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Abstract

If M is a commutative W*-algebra of operators and if ReM is the Dedekind complete Riesz space of
self-adjoint elements of M, then it is shown that the set ReM of densely defined self-adjoint
transformations affiliated with ReM is a Dedekind complete, laterally complete Riesz algebra
containing ReM as an order dense ideal. The Riesz algebra of densely defined orthomorphisms on
ReM is shown to coincide with ReM, and via the vector lattice Radon-Nikodym theorem of
Luxemburg and Schep, it is shown that the lateral completion of ReM may be identified with the
extended order dual of ReM.

1980 Mathematics subject classification (Amer. Math. Soc): 46 A 40, 47 B 55.

Introduction

An orthomorphism on an Archimedean Riesz space is a densely defined, order
bounded and band preserving linear map. The general theory of orthomorphisms
has received much recent attention; see for example [5,6,8,16,20,21,22] and the
references contained therein. For many Riesz spaces, it is possible to determine
the orthomorphisms explicitly as multipliers, in a certain sense. For example, if
the Riesz space L is the space C(X) of all real-valued continuous functions on the
compact space X, then orthomorphisms on L can be identified with (equivalence
classes of) real-valued functions belonging "locally" to L with respect to the filter
of dense open subsets of X and acting on L by pointwise multiplication ([6,
Theorem 4.3]).

Let now ReM be the self-adjoint part of a commutative von Neumann algebra
M of operators acting in a Hilbert space Jf. It is well known that ReM is a
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Dedekind complete Riesz space with respect to the natural (that is, quadratic
form) ordering ([11, Chapter 8]). It is also well known [3] that ReM can be
identified with the space of all real continuous functions on a compact, hypersto-
nian space so that the result of [6] cited above completely describes the orthomor-
phisms of ReM. This description, however, is not entirely satisfactory, as it is
purely in terms of the structure space of ReM and therefore not intrinsic. Thus, a
principal aim of this paper is to identify the orthomorphisms of ReM as the space
ReM of all (densely-defined) self-adjoint transformations in .^"affiliated with ReM
(Theorem 5.2). This is achieved by showing that such transformations may be
constructed in an elementary fashion from ReM and may be endowed with the
structure of a Dedekind complete, laterally complete /-algebra containing ReM as
an order dense ideal. There is a further aspect to be mentioned concerning the
identification or orthomorphisms of ReM with unbounded self-adjoint transfor-
mations. Orthomorphisms in Dedekind complete Riesz spaces were studied by
Nakano [15] under the name "dilatators". It is apparent that Nakano was
motivated by the theory of self-adjoint transformations; however, no explicit
connection was made in [15]. Thus, Theorem 5.2 of the present paper shows
exactly the relation of the dilatators of Nakano to self-adjoint transformations in
Hilbert space.

The analytic aspects of the theory of orthomorphisms have been shown by
Luxemburg and Schep [10] to be very closely related to the classical Radon-
Nikodym theorem of classical measure theory and, via their abstract Radon
Nikodym theorem, we show that the positive orthomorphisms on ReM may also
be identified as the Radon-Nikodym derivatives of the family of all semi-finite
normal traces on ReM with respect to a fixed, strictly positive, semi-finite normal
trace on ReM (Theorem 6.3). The appropriate setting here is the notion of
extended order dual of an Archimedean Riesz space, introduced in [9].

We make some further remarks concerning the order theoretic aspects of this
paper. Our development will be from the perspective of the theory of Riesz spaces
and accordingly our starting point will be the established lattice structure of ReM
as presented in Chapter 8 of the monograph [11]. Thus our results can be viewed
as extensions to commutative algebras of unbounded self-adjoint transformations
of the results presented in [11]. However, new problems arise in the case of
unbounded transformations. The first task is to establish that ReM has the
structure of a commutative algebra. This fact is, of course, well known and was
established by Murray and von Neumann [12] in the more general setting of finite
von Neumann algebras. In view of the fact that the methods of [12] depend on the
notion of a dimension function, we take advantage here of the commutativity of
ReM to present a direct and simplified approach to the domain problems
necessary to establish the algebraic structure of ReM. The essential idea here is to
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[3] Orthomorphisms of a commutative H/*-algebra 145

consider positive elements of ReM as "equivalence classes" of increasing se-
quences of positive elements of ReM which converge pointwise on some common
dense linear subspace of Jf. This notion is formulated precisely in Lemma 2.4
and Theorem 2.6. Our construction is elementary and not only leads to the
desired fact that ReM can be endowed with the structure of a real commutative
algebra, but yields a very natural proof of the (well-known)^fact that each positive
element of ReM has a unique positive square root in ReM, and this places in
perspective the work of Bernau [1]. Just as in the bounded case, the existence and
uniqueness of square roots of positive elements of ReM implies that ReM can be
given the structure of a Dedekind complete Riesz space with the identity / as a
weak order unit. From this perspective, it can then be seen very clearly that the
well-known spectral theorem for self-adjoint transformations is a very special case
of the more general lattice spectral theorem of Freudenthal [11, Chapter 6].

The terminology concerning the Riesz space aspects of this paper will be drawn
from the monograph [11] of Luxemburg and Zaanen. Convenient references to
the theory of orthomorphisms are the paper [10] of Luxemburg and Schep and the
lecture notes of Luxemburg [8].

1. Preliminary information

We begin by recalling some terminology concerning linear transformations in
Hilbert space. For general properties of these transformations a convenient
reference is [13]. Let Jf be a complex Hilbert space and let H be a linear
transformation with domain £d(H) and range @(H) linear subspaces of Jf. The
transformation H' is called an extension of H, written H' 2 H, if and only if
2>{H') 2 3>(H) and H'z = Hz whenever z <= @{H). The graph of H is the linear
subspace {(z, Hz): z e @>(H)} of the Cartesian product JtfX Jf, equipped with
the usual inner product. H is called closed if the graph of H is a closed subset of
Jf X 3V. If 5 is a bounded linear operator on 3V, then S, H are said to commute if
SH c HS.

If the linear transformation H is densely defined, then the adjoint map H* is
defined as follows: @>{H*) is the set of those elements y e y? for which there
exists a (necessarily unique) element j ' * e Jf such that

(Hz,y) = (z,y*)

for all z e 3>(H), in which case H*y is defined to be y*. The transformation H*
so defined is again a linear transformation in Jf. If H is densely defined, then H
is called symmetric if H c H* and self-adjoint if H = H*. H is called positive,
written H > 0 if and only if H is self-adjoint and (Hz, z) > 0 for each z e 3>{H).
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We shall make frequent use of the following elementary results. For the proofs
we refer to [17, Sections 114-119] and [7, Chapter XII, Section 1].

LEMMA 1.1. If H is a densely defined linear transformation in 3f, then H has a
closed linear extension if and only if 3>(H*) is dense in 34?'. In this case, H** is the
minimal closed extension of H and the graph of H** is the closure in JfX Jfof the
graph of H.

LEMMA 1.2. Let H be densely defined, linear and closed.
(i) (/ + H*H)~l exists, is everywhere defined and bounded; moreover

||(7 + H*H)'l\\ < 1.
(ii) The transformation H(I + H*H)1 is bounded and \\H(I + tf*//)"1!! < 1.
(iii) The transformation H*H is self-adjoint and positive. If H' is the restriction of

H to 3!{H*H), then H is the smallest closed linear extension of H'. Consequently,
the graph of H' is dense in the graph of H.

Throughout the paper, M will denote a commutative von Neumann algebra of
operators in the Hilbert space 3%". By ReM is denoted the set of self-adjoint
elements of M. With the natural (quadratic form) partial order, ReM is a
Dedekind complete Riesz space. The elementary properties of ReM, developed
from the point of view of the theory of Riesz spaces, may be found in [11,
Chapter 8], or in Chapter XI of [18]. We assume throughout that the identity
operator / on J(f is an element of ReM. The commutant of M is denoted by M'. If
A is a bounded operator on Jf, then A e A/if and only if A commutes with each
unitary operator in M'. We denote by ReM, the collection of all self-adjoint
transformations in Jf? which commute with each unitary operator in M'. The
elements of ReM are said to be affiliated with M.

2. The square root of a positive self-adjoint transformation

In this section we show that each positive element of ReM can be approxi-
mated, in a natural way, by an increasing sequence of positive elements of ReM
(Theorem 2.5). We show that this idea then leads to an elementary proof of the
existence and uniqueness of the square root of a positive element of ReM
(Theorem 2.6.).

We begin with the following observation.

LEMMA 2.1. Let 0 < H E 'ReM. The bounded operators (I + H2)~\ H(I + H2)~]

are positive self-adjoint elements of ReM.
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PROOF. Note that H2 is self-adjoint and let zx, z2 e Jt?. We have

H2)-\, z2) = ((/ + T/2)"1^, 77(7 + H2ylz2)

+ (H2(I + H2)-1
ZI,H(I + H2)-1Z2)

= ((/ + H2)(I + H2)-^,, 77(7 + H2Ylz2)

Thus 77(7 + 772)"1 is self-adjoint. Moreover, from

((/ + H2Ylz, z) = ((/ + H2ylz, (I + H2)(I + H2ylz)

for all z e ^f, it follows that (/ + 772)"1 > 0 since H2 ^ 0. A similar calculation
yields that 77(7 + 772)"1 > 0.

To see that (/ + 772)"1 e /?eM, observe first that

(7 + H2)(I + H2)-1 = I = I* 2 (7 + H2Y\l + 772)*

2 ( / + H2)'\l + H2).
If now U e M' is unitary, then

[/ = f/(7 + 7/2)(7 + 7/2)"1 c (7 + H2)U(I + H2)'1

so that

(7 + H2YlU c (7 + 772)"1(7 + H2)U(I + 772)"1 c U(I + H2)'1.

Since (7 + /72)"1 is bounded, equality holds and so (7 + 772)"1 e ReM. From

77(7 + T/2)"1^ = HU(I + H2)'1 2 UH(I + H2)'1

for each unitary U e Af', it follows that also 77(7 + 772)"1 e 7?eM.

Part of the following lemma is of course well known. The other part is probably
equally well known, but we include a proof for lack of convenient reference.

LEMMA 2.2. 7/0 < 77, K e ReM, then H2 < K2 if and only ifH^K.

PROOF. That 0 < 77 < K implies 772 < K2 follows from the construction of the
square root in ReM (see [11, Section 54]). Assume then that 772 «s K2.
From (K - H)(K + 77) > 0, it follows that ((K - H)z, z) > 0 whenever z e
&((K + 77)1/2). Ldy ^Jf and suppose that (K + H)1/2y = 0; from

0 = ( (* + H)y, y) = (Ky, y) +(Hy, y) = \\K^2y\\2 + \\H^2y\\2

it follows that Ky = 0 = 77y. Let now x e ^ f b e arbitrary and write x = y + z
with z an element of the closure of @((K + H)l/2) and (K + Hf^y = 0. It now
follows that ((K - 77)x, x) = ((K - H)z, z) > 0 and so K > H as required.
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The following simple calculation will be used repeatedly and is therefore
presented separately. We observe that the proof is based on the commutativity of
ReM.

LEMMA 2.3. Let 0 < Hn t „ c ReM. If z e / , then l i m ^ ^ ^ z exists in 3^ if
and only if supn\\Hnz\\ < oo.

PROOF. One implication is clear. Suppose then that z e Jfand supj | / /nz | |< oo.
Since H2 T „, the sequence (||//nz||2: n = 1,2,...} is a non-decreasing bounded
real sequence. For n > m,

\\Hnz - Hmz\\2 = (Hnz, Hnz) + (Hmz, Hmz) - 2{Hnz, Hmz)

< \\Hnz\\2 - \\Hmz\\2 -» 0 a s m , / ! - » x .

LEMMA 2.4. Let 0 < Hn T „ c ReM. Suppose that 2= {z <^Jtf: s\xpn\\Hnz\\ <
oo} is dense in Jf. Define the linear transformation H on 2> by setting Hz =
l imn^ , xHnz for each z e 3. The transformation H is densely defined, closed and
H* 2 H. Further HU 2 UH for each unitary U e AT.

PROOF. That hm n _ 0 0 / / n z exists whenever z e Sd follows from the previous
lemma. If zx, z2 e @>, then

{Hzx, z2) = Um ( # n z 1 ; z2) = hm (z1( ^ n z 2 ) = (zl 5 Hz2).
n-» oo n-»oo

Thus z2 e ^(7 /*) and H*z2 = i/z2.
To see that H is closed, suppose that {z n }^ = 1 c S>{H) = 2), that zn -^ z G J f

and that /fzn -• _y. Let A" > 0 satisfy | | / / z j | < /C for n = 1,2,... and observe that
for m, n — 1,2,...

\\Hmzn\\ < \\Hzn\\ < K.

It follows that \\Hmz\\ < A" for w = 1,2,... and s o z e S . Now H* is closed and
H* ~D H and so //*z = y. It follows also that Hz = y since z e ^ and so # is
closed.

Let now U e Af be unitary and let z e ^ . From

||tfmt/z|| = ||W/mz|| = \\Hmz\\

for m = 1,2,..., it follows that Uz <E 3). Further

W7z = C/( lim Hnz) = lim //nC/z = HUz

and the proof is complete.

We now show that each positive element of ReM can be "approximated" in a
natural manner by monotone sequences of elements of ReM.
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THEOREM 2.5. Let 0 < H G #eM and /ef //„ = / / ( / + H2/n)~l e ZteM /<?/-
/7 = l,2,....77ie«0 < / / J n c ReMandz <E3>(H)ifandonlyifsupn\\Hnz\\ < oo.
//z e 0(#), f/ie/i Tfz = lim^^^z.

PROOF. For n = 1,2,..., let /„ = (/ + H2/n)-\ Then 0 < /„, //„ e ReM and
||7n|| < 1, \\Hn\\ ^ y/n for n = 1,2, It is a simple matter to check the following:

(ii)/m - /„ = (1/m - l/n)HnHm> m, n = 1,2,....

It follows now that i/m < Hn if n > m. In fact, it follows from (ii) that Jm < /„
and so also J2 ^ J2 for n > m. From (J2Hz, Hz) < (J2Hz, Hz) for n ^ m and
z <= ^(7/) , it follows that ||//mz|| < ||i/nz|| for « ^ w and all z e / . Thus
H^ < i/n

2 for n 3» w and so Hm < //„ for n > w by Lemma 2.2.
We show now that //z = l i m ^ ^ ^ ^ z whenever z & 3>(H).U z <B 3)(H), then

||//nz|| < 11Hz11 from (i) above and so, since 0 < Hn \ n c /JeAf, it follows from
Lemma 2.3 that \imn_aoHnz = limn^00HJnz exists. By closedness of H, it
suffices to show that Jnz -* z whenever z e S>(H). This however follows from
(iii) by noting that for each z e @{H) and n = 1,2,..., we have

||(7 - Jn)z\\ = \/n\\HHnz\\ < \/M\Hz\\.

Let now ^ = (z: supn||/fnz|| < oo} and let Ho be defined on 3> by setting
Hoz = limn^xHnz, for z e ^ . By Lemma 2.4, 7/0 is densely defined, closed and
symmetric and from the preceding remarks it is clear that Ho D H. Thus H% c
H* = H and from Ho c H£, it follows that Ho = H and the proof of the theorem
is complete.

We are now in a position to give an elementary proof of the existence and
uniqueness of the positive square root of a positive self-adjoint transformation.

THEOREM 2.6. Let 0 < H e i?eM, let 0 < //„ t „ c #eM a«d suppose that
z e £t){H) if and only if supn||//nz|| < oo, and f/iaf /7z = limn_xHnz whenever
z G 9{H). Define the linear transformation G as follows. Let 3>(G) = (z e H:
supj|//y2z|| < oo} and for z e ^(G) 5e? Gz = U m ^ ^ / Z ^ z . T/ie« 0 < G

and G2 = //. Moreover, ifO < (70 G /?eM and Go
2 = G2, ^e« G = Go.

PROOF. If z G ^ ( / / ) , then, for n = 1,2,...,

It follows that 3>(H) c ^(G). By Lemma 2.4 G is closed, densely defined,
G c G* and GU 2 UG for each unitary U G A/'. That (Gz, z) > 0 for each
z e 3>{G) follows simply from the definition of G.
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To show that 77 = G2, we show first that 3){H) = 3>{G2). To this end, let
z e @i(H). There is a constant K > 0 (depending, of course, on z) with

\\Hnz\\ < \\HX2Hy2z\\ > \\Hmz\\ < K

for w > n. Noting that ^>(77) c 2>(G), it follows that supm||//y2Gz[| < oo and
this imphes that Gz e ^(G). Thus 9{H) c ^(G2). To see the reverse inclusion,
let z e S(G) and observe that

Hl/2Gz = / /y2 lim //y2z = lim ^ /
m—*cc m —* oc

for each « = 1,2,.... It follows that 7fn
1/2z <= 2)(G) and G7fn

1/2z = 77,,1/2Gz for
n = 1,2,.... Suppose that z e ^ ( G 2 ) ; from

for n = 1,2,..., it follows that z e ^ ( / / ) and so 3>(H) = 3>{G2). That G is
self-adjoint now follows from the argument of [1, Lemma 3]. We include this
argument for the sake of completeness. Since G is closed G = G** and so
GG* = G**G* is self-adjoint. From H = G2 c GG*, it follows that H = G2 =
GG*. Let z e ^(G*). Since the graph of the restriction of G to 3>{GG*) is dense
in the graph of G*, there exists a sequence {zn } c 2{GG*) = &{G2) with zn -> z
and G*zn -» G*z. Since zn e ^(G2), follows that Gzn -> G*z and by closedness
of G, it follows that z e S(G) and so G = G*.

Turning to the uniqueness question, suppose that 0 < Go e i?eA/ satisfies
G0

2 = G2. Observe that G.G(7 + G2)"1 2 G(7 + G 2 ) ' ^ . From this, it follows
that

G2(7 + G2)-2 = (G(I + G2)"1)2 = G2(7 + G2)"2.

By uniqueness of positive square roots in the bounded case, it follows that

G ( 7 + G 2 r 1 = G0(7+G2)"1 .

Thus, Gz = Goz whenever z e ^(G2) = ^(G0
2). That G = Go now follows from

the fact that the graphs of G, Go are precisely the respective closures of the
restrictions of G, Go to ^(G2) = @(GQ). By this, the proof of the theorem is
complete.

Let 77 e ReM. As usual, we define \H\ to be (772)1/2. For later reference, we
remark that S(77) = @(\H\). This is shown, for example, in Lemma 13 of [1]. It
is now convenient to state the well known polar decomposition lemma. As the
proof is standard (see, for example, Theorem 22 of [1] or Lemma 4.4.1 of [12]), we
omit details of proof, although we do make the explicit remark that the decom-
position depends only on the existence and uniqueness assertion of the preceding
theorem.
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THEOREM 2.7. Let H e ReM. There exists a unitary operator U such that
H = U\H\. U is uniquely determined by the requirement that Ux = x whenever
Hx = 0. The operator U is an element of M.

We observe finally that to each self-adjoint transformation in 3V, there corre-
sponds naturally an abelian ring of operators to which H is affiliated. This allows
comparison of the construction of Theorem 2.6 with that of Bernau [1] and Wouk
[19]. As usual, y(jtf') denotes the linear space of all bounded linear operators on

THEOREM 2.8. Let H be a self-adjoint transformation on the Hilbert space 34?. Let
N = {S e &(J(?): SH c HS} and let M(H) be the commutant ofN. M{H) is an
abelian von Neumann algebra and H e ReM(H).

PROOF. It is easily seen that N is a subalgebra of SC{J^) containing / and if
S e N then also S* e N. From this it follows that M(H) is a von Neumann
algebra. To show that M{H) is abelian, observe first that the bounded self-ad-
joint operators (/ + H2)'\ H(I + i /2)"1 belong to N n M(H). In fact, from

H2Yl = (H(I + H2y1)* c (/ + H2)'lH

it follows that both (/ + H2)~\ H(I + H2)~l belong to N. If S e N, then
SH2 c H2S and from

S(H2 + I) = SH2 + 5 c H2S + S = (H2 + I)S

it follows that ( / + H2)lS = S(I + H2)1. Further, from SH c HS, it follows

immediately that

SH(I + H2)'1 = HS(I + H2)'1 = H(I + H2)'lS.

Thus(/ + H2)-1 and/ / ( / + H2)'1 are elements of M(H).
Let now S e M(H). Since S commutes with (/ + Z / 2 ) 1 and H(I + H2)~\ it

again follows that

HS(I + H2)'1 = H(I + H2)'lS = SH(I + H2)'1.

From this it follows that HS = SH on 2{H2). Let z e ^ ( / / ) . Since the graph of
the restriction of H to @(H2) is dense in the graph of H, there exists a sequence
{zn} c ^ ( / / 2 ) such that zn -» z and i/zn -^ Hz. Thus Szn e ^(7/ ) and 5zn -• 5z
and //&„ -» S/fz. By closedness of H, Sz e ^ ( i / ) and i/5z = 5//z. Therefore
5// c / /5 . It follows now that S e N and so M(H) is abelian. At the same time,
it follows that H e ReM(H) and the proof is complete.
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3. The algebraic structure of ReM

The main result of this section is that ReM is a real commutative algebra,
provided the algebraic operations are suitably defined. The domain problems
which arise quite naturally were resolved in [12] in a setting which is essentially
more general than that considered here. We remark however, that even in the
commutative case, the situation does not appear to be completely trivial and, in
line with the objectives stated in the Introduction, we present here proofs of the
fact that if A, B <E ReM, then the transformations A + B, AB have closed
extensions [A + B], [AB] to elements of ReM and that the algebraic operations
so defined have all the properties that are expected.

We begin with an adaptation of Lemma 16.4.1 of [12].

LEMMA 3.1. Let H be a linear, densely defined transformation in 3€ such that
HU 3 UH for each unitary operator U e M'. If H Q H*, then H** is a maximal
symmetric, self-adjoint extension of H to an element of ReM. Any extension of H to
an element of ReM coincides with H**, and is therefore unique.

PROOF. Let H satisfy the condition of the lemma and suppose that H c H*.
Since H is densely defined, it follows that H** is defined and is the minimal
closed extension of H. Since the graph of H** is the closure of the graph of H, it
follows from the closedness of H** that H**U 2 UH** for each unitary U e M'.
Without loss of generality, assume then that H is closed and let V be the Cayley
transform of H. Since H is closed, the subspaces S>(V) = @{H - il) and
®(V) = ®(H - il) are closed subspaces of 3^, It is not difficult to see that V
extends to a partial isometry in M. From VV* = V*V, it then follows that
®(H + il) = @(H - il). To show that H is self-adjoint (and hence maximal
symmetric), it suffices to show that ®(H + il) = dt(H - il) = 3*?. If now z e j f
satisfies

for all x e 3)(H\ then (x, z) = 0 for all x e 3>(H) and so z = 0 since 2{H) is
dense in $?, and the first assertion of the lemma is established.

Suppose now that H is densely defined and HU c UH for all unitary U e M'.
Suppose that Ho e ReM is an extension of H. Then H** c Ho since H** is the
minimal closed extension of H. From H c Ho, it follows that H* D H$H, SO that
H is symmetric and so, from the first part of the lemma, it follows that H** is
self-adjoint. Since H** is, in particular, maximal symmetric it follows that, in
fact, H** = Ho, and by this the lemma is proved.
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The following result may be viewed as the basis of the general spectral theorem
for self-adjoint transformations. A similar result may be found in [17, page 316],
and in [18]. It will provide the main tool in the discussion of the domain problems
referred to above.

LEMMA 3.2. Let H e ReM. There exists a sequence {£n}^°_1 of projections on
ReM with the following properties.

(i)En(Jf)QS>(H)forn = 1,2,....
(ii) £„!„/.
(iii) The restriction of H to En(Jf?) is an element of ReM for n = 1,2,
(iv) / / z e / , then z e 3i(H) if and only if swpn\\HEnz\\ < oo in which case

limn_xHEnz exists and is equal to Hz.

PROOF. Via the polar decomposition and the fact that S>{H) = ̂ ( | i / | ) for each
H e ReM, it suffices to consider only the case that H > 0.

For n, m = 1,2,..., let Hn = H(I + H2/n)'1, let Emn e ReM be the compo-
nent of / in the band generated by (nl - Hm)+ and let En = infm Emn. Observe
that, from

0 < En(nl - Hm)+ = EnEmn(nI - Hm) = En{nl - Hj

it follows that HmEn < nEn for all m, n. In particular, if z e 3?and if Enz = z,
then \\Hmz\\ < n\\z\\ for m = 1,2,.... It follows from Theorem 2.5 that En(J^) c
@(H), and from the closed graph theorem, it follows that the restriction of H to
En(Jif) is bounded; moreover, it is clear that this restriction is an element of
ReM.

To show that Enf nI, set F = sup,, En and note that

(nl - Hm) - EmJnI - Hm) = -(nl - #„)"< 0

so that Hm(I - Emn) > n(I - Emn) for all m, n. If z e jff, then from

\\Hmz\\ > \\Hm{l - EmJz\\ > n\\(l - EmJz\\

for all m, n, it follows from Emn\/tnEn that
Urn \\Hmz\\>n\\(l-En)z\\

m-»oo

for every n. Since ||(/ - En)z\\ -* ||(7 - F)z\\ as n ~* oo, it follows that (/ - F)z
* 0 imphes z * 2>{H). Since 2{H) is dense, it follows that I - F = 0. The
proof of assertions (i), (ii), (iii) is complete.

To see that (iv) holds, observe that 2= {z:supn\\HEnz\\ < oo} D U ^ £„(•#")
and so ̂  is dense in Jf. Since 0 < ^ ^ J L a - ^ e ^ ' l h e r e exists, by Lemma 2.5
and Lemma 3.1, and element H' e /?eM such that 2{H') = 3> and i/'z =
lim HEnz whenever z e 3). It is clear that H', H have equal restrictions to
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U "_! En{JC) and it follows from Lemma 3.1 that H' = H. By this (iv) follows
and the proof of the lemma is complete.

We come now to the main result of this section.

T H E O R E M 3.3. Let n be a natural number and let Ax,... ,An be elements of ReM.

Then Ax + • • • + An, Ax,... ,An have unique extensions, denoted [Ax + • • • + An],

[Ax • • • An] respectively, to elements of ReM. If I < k < n, then

(i) [[A, + •••+Ak) + [Ak + 1 + •••+ AJ] = [AX + •••+ An\,

(ii) [[A, • • • Ak].[Ak + l • • • An]] = [A, • • • A ^

With the algebraic operations so defined, ReM is a real commutative algebra.
Further, if A, B, C are elements of ReM, then

(iii) [A[B + C]] = [[AB] + [AC]].

PROOF. Let Alt..., An be elements of ReM and for 1 < j ^ n, let {Efj) }f=l be
a sequence of projections in ReM which satisfy the assertions (i)-(iv) of Lemma
3.2 for Aj. From the commutativity of M, it follows that

A, •••AnE^---E^ = AlE^---AnE^

holds for i = 1,2,... so that £,(1) • • • E\n\3^) c 2(Al • • • An). Since £,(1) • • •

E(n) = E(i) A ... A £•(«) f jIf it follows that 2{AX ••• An) is dense in tf. For
each x, y e 3tC and for each ix, . . . , /„ = 1,2,... observe that

(AtEV • • • AnE^x, y) = (x, AXE^ • • • AnE™y)

and so successive applications of part (iv) of Lemma 3.2 yield that {Ax • • •
Anx, y) = (x, Ax • • • Any) for each x, y e 3>{AX • • • An) and so Ax • • • An Q

(AxAn)*. A similar argument shows that Ax • • • AnU 2 UAX • • • An for each
unitary U G M' and so (Ax • • • An)** provides the unique closed extension of
Ax • • • An to an element of ReM and we denote this extension by [Ax • • • An].
Moreover, if C denotes the restriction of Ax • • • An to U " x £,(1) • • • E[n)(JP),
then it is easily verified that CU c UC for each unitary U e M', that C is densely
defined and that C c C*. Consequently, since C c [Ax • • • An], it follows that
C** = [Ax • • • An] by Lemma 3.1. If now 1 < k < n and a is any permutation of
( 1 , 2 , . . . , m}, then C coincides with the restrictions t o U " = 1 £,(1) • • • E^n)(Jff) of
bothK^! • • • An][Ak+1 • • • An]] and [Aa{X) • • • A0{n)]. Again by the uniqueness
part of Lemma 3.1, it follows that

K - • • An\ = [[ A • • • A 1 K + 1 • ' • An]] = [^o(1) • • • Aa(n)] .

The remaining assertions of the theorem are proved in a similar manner and
accordingly the proofs are omitted.
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4. The Riesz space structure of ReM

We show now that the partial order on ReM may be extended to a partial
ordering of ReM and that ReM is itself a Dedekind complete Riesz space. Recall
that A G ReM is called positive, written A > 0, if (Ax, x) > 0 whenever x e
3)(A). We show first that the cone properties are satisfied so that ReM is an
ordered vector space.

LEMMA 4.1. (i) If A, B e ReM, A > 0, B > 0 then [A + B]> 0.
(ii) If A e iteM, then aA > 0/or eac/i nonnegative real number a.
(iii) If A e «eM, ,4 > 0, -vl > 0 tfiew A = 0.

PROOF, (i) is a immediate consequence of the fact that the graph of [A + B] is
the closure of the graph of A + B.

(ii) is obvious.
(iii) A > 0, -A > 0 implies (^z, z) = 0 for all z e ^ ( / l ) . It follows that

Al/1 = 0 and so A = 0.

THEOREM 4.2. Ler 0 < ^ , B e
(i) [^45] > 0.
(ii)y4 > B implies A2 ^ 5 2 .
(iii) .4 > B if and only if Si (A) c 2>(B)and(Az, z) > (5z, z)foreachz
(iv) y4 > 5 /w/>//

PROOF, (i) Follows immediately from the fact that [/Ifi] = [B1/2AB1/2].
(ii) By (i), it follows that

[A[A - B]] = [A2 -[AB]] > 0 and [[A - B]B] = [[AB] - B2] > 0.

Hence

0 < [[A2-[A - B]] +[[AB] - B2]] = [A2 - B2}.

(iii) Suppose A 3> B; then A2 > B2 by (ii). For n = l,2,..., set Bn =
B(I + B2/n)'K Then Bn t „ and z e ^ ( 5 ) if and only if supj |^z| | < oo.
Observe that if z e 2{A2) n ^ ( 5 2 ) and « = 1,2,..., then

(Bnz, Bnz) < (£z, Bz) < (i4z, ^z ) .

If Ao is the restriction of A to ^(^42) n 3)(B2), then it is easily seen from the
proof of Theorem 3.3(i) that Ao is densely defined. Moreover, it is not difficult to
see that A0U 2 UA0 for every unitary U e M' and consequently from Lemma
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3.1, it follows that A%* = A. From Lemma 1.1, the graph of AQ is dense in the
graph of A so that

(Bnz, Bnz)^(Az,Az)

for n = 1,2,..., whenever z e @(A). It follows immediately that 3){A) c
From [A - B] > 0 it follows that (Az, z) > (Bz, z) for all z e ^ ( ^ ) n
thus for all z e i£(v4).

Conversely, if ^ ( / l ) c 9(B) and (^z, z) > (#z, z) for all z e ^(/4), then
[A - B]^ 0 follows from the fact that the graph of A - B is dense in the graph
ot[A - B\.

(iv) Suppose that A > 5 > 0 and let {Pn } ^ 1 c /?eAf be a sequence of projec-
tions for A as in Lemma 3.2 with Pn(Jf) Q £>(A) for n = 1,2,.... Now ^(/4) c
S ( 5 ) and so Pn(Jf) c ^(fi) for n = 1,2,.... From 5 > 5Pn, it follows that
B2 > (5PJ 2 forn = 1,2,..., and so9{B) c { 2 e / : supJI^zl l < oo}. From
£/>„ T „, and Lemmas 2.5, 3.1, it follows that z e ^ ( 5 ) if and only if supn||5Pnz||
< oo, in which case Bz = \imn_xBPnz. Now observe that from A > B it follows
that ^Pn > BPn and (^Pn)1/2 ^ (5PJ1/2 for n = 1,2,.... It follows now from
the construction of A1/2, Bl/2 that ^1 / 2 3s B1/2 and the proof of the theorem is
complete.

LEMMA 4.3. / / A e /?eM, //u?« y4 < |i4| a«^ -v4 < \A\. Equivalently A + > 0,

PROOF. Let y4 = V\A\ be the polar decomposition of A and let {Pn }™_x c
be a sequence of projections as in Lemma 3.2 with Pn(Jf) c @(\A\) = 3){A) for
n = 1,2,....Ifz e ^ ( ^ ) , then for n = 1,2,...,

1/2z||2 < (\A\Pnz, z)

and so

\(Az,z)\<(\A\z,z)

for each z e £d{A), and the result follows.

THEOREM 4.4. Le? ^, fi e ^ e M sa//j^ 5 > ̂ , 5 > 0. ^
/eAjr/y C > ^ , C > - ^ , C e «eM /mpfy C > \A\. In particular, ReM is a Riesz
space and A + = A V 0, \A\ = A V (-A) hold for each A e ReM.

The details of the proof are now exactly as in the bounded case ([11, Theorem
54.2]) and are accordingly omitted.

https://doi.org/10.1017/S1446788700021996 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021996


[is) Orthomorphisms of a commutative W*-algebra 157

THEOREM 4.5. The Riesz space ReM is Dedekind complete and contains ReM as
an order dense ideal. The identity operator I is a weak unit for ReM.

PROOF. We show first that ReM is an order dense ideal in ReM. If T e ReM,
S e ReM and 0 =$ \S\ < T, then Jf= 3>{T) c 2{\S\) = S>{S) and so the closed
graph theorem implies that S e ReM. Thus ReM is an order ideal in ReM. Let
now O ^ S e ReM be given and let {Pn}™=iQ ReM be a sequence of projections
in ReM satisfying the conditions of Lemma 3.2 for S. Suppose that A e ReM
satisfies A > SPn, for « = 1,2,.... It follows that \\Az\\ 3* \\SPnz\\ for all z e @(A);
consequently 3>(A) c 0 (S) and {Az, z) > (Sz, z) for z e ^( / l ) , by part (iv) of
Lemma 3.2. It follows that S = supn SPn holds in ReM. Thus ReM is order dense
in ReM since 5Pn e fleMfor n = 1,2,....

We prove now that ReM is Dedekind a-complete. Thus, let 0 < Sn e /?eM and
suppose that 0 < Sn < S holds for « = 1,2, In the notation of the preceding
paragraph, to show that supn Sn exists in ReM, it suffices to show that supn Sn A
SPn exists in ~Re~M. Since Sn A 5i"n e AeAf, it suffices to assume that Sn G /?eM
for n = 1,2,.... Let 3) = {z e 3f\ supn||5nz|| < oo}. From 0 < Sn « 5, it follows
that 3) is dense. Define S' on S via S'z = limn^005*z, z e 3>. Via Lemmas 2.4,
3.2, 5" e /?eM and it is a simple matter to show that S' = supn 5n holds in ReM.
Thus /?eAf is Dedekind a-complete.

From the Dedekind a-completeness of ReM, it follows that if 0 < S e i?eM,
then supn S A nl exists and satisfies supn S A „ S A n/ < 5. To see that equality
holds, let {Pn }̂ LX c .ReAf be the sequence of projections for S given by Lemma
3.2 and observe that for each n = 1,2,..., there exists a natural number m(n)
with SPn < m(n)I A S. Thus,

5 = supSPn < sup«/ A 5 < S
n n

and so / is a weak order unit for ReM.
Let now @>: ReM -* /?eM be a band projection and let E = &(I). Then E

being a component of / is a projection in ReM and we show that &>(A) = AE for
each A e AeM. In fact, if 0 < S e i?eM and {/*„}"_! is the sequence of projec-
tions for S given by Lemma 3.2, then SE = supn SPnE. Consequently

= swpSPnE = SE

since ̂ (A) = ,4L for each/1 e i?eM.
We now show that if E e ReM is a projection, then the principal band

generated by E in ReM consists precisely of those S e ReM for which SE = S. It
will then follow that the Boolean algebra of all projection bands in R~eM is
Dedekind complete. From this it will then follow that ReM is Dedekind complete
by an appeal to Theorem 42.9 of [11].
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Let E e ReM be a projection and let 0 < S e ReM be in the principal band
generated by E in ReM. Let {Pn} c /?eM be a sequence of projections satisfying
Lemma 3.2 for S. From 0 < SPn < S, it follows that SPn A (I - E) = 0 and
from Si5,, e AeM, it follows that 5PB(/ - £ ) = 0 for « = 1,2,... From part (iv)
of Lemma 3.2, it follows that S(I - E) = 0 and by this the proof of the theorem
is complete.

LEMMA 4.6. Let 0 < A71T c ReM. Let z e Jfand suppose that z e 2(Ar) for
index T. The net {ATz} converges in 3?'if and only if supT||,4Tz|| < oo. If

2 = {z: z e 2(A7) for each T and supT||ylTz|| < oo} is dense, then the transforma-
tion A defined on 2 by setting Az = lim Arz for z e 2 is an element of ReM.
Moreover, AT T TA holds in ReM.

PROOF. Let z e 2. UA7, >T, then

\\AT,z - A r z \ \ 2 ^ \ \ A T , z \ \ 2 - \ \ A T z \ \ 2 .

From this it follows that the net { A7z } c 3#\s Cauchy and hence convergent.
Let now 2 be dense and for z e 2, put Az = limT^Tz. That AU 2 UA for

each unitary U e M' and that A c A* are easily established as in Lemma 2.4. We
show that A is closed, whence an appeal to Lemma 3.1 will show that A e ReM.

Suppose that zn e 2, that zn -» z and that Azn -»y. In particular, there exists
K > 0 with \\Azn\\ < K for n = 1,2, For each index T, let {/1T n}™=x c i?eAf
satisfy 0 < AT<n < /1T and z e 2(AT) if and only if supn||y4T nz|| < oo, in which
case /lTz = ]imn_aoATnz. Observe, then, that for n, n = 1,2,... and for each
index T, it follows that

MT.MzB|| < \\ATzn\\ < \\Azn\\ < K.

From this it follows that ||y4T>mz|| < K for all T, m so that z e ^ ( ^ T ) for each T
and, from |MTz|| < K, it then follows that z e ^ . As A c 4̂*, and ^* is closed it
follows that Az = A*z = ]imn^xA*zn = lim^^^^z^. It follows that A is closed.
It is now a simple matter to see that A = supT̂ 4T in ReM.

THEOREM 4.7. Let {Aa}, {BT} ^ReM.IfO^Aa10A e ReM and0 < BT T TB
G ReM, then [AaB7\'\a T[AB]. In particular, if {AT}, {BT} are indexed by the
same set {T} , then [ArBT]t T[AB].

PROOF. Using the fact that ReM is order dense in ReM, we may without loss of
generality assume that {A7}, {Br} c ReM. Observe that 0 < AaBT T o T < [AB].
Indeed, this follows from the fact that

{AaBy2x, BY2x) < (AB^x,
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combined with the usual grap_h^closure argument. By Dedekind completeness of
ReM, there exists 0 < C e ReM such that AaB71 „ TC < [AB] and so @([AB]) c

). Ifz &2>(AB), then

= lim limy4o5T2 = \imAaBTz = Cz.
T , 0

It follows then that [AB] = C.

THEOREM 4.8. (i) 7 /0 < ^T t T £ ReM, then supTAT exists in ~Re~M if and only if
[z e jf: sup7{ATz, z) < oo}Js_densein Jf.

(ii) 7/0 < AT T TA holds in ReM then supT(ATz, z) = (Az, z)for every z G ^f.
(iii) 7/0 < AT T TA holds in ReM, then 0 < A1/2 T TA1/2.

PROOF. Let 2= {z e^f: supT(.4Tz, z) < oo}. Observe that ^ = { z e j f :
supT||/l1/2z|| < oo}. Since ^ is dense by assumption, it follows from Lemma 4.6
that B = sup,./!1/2 exists in ReM. From Theorem 4.7, it follows that B2 = supT̂ 4T

holds in ReM. This proves the " i f assertion of (i). If supT̂ 4T exists in ReM then it
is clear from Theorem 4.2 that ^(supT^T) c (z e jf: supT(,4Tz, T) < oo}. Thus
(i) is proved.

IfO<^TTT^4, then the proof of (i) shows that supT^41/2 = B exists in ReM and
satisfies B1 = A. By the uniqueness of positive square roots, it follows that
B = A1/2 and so (iii) is proved.

Finally (ii) follows from (iii) and Lemma 4.6.

LEMMA 4.9. (i) If A, B e Re~M, then A A B = 0 holds if and only if [AB] = 0,
and also if and only if A2 A B2 = 0.

(ii) 7 / ^ , 5 e ReM, then A A 5 = 0 if and only if R(A) ± R(B).
(iii) If A, fi,Ce iteAf, tfien [AC] A [BC] = O i / ^ A 5 = 0.

PROOF. Part (i) may be deduced simply from Lemma 55.3(i) of [11] by using the
order density of ReM in ReM and Theorem 4.7. Part (iii) is then a simple
consequence of (i) and the commutativity of ReM.

To show that (ii) holds, suppose that A A B = 0 so that [AB] = 0. Observe
that (x, ABy) = 0 whenever x e. 3){A) and y e 9)(AB). Since the graph of the
restriction of B to @(AB) is dense in the graph of B, it follows that (Ax, By) = 0
wheneverx e 2)(A),y e ^ ( 5 ) and so/?(,4) ± 7?(B).

Conversely, if 7<(^) ± R(B), then (x, v45y) = 0 whenever x e ^(^4) and
y e ^(,45). Consequently AB = 0 and so [AB] = 0 and the result follows.
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LEMMA 4.10. (i) Let A e ReM and let E be the component of I in the principal
band generated by A in ReM. Then E is the orthogonal projection on R(A).

(ii) If A, B e ReM, then A, B generate the same principal band in ReM if and
only ifR(A) = R(B).

The proof is almost identical to that of Lemma 55.5 of [11], and is accordingly
omitted.

Before proceeding to the next lemma, we recall the notion of direct product of
transformations [13, Chapter 5]. Let { ^ } , e j , be a family of Hilbert spaces, and
for each index i, let At be a linear transformation in J^t. Let Jlf be the product
Hilbert space II j x 3^Ci and in 3tf, define a transformation A as follows. Si {A)
consists of all elements z = {zt}ieJG.3V s u c n that z, <= @(At) for each index i
and for which {Aizi },e^ e jf, that is, L,||v4,z,||2 < oo. For such an element z, let
Az be {AiZ^i^j. The mapping A so defined is linear and is called the direct
product of the family {v4,}I&/and is written A = II,: X At. For basic properties
of direct products, the reader is referred to [13]. We note explicitly from [13] that
if each At is self-adjoint then A = TliX Aj is again self-adjoint and is the only
self-adjoint transformation in Jf which is reduced to Ai by ^ for each index
16/.

Suppose now that {£/},eyis a family of mutually disjoint projections of ReM
for which L,e>2f, = L We identify -P^with II, x E^3f) in an obvious manner.
For each A e ReM, it then follows A = II,; X At where At = AEi is the part of A
in £,.( J f ) for each i. If M' is the commutant of M, then the commutant of MEt is
just A/'£,. This is shown, for example, in [2, Chapter 1]. It follows that if
At e RejME^t) for each index /, then A = II; x At & ReM.

LEMMA 4.11. Let {£,},<=> be a family of mutually disjoint projections of ReM
which satisfies E,e>£, = /. For i e J and A e ReM, set Ai = AEt and let
denote the family of finite subsets ̂ c. J.

(i)/ /0 ^A e ReM, then

A = UiXAi=

(ii) 7/0 < y4, 5 e ^eM, r/ien

MB]= su

PROOF, (i) The quality A = U.tX At has been noted above. Note that £,£7 = 0
for / * j imphes At A A} = 0 and consequently /I, v /4y = yl, + >4y for i * j and

so supjgjr^,- = n, e J rX 4̂, for each finite subset J^c J. Since /?eM is Dedekind
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complete, there exists A ' e ReM with 0 ^ A ' < A for which A ' = s u p ^ I I l E i ! -X
/I,-. From / I ' < /*, it follows that A'Et < AEt for each index /'. However, it is clear
that A t < A ' and so A t = AiEi < /4'£ ; and consequently A t = ^ ' £ , for each index
;. It follows that A = A ' and (i) is proved.

(ii) In view of (i), it suffices to note that [AB]Et = [AE,BEi\ = [A.B,] for each
index ir e J.

THEOREM 4.12. Let {Aj}iejbe any system of mutually disjoint positive elements
of ReM. Then A = V ( g j r / 1 , exists in ReM. In other words, the Riesz space ReM is
laterally complete.

PROOF. It suffices to let A = HieJ X A l and use part (i) of the preceding
lemma.

A Riesz space L is called an /-algebra if L is an algebra such that uv > 0
whenever u, v e L+ and such that (uw) A v = (wu) A v = 0 for all u, v,w e L+

satisfying u A v = 0. We may summarize the results of this section as follows.

THEOREM 4.13. ReM is a Dedekind complete, laterally complete f-algebra contain-
ing ReM as an order dense ideal. The identity operator I is a weak order unit for ReM.

5. Orthomorphisms of ReM

We recall briefly the notion of orthomorphism. It is convenient to refer to [10]
for a brief survey of the basic properties of orthomorphisms on Riesz spaces.

Let L be an Archimedean Riesz space. A linear mapping defined on an order
dense ideal S , c l into L is called a positive orthomorphism whenever 6{u) > 0
for all 0 < « e S , and u A v = § with 0 < a e 3 , and 0 < v e L implies
d(u) A v = 0. The linear map 6 from an order dense ideal S)e c L of L into L is
called an orthomorphism whenever 6 can be written in the form 0 = 0x — 02,
where 0,, 62 are positive orthomorphisms satisfying Sd9 c 3>9 n 3>e . The set of all
orthomorphisms is denoted by Orth°°(L). Those orthomorphisms with domain L
are denoted by Orth(L). It is shown in [10] that each orthomorphism on the
Archimedean Riesz space L is order continuous. From this it follows that, for
each 6 e Orth°°(L), there exists a unique maximal domain to which 6 can be
extended. Two orthomorphisms are considered to be the same whenever they
agree on an order dense ideal (and thus agree on their common maximal domain
of definition).
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The set Orth°°(L), with scalar multiplication and addition defined pointwise, is
a linear space. Moreover, with the lattice operations sup and inf defined point-
wise, Orth°°(L) is an Archimedean Riesz space which is laterally complete (that
is, every mutually disjoint family of positive elements in Orth°°(L) has supre-
mum) and which is Dedekind complete if L is Dedekind complete. For these
results and their proofs, the reader is referred to the lecture notes of Luxemburg
[8] and to the forthcoming paper [5]. If 0 e Orth°°(L), and if 2 is an order dense
ideal in L, then it can be shown that {u e 26: 6(u) e S) is again an order dense
ideal. For a relatively simple proof of this result, the reader is referred to [6,
Lemma 1.3]. From this it follows that composition provides Orth°°(L) with a
multiplicative structure under which Orth°°(L) is an/-algebra.

It is shown in Theorem 1.1 of [10] that if L is Dedekind complete, then each
orthomorphism on L commutes on its domain with each band projection of L
into L. We wish to note the following result for future reference.

LEMMA 5.1. Let L be Dedekind complete and let 6V 62 e Orth°°(L). Suppose that
u^3>$iC\ 3>Si and that 0X(«) = 02(")- Then si coincides with d2 on S>9x n 3)9i n
B(u), where B{u) denotes the principal band generated by u in L.

PROOF. For each band projection P on L, observe that

The lemma now follows from the spectral theorem of Freudenthal and the order
continuity of 6X, 62.

We return now to the commutative W*-algebra M. Note first that each
mapping of the form A >-» SA, A, S e ReM is evidently a member of Orth(ReM).
Conversely, if 6 e Orth( ReM), then 6 coincides with the orthomorphism A >->
(I).A on the strong unit /. Consequently, by Lemma 5.1, 6 is precisely the
orthomorphism A >-* 6(1) A. In an obvious way then, ReM may be identified with
Orth(ReM). We now show that Orth°°(/teM) may be identified with ReM.

THEOREM 5.2. / / S e ReM, then 2 = {A e ReM: SA e ReM} is an order
dense ideal in ReM. The linear mapping 0(S): A •-» SA, A e 3), is an orthomor-
phism on ReM with domain 2. Conversely, if 6 is an orthomorphism on ReM with
domain 2e an order dense ideal of ReM, then there exists a unique element S(0)
e ReM such that 6(A) = S{d).A for aU_A e S>9. The mapping S -* 0(S), S
e ReM, is an f-algebra isomorphism of ReM onto Orth°°( ReM).
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PROOF. The first statement of the theorem follows from the introductory
remarks preceding Lemma 5.1. That the map 0(5): A -> SA, A e ^ , is an
orthomorphism is an immediate consequence of Lemma 4.9(i).

Let now 9 be an orthomorphism on ReM with domain 3)e an order dense ideal
of ReM. Let {5, },e^ c <3>e be a maximal disjoint system of positive elements. If £,
denotes the orthogonal projection onto the closure of the range of 5,, then it
follows from the order density of 3)e and the maximality of the system {5,-},-eJr
that L/gJf£, = /. Now, for each index i, 5,£, is invertible on the Hilbert space
£,( Jt?) and it is not difficult to verify that the transformation Tt in Et(J(f), which
is inverse to the restriction of 5,£, to E^JV), is an element of Re{MEt), where
MEi denotes the restriction of M to £,(^f) (see [7]). Let 0, be the restriction of 0
to 2e n Re(MEi); then 0, is again an orthomorphism on Re(MEt). Consider the
orthomorphism $,: AEi -> [Ti$i(Si)]AEi for/i£, e 3>9>. It is clear that 0,(5, £,) =
$,-($£,•) and so by order continuity, 0, agrees with $, on the ideal generated in
Re(ME,) by S,£,. Now define S(0) <= ReM to be n , x [7;0,(S,£,)]. For each
A &2>e,

e{A) = 0(n, x AEt) = n, x

where we have used the order continuity of 0 and Lemma 4.11.
It is now clear that the map 5 -» 0(S) is an injective linear map of ReM onto

On\f°(ReM). If now Su S2 e ~Re~M and Sx A 52 = 0, then for each A <= ̂ f l ( S i ) n
it follows that 0(Sj) A 0(52)(^) = 0, for 0(Sx) A 0(S2)(yl) = 0(S1)(^') A
^) = 5 ^ A S2A. However Sj A 52 = 0 implies 5X52 = 0 and _also

SjAS;,^ = 0 from which it follows that also 5 ^ A S2A = 0. It follows that ReM
is Riesz isomorphic to Orth°°(AeAf) and the proof of the theorem is complete, as
it is clear that the isomorphism is an /-algebra isomorphism.

THEOREM 5.3. / / 0 e Orth°°(/?eAf), there exists a uniquely determined element
5(0) e R~e~M such that d(T)=_[S(6)T] for all T e %. The Riesz spaces
Orth°°(i?eM), OTth(ReM) and ReM are isomorphic as f-algebras.

PROOF. If 0 e Orth°°(JReM), then

2= {T& ReM n £)e: 0(T) e ReM}

= ( T e ^ : J ( r ) e ReM} n ReM

is an order dense ideal in ReM. Consequently, from Theorem 5.2 above, there
exists a unique element 5(0) e ReM such that 0(T) = [S(9)T] for all T e ^ ' ,
and hence, by order continuity, for all r e ® , . It follows immediately that the
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maximal domain of 6 is ReM so that, in fact, Orth°°(/?eM) and Orth(ReM)
coincide. The remaining assertion of the theorem follows quite simply and its
proof is omitted.

6. The extended order dual of ReM

We recall briefly the notion of the extended order dual of an Archimedean
Riesz space L as defined by Luxemberg and Masterson [9]. Elements of the
extended order dual T(L) of L are equivalence classes of normal integrals defined
on order dense ideals of L, with two densely defined normal integrals determining
the same equivalence class if and only if they are equal on an order dense ideal. It
is shown in [9] that each equivalence class [<j>] e F(L) may be identified with a
maximal representative <f> whose domain 3>^ is the largest order dense ideal of L to
which any (and hence all) representatives of [<f>] may be finitely extended by
normality. With respect to the ordering given by setting <j>x < <J>2 if and only if
%2 £ %t and ^(f) < <f>2(f) for all f^®^, T(L) is a Dedekind complete,
laterally complete Riesz space.

It is also shown in [9] that if T(L) separates the points of L, then L can be
identified with an order dense Riesz subspace of r(F(L)) and that r(F(L)) is the
lateral completion of L. Returning now to the case that L is the self-adjoint part
ReM of a commutative von Neumann algebra M, it follows from Theorem 4.12
above that the lateral completion of the Dedekind complete Riesz space is just
ReM. In this section, we wish to show that the lateral completion of ReM may
also be identified with T(ReM) via the Radon-Nikodym theorem of Luxemburg
and Schep [10]. Since T(ReM) is Riesz isomorphic to_T(ReM), by [9, Theorem
2.6], we will show that ReM is Riesz isomorphic to T(ReM).

Let 0 < <J> e r(2teM) and for 0 ^ r e ReM, define

$(T) = sup{<f>(S):0 < S < Tand S <E 3^}.

The function <jT is additive, positively homogeneous and monotone and is the
minimal such extension of <f> to the positive cone of ReM with values in the
extended real number system. The function <j> is normal in the sense that
0 «s ST T TS in ReM implies <^(5) = supT <jT(ST). In a related but somewhat differ-
ent setting, the mappings ijTwere considered by J. Dixmier [3] (" pseudo-mesure
normale et essentielle").

If 0 < </> e T(ReM), define N(<j>) = {T: T e 2^ and <H|r|) = 0}. Similarly, let
N($) = { r e ReM: $(\T\) = 0}. Then N($) = N(<f>) and N(<f>) is a band in the
Dedekind complete Riesz space $ + . It follows that 3)^ = N(^>) ffi C(<t>) where
C(</>) = { T e ^ : T ± N(<j>)} is called the carrier band of <#>. It is shown in
Theorem 1.4 of [7] that if 0 < <f>, $ e T(ReM), then <J> A ^ = 0 if and only if

J.

https://doi.org/10.1017/S1446788700021996 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021996


(23) Orthomorphisms of a commutative W^-algebra 165

THEOREM 6.1. Let 0 < <f>, \p e T(ReM). The following statements are equivalent.

(ii) There exists 0 < S e ReM such that

*(T) = j([ST])

for a l / O ^ r e ReM.

PROOF, (ii) => (i). Suppose that (ii) is satisfied and that 4>(T) = 0 for some
0 < T e ReM. Let {Sn} c /?eA/ satisfy 0 < 5n T „ 5 in ReM. It is easily verified
that [SnT] < ||Sn||rfor each n and so ^ ( [^ r ] ) = 0 for n = 1,2,.... By normality,
<Rr) = l i m ^ ^ >R[Snr]) = 0. It follows that N(\P) c W(<>).

(i) => (ii). By restriction to the carrier of ty, we may assume that \f/ is strictly
positive. Let {Ei} be a maximal family of mutually disjoint projections in ReM
such that <£(£•,), ip(Et) < oo for each index /'. Since (j> and ^ are densely defined,
maximality implies that £, E^i = I. Now, for each index /, the restrictions of <J>, \p
to (ReM)Ei are normal integrals. Since \p is strictly positive and since (ReM)El =
Et.ReM, it follows from Theorem 3.3 of [8] and Theorem 5.2 above that there
exists 5, e ReM such that ^>{EtT) = ^([5,£,7]) for each index i and each
0 < T e ReM._By normality ^(£,T) = ^([5,£,T])_holds for each index / and
each 0 < T e /teM, since ReM is order dense in ReM. Let now 5 = II,- X S1,^,;
note that r = sup, E,T, and that [ST] = sup,[5,£,T] for each 0 < r e 'ReM. It
now follows from normality that <j>(T) = \p([ST]) for each 0 < T

It is to be remarked that, using the notion of center-valued trace, the preceding
theorem yields the specialization of the Dye Radon-Nikodym theorem for finite
von Neumann algebras given by Nakamura and Takeda [14]. We omit the details.

If x is an element of Jf, denote by ux the (normal) vector state T >-> (Tx, x) for
T e ReM and by flx the element of F(ReM) determined by wx. It is not difficult
to see that if 0 < T e ReM, then T lies in the domain of flx if and only if
x e 2{Tl/1), in which case ttx(T) =J|7^/2x||2. If now 0 < <f> is a normal integral
on ReM and if $ is the element of T(ReM) determined by <j>, then the component
of the identity / in the carrier band of $ coincides with the component of / in the
carrier band of </> in ReM and will be called the carrier of <j> (or $). It is not
difficult to see that the carrier of S2X is the orthogonal projection onto the closure
in Jf?of the linear subspace { M'x} and this projection is denoted E™.

THEOREM 6.2. (i) / / 0 < ^ is a normal integral on ReM, if x e Jifand if the
carrier of \p is majorized by the carrier of the vector state ux, then there exists
0 < S e ReM with x e @(S1/2) such that

for all T e ReM.
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(ii) / / 0 < \p e T(ReM), then there exists x e H with \fi = tix if and only if
$(I) < oo.

(iii) / / 0 < \p e T(ReM), then there exists a family {xi} of vector in 3^such that
the family of projections {E™ } c ReM are mutually disjoint and such that \f =
Z, Qx_, i> is strictly positive if and only if £, E™ = /. In particular, there exists a
strictly positive element 0 ^ \p e T(ReM).

PROOF, (i) If ¥ denotes the element of T(ReM) determined by 4>, then part (i)
follows immediately by applying the preceding theorem to ^ and ttx, then
specializing to ReM.

(ii) If if = Qx, then it is trivial that \f(I) < oo. Conversely, if \j/(I) < oo, then
the restriction of \p to ReM is a normal integral on ReM. From [2, page 19], it
follows that the carrier of a normal integral on ReM is majorized by the carrier of
a vector state and so part (ii) is a consequence of (i).

(iii) Let { Et} c ReM be a maximal system of mutually disjoint projections of
ReM such that if(£,-) < oo. Maximality implies that £,•£,- = /. Part (ii) above
implies the existence of elements {x^cjf, with Ejxl• = x,, such that the
restrictions ^, of ^ to Et(ReM) is just wx . It is clear that E™ < £; and so the
family {E^'} is mutually disjoint. Moreover, since ^ = £, ,̂» it is clear that ^ is
strictly positive if and only if each ^, is strictly positive and this is the case if and
only if E™' = E{ for each index /.

Finally, to show that there exists a strictly positive element 0 < $ e T(ReM),
let {x,} be a maximal system of vectors in^such that the family of projections
{E^ } is mutually disjoint. By maximality, E, E™ = / and consequently the
functional \j/ defined by setting ^ = £, fix is strictly positive.

We remark that part (ii) of the preceding Theorem 6.2 is (essentially) a result of
R. Pallu de la Barriere [10, Theorem 5.1].

THEOREM 6.3. Let 0 < ^ G T(ReM) be strictly positive and denote by 8 the Riesz
isomorphism of ReM onto Orth°°(J?eAf) defined via Theorem 5.3 above. The
mapping S -> \j/ ° 6(S), S e ReM defines a Riesz isomorphism of ReM onto
T(ReM).

PROOF. Observe first that ifjSj= R~eM, then {T^ReM: 6(S)(T) e ^ } is
again an order dense ideal in ReM. Normality of 4> ° 0(S) on it domain is a
simple consequence of the normality of \j/ and of the normality of the orthomor-
phism 6(S). Thus ^ » ^(5) defines an element of T(ReM) which we continue to
denote by ip ° 6(S). It is clear that the map S •-» tp ° 6(S), S e /?eM, is linear and
positive. We show now that it is injective.
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To this end, suppose that \[> °6(S) = 0 for some S e ReM. It follows that
\p([ST}) = 0 for all elements T belonging to some order dense ideal 2 c ReM
and, consequently, by normality, ^([S7"]) = 0 for all T e ReM. Let now £ + , E~
be the components of / in the bands generated in ReM by S+, S~ respectively and
set T= E+- E-. It follows that 0 = 4>([S(E+- E~)]) = ^(S+) + ^(S~) and
since \j/ is strictly positive it follows that 5 + = 5"= 0.

That \p ° 6 maps ReM onto F(/teM) is an immediate consequence of Theorem
6.1 above. To show that \p ° 6 is a Riesz isomorphism, it now suffices to show that
if S,, S2 e «eM satisfy Sj_A S2 = 0, then also ^ ° flCS1,) A </< ° 0(S2) = 0. Now , it
is clear that if 0 < S e ReM, then the carrier of ip ° d(S) is contained in the band
generated by S in /?eAf. Consequently from S1 A 52 = 0, it follows that ^ ° ̂ ( 5 ^ ,
>// ° &(52) have disjoint carriers in ReM. From an earlier remark, it now follows
that \p ° ^(5j) A \p o 6(S2) = 0 and the proof is complete.
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