COMMUTATIVE SUBSEMIGROUPS OF THE COMPOSITION SEMIGROUP OF FORMAL POWER SERIES OVER AN INTEGRAL DOMAIN

HERMANN KAUTSCHITSCH
(Received 16 June; revised 11 October 1977)
Communicated by H. Lausch

Abstract

Let R be a commutative ring with identity. $R[[x]]$ denotes the ring of formal power series, in which we consider the composition \circ, defined by $\mathrm{f}(x) \circ g(x)=\mathrm{f}(g(x))$. This operation is well defined in the subring $R_{+}[[x]]$ of formal power series of positive order. The algebra $\mathfrak{S}=\left\langle\boldsymbol{R}_{+}[[x]], 0\right\rangle$ is clearly a semigroup, which is not commutative for $|R|>1$. In this paper we consider all those commutative subsemigroups of $\mathfrak{5}$, which consist of power series of all positive orders, which are called 'permutable chains'.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 16 A 02; secondary 08 A 25.

1. Introduction

Let R be a commutative ring with identity and let x be an indeterminate over R. Then $R[[x]]$ denotes the ring of formal power series, in which a third operation \circ called composition, given by

$$
f(x) \circ g(x)=f(g(x))
$$

is defined besides addition and multiplication. We consider the subring $R_{+}[[x]]$ of formal power series of positive order, in which the composition is well defined. The algebra $\mathfrak{G}=\left\langle R_{+}[[x]], 0\right\rangle$ is clearly a semigroup with the identity x, which is not commutative for $|R|>1$. Two formal power series are called permutable if

$$
f(x) \circ g(x)=g(x) \circ f(x)
$$

5 contains commutative subsemigroups, for example the subsemigroup $\{g\}$ generated by $g \in R_{+}[[x]]$, but the problem of determining all the commutative
subsemigroups of \mathfrak{G} has not yet been solved. If R is an integral domain, then $\{g\}$ contains only power series of those orders, which are powers of the order of g.

In this paper we shall determine all those commutative subsemigroups of \mathfrak{h} which consist of power series of all positive orders. These commutative subsemigroups are called permutable chains, or P-chains. By Kautschitsch (1970) any P-chain of $R[[x]]$, where R is an integral domain, contains exactly one power series of order m, for every $m \geqslant 1$. In the case that R is a field K all P-chains over K have been determined (see Kautschitsch (1970)). The result is:

Each P-chain \mathfrak{P} over a field K is of the form

$$
\mathfrak{P}=\left\{l^{-1} \circ x^{m} \circ l \mid m \in \mathbf{N}\right\}
$$

where l is any power series of first order of $K[[x]]$.
Henceforth let R be an integral domain.

2. P-chains $\mathfrak{P}_{\varepsilon}$ over $R[[x]]$ whose elements have units as first coefficients

Each P-chain in the quotient field of R is of the form $\left\{l^{-1} \circ x^{i} \circ l \mid i \in \mathbf{N}\right\}$. If $l=\varepsilon x+\sum_{j=2}^{\infty} \lambda_{j} x^{j}$, then $l^{-1}=\varepsilon^{-1} x+\sum_{j=2}^{\infty} \mu_{j} x^{j}$ and $l^{-1} \circ x^{i} \circ$ is of the form $\varepsilon^{i-1} x^{i}+\sum_{j=i+1}^{\infty} a_{j}, x^{j}$. Therefore each such P-chain is of the form

$$
\mathfrak{P}_{\varepsilon}=\left\{x, \varepsilon^{i-1} x^{i}+\sum_{j=i+1}^{\infty} a_{j, i} x^{j} \mid i \geqslant 2\right\}, \quad \varepsilon \text { is a unit in } R .
$$

For example, the ' P-chain of powers' $\mathfrak{B}_{P}=\left\{x, x^{2}, x^{3}, \ldots\right\}$ is of this form. We shall show, that all the P-chains of this section can be constructed from \mathfrak{B}_{p}. We need the following formulae.

Let K be the quotient field of R and $l(x)=\lambda_{1} x+\lambda_{2} x^{2}+\ldots \in K[[x]], \lambda_{1} \neq 0$, and $A_{j . k}$ be the coefficient of the power x^{j+k} in $(l(x))^{j}$. By Gradstkeyn and Ryzhik (1965) we get:

$$
\begin{align*}
A_{j, k} & =\frac{1}{\lambda_{1} k} \sum_{l=1}^{k}(l j-k+1) \lambda_{1+l} A_{j, k-l} \tag{1}\\
A_{j, 0} & =\lambda_{1}^{j}
\end{align*}
$$

whence $A_{j, k}$ depends only on $\lambda_{1}, \ldots, \lambda_{1+k}$. Therefore we get for

$$
l^{-1}(x) \in \mathfrak{h}: l^{-1}(x)=\sum_{i=1}^{\infty} \mu_{i} x_{i}
$$

with

$$
\begin{align*}
& \mu_{1}=\lambda_{1}^{-1} \\
& \vdots \tag{2}\\
& \mu_{r}=-\lambda_{1}^{-r}\left(\mu_{1} \lambda_{r}+\sum_{i=2}^{\infty} \mu_{i} A_{i, r-i}\right), \text { for } r \geqslant 2
\end{align*}
$$

whence μ_{r} depends only on $\lambda_{1}, \ldots, \lambda_{r}$.

Now we compute $l^{-1} \circ x_{n} \circ l=\sum_{i=n}^{\infty} d_{i} x^{i}$, for $n \geqslant 2$:

$$
\begin{align*}
d_{n} & =\lambda_{1}^{n-1}, \\
d_{n+1} & =\mu_{1} A_{n, 1}, \tag{3}\\
d_{2 n} & =\mu_{1} A_{n, n}+\mu_{2} \lambda_{1}^{2 n}, \\
d_{k n+j} & =\mu_{1} A_{n,(k-1) n+j}+\mu_{2} A_{2 n,(k-2) n+j}+\ldots+\mu_{k} A_{k n, j}
\end{align*}
$$

where $0 \leqslant j<n$ for $k \geqslant 1$.
From (2) we see that, in the semigroup $\langle R[[x]], \circ\rangle$, the elements which have inverses are just the power series

$$
\begin{equation*}
l(x)=\varepsilon x+\sum_{i=2} \lambda_{i} x^{i}, \quad \varepsilon \text { is a unit in } R . \tag{4}
\end{equation*}
$$

It can also be seen that $\mathfrak{P}_{\varepsilon}^{\prime}=\left\{l^{-1} \circ f_{i} \circ l \mid i \in \mathbb{N}, f_{i} \in \mathfrak{p}_{\varepsilon}\right\}$ is a P-chain. $\mathfrak{B}_{\varepsilon}^{\prime}$ is called a conjugate (in $\langle R[[x]], \circ\rangle$) of \mathfrak{F}_{z}. Also $l^{-1} \circ f_{i} \circ l$ is called conjugate to f_{i}. Since the power series of the form (4) form a group with respect to the operationo, conjugacy is an equivalence relation on the set of all P-chains over R. Thus all the P-chains over R will be known as soon as we know a representative for each class of this partition.

The next theorem shows that there is only one class containing P-chains whose elements have units as first coefficients.

Theorem 1. Every P-chain over R whose elements have a unit in R as first coefficient is a conjugate of the P-chain of powcrs.

Proof Let K be again the quotient field of R. By the above statements, all the P-chains over K whose elements have a unit in R as first coefficient are of the form

$$
\left\{l^{-1} \circ x^{n} \circ 1 \mid n \in \mathbf{N}, l=\varepsilon x+\sum_{i=2}^{\infty} \lambda_{i} x^{i}, \varepsilon \text { is a unit in } R\right\} .
$$

First we show that $l^{-1} \circ p_{P} \rho l$ is a P-chain over R if and only if $\lambda_{i} \in R$ for $i \geqslant 2$. Let $l^{-1} \mathfrak{p}_{P} \mathrm{ol}$ be any P-chain over R. Then both

$$
l^{-1} \circ x^{2} \circ l=\varepsilon x^{2}+\sum_{i=3}^{\infty} d_{i} x^{i} \text { and } l^{-1} \circ x^{3} \circ l=\varepsilon^{2} x^{3}+\sum_{i=4}^{\infty} e_{i} x^{i}
$$

belong to $R[[x]]$. In the first case we get from (3) and (1):

$$
\begin{aligned}
& d_{3}=2 \lambda_{2} \\
& \vdots \\
& d_{2 k+j}=\frac{1}{(k-1) 2+j}[(k-1) 2+j] 2 \lambda_{1+(k-1) 2+j}+F\left(\varepsilon, \ldots, \lambda_{(k-1) 2+j}\right)
\end{aligned}
$$

or

$$
d_{3}=2 \lambda_{2}
$$

$$
\begin{equation*}
d_{i}=2 \lambda_{i-1}+F\left(\varepsilon, \lambda_{2}, \ldots, \lambda_{i-2}\right), \quad i \geqslant 4 . \tag{5}
\end{equation*}
$$

In the second case we get analogously:

$$
\begin{align*}
e_{4} & =3 \varepsilon \lambda_{2} \\
e_{i} & =3 \varepsilon \lambda_{i-2}+G\left(\varepsilon, \lambda_{2}, \ldots, \lambda_{i-3}\right), \quad i \geqslant 5 . \tag{6}
\end{align*}
$$

From (5) and (6) we get:

$$
2 \lambda_{2} \in R \quad \text { and } \quad 3 \varepsilon \lambda_{2} \in R \quad \text { and so } \lambda_{2} \in R \text {. }
$$

If now $\lambda_{2}, \lambda_{3}, \ldots, \lambda_{j}$ belong to R, then also $2 \lambda_{j+1} \in R, 3 \lambda_{j+1} \in R$ and therefore $\lambda_{j+1} \in R$, because $F\left(\varepsilon, \lambda_{2}, \ldots, \lambda_{j}\right)$ and $G\left(\varepsilon, \lambda_{2}, \ldots, \lambda_{j-1}\right)$ are polynomials in $\varepsilon, \lambda_{2}, \ldots, \lambda_{j}$ with coefficients in R. Furthermore, if $\lambda_{i} \in R, i \geqslant 2$, then

$$
l^{-1} \circ x^{n} \circ l \in R[[x]] \text { for } n \geqslant 1
$$

because $A_{j, k}$ is clearly a polynomial of $R[x]$ in $\varepsilon, \lambda_{2}, \ldots, \lambda_{1+k}$, and so $A_{j, k} \in R$ and $\mu_{i} \in R$. By (3) each coefficient of $l^{-1} \circ x^{n} \circ l$ belongs to $R[[x]]$.

Summary We get all the P-chains over an integral domain R, whose elements have units as first coefficients, if we form the P-chains

$$
\mathfrak{P}=\left\{l^{-1} \circ x^{n} \circ l \mid n \in N\right\},
$$

where l is any invertible power series of $\langle R[[x]], 0\rangle$.

3. P-chains \mathfrak{P}_{α} over R with any elements as first coefficients

As stated above each such P-chain is of the form

$$
\mathfrak{B}_{\alpha}=\left\{x, \alpha^{i-1} x^{i}+\sum_{j=i+1} a_{j, i} x^{J} \mid i \geqslant 2, \alpha \in R\right\} .
$$

In this case there may be more than one class of conjugate P-chains.
Let K be again the quotient field of R. First we determine a sufficient condition under which power series of the form $l^{-1} \circ x^{n} \circ l$ belong to $R[[x]]$ for $l \in K[[x]]$.

Lemma 1. Let $l(x)=\sum_{i=1}^{\infty} \lambda_{i} x^{i} \in K[[x]] . l^{-1} \circ x^{n} O l \in R[[x]]$ for all $n \geqslant 1$ if $\lambda_{i} \in R$ for $i \geqslant 1$ and $\lambda_{i} \equiv 0 \bmod \lambda_{1}$ for $i \geqslant 2$.

Proof. From (1) we see by induction on k that $A_{j, k}$ is divisible by λ_{1}^{j} if $\lambda_{i} \equiv 0 \bmod \lambda_{1}$ for $i \geqslant 2$. From (2) we see again by induction on k that $\lambda_{1}^{k} \cdot \mu_{k} \in R$, because $\mu_{1} \lambda_{r}=\lambda_{1}^{-1} \quad \lambda_{r} \in R$ and $\mu_{i} \cdot A_{i, r-i} \in R$ for $i<k$ by the induction hypothesis
and by the property of $A_{j, k}$ stated above. We conclude by (3) that all coefficients $d_{k n+j}$ of $l^{-1} \circ x^{n} \circ l$ belong to R, because $\lambda_{1}^{k n} \cdot \mu_{k} \in R$ for all $n \geqslant 1$.

Now we can prove:

Theorem 2. Let R be an integral domain. Then the P-chains

$$
\left(\alpha x+\sum_{i=2}^{\infty} l_{i} x^{i}\right)^{-1} \circ \mathfrak{P}_{P} \mathrm{O}\left(\alpha x+\sum_{i=2}^{\infty} l_{i} x^{i}\right)
$$

and

$$
\left(\bar{\alpha} x+\sum_{i=2}^{\infty} I_{i} x^{i}\right)^{-1} \circ \mathscr{P}_{P} \mathrm{O}\left(\bar{\alpha} x+\sum_{i=2}^{\infty} I_{i} x^{i}\right),
$$

where $\alpha, \bar{\alpha}, l_{i}, l_{i} \in R, l_{i} \equiv 0 \bmod \alpha, l_{i} \equiv 0 \bmod \bar{\alpha}$ and \mathfrak{P}_{P} is the P-chain of powers, are conjugate in $R[[x]]$, if and only if α and $\bar{\alpha}$ are associates.

Proof. By Lemma 1 , these P-chains are P-chains over R. By considering the power series of order 2 , one can easily check that any two distinct P-chains of this form are not conjugate over R : Let

$$
f=\left(\alpha x+\sum_{i=2}^{\infty} l_{i} x^{i}\right)^{-1} \circ x^{2} \circ\left(\alpha x+\sum_{i=2}^{\infty} l_{i} x^{i}\right)
$$

and

$$
g=\left(\bar{\alpha} x+\sum_{i=2}^{\infty} l_{i} x^{i}\right)^{-1} \circ x^{2} \circ\left(\bar{\alpha} x+\sum_{i=2}^{\infty} l_{i} x^{i}\right) .
$$

If we assume that f and g were conjugate, then there exists a power series $l=\varepsilon x+\sum_{i-2}^{\infty} n_{i} x^{i}\left(\varepsilon\right.$ is a unit in R) with $g=l^{-1} \circ f o l$. By comparing the coefficients of x^{2} we get $\varepsilon \bar{\alpha}=\alpha$, so that α and $\bar{\alpha}$ were associates. On the other hand, if $\bar{\alpha} \in R$, $l_{i} \in R, l_{i} \equiv 0 \bmod \bar{\alpha}$ and if α and $\bar{\alpha}$ are associates, then $l_{i} \equiv 0 \bmod \alpha$.

Now we can find a power series $\varepsilon x+\sum_{i=2}^{\infty} v_{i} x^{i} \in R[[x]]$ such that

$$
\bar{\alpha} x+\sum_{i=2}^{\infty} l_{i} x^{i}=\left(\alpha x+\sum_{i=2}^{\infty} l_{i} x^{i}\right) \rho\left(\varepsilon x+\sum_{i=2}^{\infty} v_{i} x^{i}\right), \quad l_{i} \equiv 0 \bmod \alpha .
$$

Let $A_{j, k}$ be the coefficient of x^{k+j} in $\left(\varepsilon x+\sum_{i=2}^{\infty} v_{i} x^{i}\right)^{j}$. We get by comparing the coefficients of powers of x :

$$
\begin{aligned}
x: & \bar{\alpha}=\alpha \cdot \varepsilon, \\
x^{n}: & l_{n}=\alpha v_{n}+l_{2} A_{2, n-2}+\ldots+l_{n} \varepsilon^{n} .
\end{aligned}
$$

Hence $\alpha v_{n}=\left(l_{n}-l_{2} A_{2, n-2}+\ldots-l_{n} \varepsilon^{n}\right) \in R$, for $l_{n} \equiv 0 \bmod \alpha, l_{i} \equiv 0 \bmod \alpha$ and $A_{i, n-i} \in R$. We can check that $v_{n} \in R$ by induction on n. Therefore

$$
\left(\bar{\alpha} x+\sum_{i=2}^{\infty} l_{i} x^{i}\right)^{-1} \circ p_{P} \mathrm{o}\left(\bar{\alpha} x+\sum_{i=2}^{\infty} l_{i} x^{i}\right)
$$

is conjugate in $\langle R[[x]], \circ\rangle$ to the chain

$$
\left(\alpha x+\sum_{i=2}^{\infty} l_{i} x^{i}\right)^{-1} \circ \mathfrak{P}_{p} \circ\left(\alpha x+\sum_{i=2}^{\infty} l_{i} x^{i}\right)
$$

This theorem shows that there is more than one class of conjugate P-chains For this consider the P-chains over $R[[x]]$ of the form

$$
\left(\alpha x+\sum_{i=2}^{\infty} l_{i} x^{i}\right)^{-1} \circ \mathfrak{P}_{P} \mathrm{O}\left(\alpha x+\sum_{i=2}^{\infty} l_{i} x^{i}\right)
$$

where $l_{i} \equiv 0 \bmod \alpha, \mathfrak{p}_{P}$ is the P-chain of powers and α runs through a system of representatives for the non-zero classes of associative elements of R. It is an open problem whether these P-chains form a full system of representatives in the case that R is an integrally closed domain.

Acknowledgement

I wish to thank the referee, whose suggestions were essential for the elaboration of the final version.

References

J. N. Baker (1961-62), 'Permutable power series and regular iteration', J. Australian Math. Soc. 2, 265-294.
J. S. Gradstkeyn and J. M. Ryzhik (1965), Table of integrals, series and products (Academic Press, New York).
H. Kautschitsch (1970), 'Kommutative Teilhalbgruppen der Kompositionshalbgruppe von Polynomen und formalen Potenzreihen', Monatsh. f. Math. 74, 421-436.
H. Lausch and W. Nöbauer (1973), Algebra of polynomials (North-Holland Mathematical Library, Vol. 5, Amsterdam and London).

Universität für Bildungswissenschaften
A-9010 Klagenfurt, Universitätsstrasse 67
Austria

