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Abstract

Let R be a commutative ring with identity. R[[x]] denotes the ring of formal power series, in which
we consider the composition », defined by f(x)°g(x) = f(g(x)). This operation is well defined in the
subring R +[[x]] of formal power series of positive order. The algebra § = </? +[[*]], °> is clearly
a semigroup, which is not commutative for \R\ > 1. In this paper we consider all those commutative
subsemigroups of if), which consist of power series of all positive orders, which are called 'permu-
table chains'.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 16 A 02; secondary 08 A 25.

1. Introduction

Let R be a commutative ring with identity and let x be an indeterminate over R.
Then R[[x]] denotes the ring of formal power series, in which a third operation o
called composition, given by

Kx)og{x)=f(gix))

is defined besides addition and multiplication. We consider the subring /?+[[*]]
of formal power series of positive order, in which the composition is well defined.
The algebra § = <.R+[[*]], o> is clearly a semigroup with the identity x, which is
not commutative for \R\ > 1. Two formal power series are called permutable if

f(x)og(x) = g(x)of(x).

§ contains commutative subsemigroups, for example the subsemigroup {g}
generated by ge/?+[[*]], but the problem of determining all the commutative
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subsemigroups of § has not yet been solved. If /? is an integral domain, then {g}
contains only power series of those orders, which are powers of the order of g.

In this paper we shall determine all those commutative subsemigroups of h
which consist of power series of all positive orders. These commutative subsemi-
groups are called permutable chains, or P-chains. By Kautschitsch (1970) any
P-chain of /?[[*]], where R is an integral domain, contains exactly one power
series of order m, for every m ^ 1. In the case that R is a field K all P-chains over K
have been determined (see Kautschitsch (1970)). The result is:

Each P-chain 3̂ over a field K is of the form

where I is any power series of first order of K[[x]].

Henceforth let R be an integral domain.

2. P-chains % over R[[x]] whose elements have units as first coefficients

Each P-chain in the quotient field of R is of the form {/~Wo/ | /eN}. If
/ = ejc+£j°=2A/x

J, then I'1 = e"1 x+Yj=zHjXJ and / " W o / is of the form
e''1 x'+Ylf=i+i dp,xJ. Therefore each such P-chain is of the form

00

^P, = {x,£t~1xi+ Y, aj.ixJ\i^?}, s is a unit in R.
7=1+1

For example, the 'P-chain of powers' ^8P = {x,x2,x3,...} is of this form. We shall
show, that all the P-chains of this section can be constructed from <pP. We need the
following formulae.

Let K be the quotient field of R and l(x) = A, x+X2x
2 + ... eK[[x]], A,#0,

and Ajk be the coefficient of the power xJ+k in (l(x)y. By Gradstkeyn and Ryzhik
(1965) we get:

1 *

( 1 ) "* ^ A : / = 1

w h e n c e Aj<k d e p e n d s o n l y o n A,, . . . , A ) + I k . The re fo r e we get for

with

(2) ;'

f _ 2

w h e n c e fir d e p e n d s o n l y o n At , . . . ,AP.
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Now we compute l~1oxnol = Jj?=ndix', for

A — 3 » - l

(3)

where 0 ̂ y < n for k > 1.
From (2) we see that, in the semigroup <Pv[[x]], o>, the elements which have

inverses are just the power series

(4) l(x) = ex+ £ XjX1, s is a unit in R.
i=2

It can also be seen that % = {/~1o/io/j/eN, / ; e p j is a P-chain. $„' is called a
conjugate (in </?[[*]], o » of ^3t. Also l~1ofiol is called conjugate t o / f . Since the
power series of the form (4) form a group with respect to the operationo, conjugacy
is an equivalence relation on the set of all P-chains over R. Thus all the P-chains
over R will be known as soon as we know a representative for each class of this
partition.

The next theorem shows that there is only one class containing P-chains whose
elements have units as first coefficients.

THEOREM 1. Every P-chain over R whose elements have a unit in R as first coefficient
is a conjugate of the P-chain of powers.

PROOF Let K be again the quotient field of P.. By the above statements, all the
P-chains over K whose elements have a unit in Pi as first coefficient are of the form

CO

{/"1ox"ol|«eN, / = ex+ £ Af x', e is a unit in P.}.
1=2

First we show that l~1opPol is a P-chain over R if and only if XteR for i>2 .
Let r1oprol be any P-chain over R. Then both

r1ox2o/ = £;c2+ £ d,x§ and /"1ox3o/ = e2x3+ £ e,
i=3 1 = 4

belong to R[[x]]. In the first case we get from (3) and (1):

d3 = 2X2

: 1
( A T —
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or

(5)

In the

d3

di

second case we get

e4 =

Hermann

= 2A2

= 2Xi.l+F(e,

analogously:

= 3eX2

Kautschitsch

X2, ...,A,-_2),

[4]

(6)

From (5) and (6) we get:

2k2eR and 3eX2sR and so X2eR.

If now A2,A3, ...,Xj belong to R, then also 2XJ+leR, 3Xj+1eR and therefore
Xj+1eR, becauseF(E,X2,...,XJ) a n d G ( e , A 2 , . . . , X j - t ) a r e p o l y n o m i a l s in e,A2> ...,X}

with coefficients in /?. Furthermore, if XteR, i^2, then

forn>l,

because v4J>(i is clearly a polynomial of /?[*] in e,X2,...,X1+k, and so AJJCeR and
/ijG/?. By (3) each coefficient of l~1o^'ol belongs to R[[x]].

SUMMARY We get all the P-chains over an integral domain R, whose elements
have units as first coefficients, if we form the P-chains

where / is any invertible power series of </?[[*]], o>.

3. P-chains <Pa over R with any elements as first coefficients

As stated above each such P-chain is of the form

In this case there may be more than one class of conjugate P-chains.
Let K be again the quotient field of R. First we determine a sufficient condition

under which power series of the form I~1ox"ol belong to R[[x]] for leK[[x]].

LEMMA 1. Let l(x) = £?°=i Xtx'eK[[x]]. r1ox"oleR[[x]]for alln^l ifXteRfor
i^ 1 andXj s OmodX1 for i^2.

PROOF. From (1) we see by induction on k that AJtk is divisible by X{ if
Xi = OmodAi for j>2 . From (2) we see again by induction on k that X\-nkeR,
because \i^XT = X[x XreR and Hi-AUr_teR for i<k by the induction hypothesis
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and by the property of AJik stated above. We conclude by (3) that all coefficients
dkH+J of rlox*ol belong to R, because Xk"-fikeR for all « > 1.

Now we can prove:

THEOREM 2. Let R be an integral domain. Then the P-chains

1 = 2
and

£ lt:A

where a, a, lt JteR, lt = Omoda, /,• = Omoda and tyP is the P-chain of powers, are
conjugate in R[[x]], if and only if a and a are associates.

PROOF. By Lemma 1, these P-chains are P-chains over R. By considering the
power series of order 2, one can easily check that any two distinct P-chains of this
form are not conjugate over R: Let

f=(ax+ £ /.x'VWo/ax + £ /̂ M

and
1)
/

1ox2ol&x+

V
If we assume that / and g were conjugate, then there exists a power series
/ = EX+Y,T-2

 nix' (e ' s a u™tm ^) w i t n ^ = /~1o/o/. By comparing the coefficients
of x2 we get ea = a, so that a and a were associates. On the other hand, if deR,
lteR, /, = Omoda and if a and 5 are associates, then /f = Omoda.

Now we can find a power series e*+££L2 vtx'eR[[x]] such that

i )o(£x+£ ( f )( f /, = Omoda.
/=2 \ , = 2 / \ /

Let y4yt be the coefficient of xk+J in (ex+^?i2i;fx'y. We get by comparing the
coefficients of powers of x:

x: a = a-e,

x": ln = <xvn +

Hence avn = (/„ — l2A2,n-2 + •••— ̂ n 8 " ) 6 ^ ^o r h = Omoda, /; = Omoda and
Aitm-,eR. We can check that vneR by induction on n. Therefore

f f f Itx\
' = 2 / \ - = 2 /
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is conjugate in </?[[*]], o> to the chain

A-'o^Jaax+ X lix') 'o^PpOl flor+ £
. = 2 / V - = 2

This theorem shows that there is more than one class of conjugate P-chains
For this consider the P-chains over R[[x]] of the form

v / A-i m ( v , A
OLX + > l ( X I O ^ p p O l (XX + > / ( X 1,1 = 2

where lt = 0 mod a, p P is the P-chain of powers and a runs through a system ol
representatives for the non-zero classes of associative elements of R. It is an open
problem whether these P-chains form a full system of representatives in the case
that R is an integrally closed domain.
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