006).
This was obtained with parameter values Q = 100, σ = 1, ζ0 = 0.2 and γ = 5/3.
This nonlinear ground state is then perturbed in the azimuthal direction. After an initial
period of adjustment, linear modes appear that grow steadily until the numerical solution
reaches its nonlinear state. The growth rates of the linear modes for two sets of parameters
are shown in Figure 1. In order to determine the influence of the magnetic field, the
calculations were repeated with the magnetic field averaged in the azimuthal direction
after each time step. For the parameter set R = 104 and m = 1 the growth of all modes
is steady, with the highest growth rates occurring for the widest wedges. Thin wedges
experience damping of all perturbations. For modes when R = 105 and m = 1.495 the
full calculation shows steady growth when Mφ � 6 and oscillatory growth when Mφ � 8,
with the highest growth rate obtained when Mφ = 12. The averaged magnetic field
calculations show oscillatory growth for all modes.

The vertical velocity (r, z) contours show the form of the linear eigensolutions (Fig-
ure 2). They fill the numerical domain outside the magnetic flux tube where the convec-
tion cells are located. For steady modes (obtained when R = 104) each convection cell
has a local minimum or maximum at its centre, while the shapes of the oscillating modes
(when R = 105) are more fluid. The larger the local peak value, the more space it takes
in the numerical domain.
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Figure 1. Linear mode growth rates obtained with two sets of parameter values. Results from
the full magnetic field calculations are presented by the solid curve, while the averaged magnetic
field is presented by the dashed curve. All modes show steady growth for R = 104. For R = 105

the full calculation shows steady growth for Mφ � 6 and oscillatory growth for Mφ � 8. All
modes are oscillatory when the averaged magnetic field is used.

Figure 2. Contour plots of the azimuthal perturbation of uz at a fixed azimuthal angle, obtained
with Mφ = 10. The oscillating mode is shown at time 55.66 (on the left) and half a period
later at time 93.78 (on the right). The lighter shades are positive contours and the darker
shades negative, with the black line the zero contour. The scale between contours is logarithmic.
Enhanced dealiasing at the central axis (used to provide grid uniformity) set all modes to zero
between 0 < r < 0.7. The magnetic flux tube of the ground state occupies 0 < r < 1.2.

These linear studies may throw some light on the formation of structures around pores
and sunspots. They are the first results in a project that aims to simulate the formation
of penumbral structures in 3D magnetoconvection numerical simulations.
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