COMMUTATIVE SUBSEMIGROUPS OF THE COMPOSITION SEMIGROUP OF FORMAL POWER SERIES OVER AN INTEGRAL DOMAIN

HERMANN KAUTSCHITSCH

(Received 16 June; revised 11 October 1977)

Communicated by H. Lausch

Abstract

Let R be a commutative ring with identity. R[[x]] denotes the ring of formal power series, in which we consider the composition \circ , defined by $f(x) \circ g(x) = f(g(x))$. This operation is well defined in the subring $R_+[[x]]$ of formal power series of positive order. The algebra $\mathfrak{H} = \langle R_+[[x]], \circ \rangle$ is clearly a semigroup, which is not commutative for |R| > 1. In this paper we consider all those commutative subsemigroups of \mathfrak{H} , which consist of power series of all positive orders, which are called 'permutable chains'.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 16 A 02; secondary 08 A 25.

1. Introduction

Let R be a commutative ring with identity and let x be an indeterminate over R. Then R[[x]] denotes the ring of formal power series, in which a third operation o called composition, given by

$$f(x) \circ g(x) = f(g(x))$$

is defined besides addition and multiplication. We consider the subring $R_+[[x]]$ of formal power series of positive order, in which the composition is well defined. The algebra $\mathfrak{H} = \langle R_+[[x]], o \rangle$ is clearly a semigroup with the identity x, which is not commutative for |R| > 1. Two formal power series are called permutable if

$$f(x) \circ g(x) = g(x) \circ f(x).$$

 \mathfrak{H} contains commutative subsemigroups, for example the subsemigroup $\{g\}$ generated by $g \in R_+[[x]]$, but the problem of determining all the commutative

313

subsemigroups of \mathfrak{H} has not yet been solved. If R is an integral domain, then $\{g\}$ contains only power series of those orders, which are powers of the order of g.

In this paper we shall determine all those commutative subsemigroups of \mathfrak{h} which consist of power series of all positive orders. These commutative subsemigroups are called permutable chains, or *P*-chains. By Kautschitsch (1970) any *P*-chain of R[[x]], where *R* is an integral domain, contains exactly one power series of order *m*, for every $m \ge 1$. In the case that *R* is a field *K* all *P*-chains over *K* have been determined (see Kautschitsch (1970)). The result is:

Each P-chain \mathfrak{P} over a field K is of the form

$$\mathfrak{B} = \{l^{-1} \circ x^m \circ l | m \in \mathbb{N}\},\$$

where l is any power series of first order of K[[x]].

Henceforth let R be an integral domain.

2. P-chains $\mathfrak{P}_{\varepsilon}$ over R[[x]] whose elements have units as first coefficients

Each P-chain in the quotient field of R is of the form $\{l^{-1} \circ x^i \circ l | i \in \mathbb{N}\}$. If $l = \varepsilon x + \sum_{j=2}^{\infty} \lambda_j x^j$, then $l^{-1} = \varepsilon^{-1} x + \sum_{j=2}^{\infty} \mu_j x^j$ and $l^{-1} \circ x^i \circ l$ is of the form $\varepsilon^{i-1} x^i + \sum_{j=i+1}^{\infty} a_{j}$, x^j . Therefore each such P-chain is of the form

$$\mathfrak{P}_{\varepsilon} = \{x, \varepsilon^{i-1}x^i + \sum_{j=i+1}^{\infty} a_{j,i}x^j | i \ge 2\}, \quad \varepsilon \text{ is a unit in } R.$$

For example, the '*P*-chain of powers' $\mathfrak{P}_P = \{x, x^2, x^3, ...\}$ is of this form. We shall show, that all the *P*-chains of this section can be constructed from \mathfrak{P}_P . We need the following formulae.

Let K be the quotient field of R and $l(x) = \lambda_1 x + \lambda_2 x^2 + ... \in K[[x]], \lambda_1 \neq 0$, and $A_{j,k}$ be the coefficient of the power x^{j+k} in $(l(x))^j$. By Gradstkeyn and Ryzhik (1965) we get:

(1)
$$A_{j,k} = \frac{1}{\lambda_1 k} \sum_{l=1}^k (lj - k + 1) \lambda_{1+l} A_{j,k-l},$$
$$A_{j,0} = \lambda_1^j,$$

whence $A_{j,k}$ depends only on $\lambda_1, ..., \lambda_{1+k}$. Therefore we get for

$$l^{-1}(x) \in \mathfrak{h} \colon l^{-1}(x) = \sum_{i=1}^{\infty} \mu_i x_i$$

with

(

2)
$$\begin{aligned} \mu_1 &= \lambda_1^{-1} \\ \vdots \\ \mu_r &= -\lambda_1^{-r} \bigg(\mu_1 \lambda_r + \sum_{i=2}^{\infty} \mu_i A_{i,r-i} \bigg), & \text{for } r \ge 2, \end{aligned}$$

whence μ_r depends only on $\lambda_1, \ldots, \lambda_r$.

Now we compute $l^{-1} \circ x_n \circ l = \sum_{i=n}^{\infty} d_i x^i$, for $n \ge 2$:

 $d_n = \lambda_1^{n-1},$ $d_{n+1} = \mu_1 A_{n,1},$

$$d_{2n} = \mu_1 A_{n,n} + \mu_2 \lambda_1^{2n},$$

$$d_{kn+j} = \mu_1 A_{n,(k-1)n+j} + \mu_2 A_{2n,(k-2)n+j} + \ldots + \mu_k A_{kn,j}$$

where $0 \leq j < n$ for $k \geq 1$.

From (2) we see that, in the semigroup $\langle R[[x]], 0 \rangle$, the elements which have inverses are just the power series

(4)
$$l(x) = \varepsilon x + \sum_{i=2} \lambda_i x^i$$
, ε is a unit in R

It can also be seen that $\mathfrak{P}'_{\epsilon} = \{l^{-1} \circ f_i \circ l | i \in \mathbb{N}, f_i \in \mathfrak{p}_{\epsilon}\}$ is a *P*-chain. \mathfrak{P}'_{ϵ} is called a conjugate (in $\langle R[[x]], \circ \rangle$) of \mathfrak{P}_{ϵ} . Also $l^{-1} \circ f_i \circ l$ is called conjugate to f_i . Since the power series of the form (4) form a group with respect to the operation \circ , conjugacy is an equivalence relation on the set of all *P*-chains over *R*. Thus all the *P*-chains over *R* will be known as soon as we know a representative for each class of this partition.

The next theorem shows that there is only one class containing P-chains whose elements have units as first coefficients.

THEOREM 1. Every P-chain over R whose elements have a unit in R as first coefficient is a conjugate of the P-chain of powers.

PROOF Let K be again the quotient field of R. By the above statements, all the P-chains over K whose elements have a unit in R as first coefficient are of the form

$$\{l^{-1} \circ x^n \circ 1 | n \in \mathbb{N}, l = \varepsilon x + \sum_{i=2}^{\infty} \lambda_i x^i, \varepsilon \text{ is a unit in } R\}.$$

First we show that $l^{-1} \circ p_P \circ l$ is a *P*-chain over *R* if and only if $\lambda_i \in R$ for $i \ge 2$. Let $l^{-1} \circ p_P \circ l$ be any *P*-chain over *R*. Then both

$$l^{-1} ox^2 ol = \varepsilon x^2 + \sum_{i=3}^{\infty} d_i x^i$$
 and $l^{-1} ox^3 ol = \varepsilon^2 x^3 + \sum_{i=4}^{\infty} e_i x^i$

belong to R[[x]]. In the first case we get from (3) and (1):

$$d_{3} = 2\lambda_{2}$$

$$\vdots$$

$$d_{2k+j} = \frac{1}{(k-1)2+j} [(k-1)2+j] 2\lambda_{1+(k-1)2+j} + F(\varepsilon, ..., \lambda_{(k-1)2+j})$$

(3)

316

$$d_3=2\lambda_2$$

$$d_i = 2\lambda_{i-1} + F(\varepsilon, \lambda_2, \dots, \lambda_{i-2}), \quad i \ge 4.$$

In the second case we get analogously:

$$e_4 = 3\epsilon\lambda_2$$

(6)

 $e_i = 3\varepsilon\lambda_{i-2} + G(\varepsilon, \lambda_2, ..., \lambda_{i-3}), \quad i \ge 5.$

From (5) and (6) we get:

$$2\lambda_2 \in R$$
 and $3\varepsilon\lambda_2 \in R$ and so $\lambda_2 \in R$.

If now $\lambda_2, \lambda_3, ..., \lambda_j$ belong to R, then also $2\lambda_{j+1} \in R$, $3\lambda_{j+1} \in R$ and therefore $\lambda_{j+1} \in R$, because $F(\varepsilon, \lambda_2, ..., \lambda_j)$ and $G(\varepsilon, \lambda_2, ..., \lambda_{j-1})$ are polynomials in $\varepsilon, \lambda_2, ..., \lambda_j$ with coefficients in R. Furthermore, if $\lambda_i \in R$, $i \ge 2$, then

$$l^{-1} \circ x^n \circ l \in R[[x]] \quad \text{for } n \ge 1,$$

because $A_{j,k}$ is clearly a polynomial of R[x] in $\varepsilon, \lambda_2, ..., \lambda_{1+k}$, and so $A_{j,k} \in R$ and $\mu_i \in R$. By (3) each coefficient of $l^{-1} \circ x^n \circ l$ belongs to R[[x]].

SUMMARY We get all the P-chains over an integral domain R, whose elements have units as first coefficients, if we form the P-chains

$$\mathfrak{P} = \{l^{-1} \circ x^n \circ l | n \in N\},\$$

where l is any invertible power series of $\langle R[[x]], 0 \rangle$.

3. P-chains \mathfrak{P}_{α} over R with any elements as first coefficients

As stated above each such P-chain is of the form

$$\mathfrak{P}_{\alpha} = \{x, \alpha^{i-1} x^i + \sum_{j=i+1} a_{j,i} x^j | i \ge 2, \alpha \in R\}.$$

In this case there may be more than one class of conjugate P-chains.

Let K be again the quotient field of R. First we determine a sufficient condition under which power series of the form $l^{-1} \circ x^n \circ l$ belong to R[[x]] for $l \in K[[x]]$.

LEMMA 1. Let $l(x) = \sum_{i=1}^{\infty} \lambda_i x^i \in K[[x]]$. $l^{-1} \circ x^n \circ l \in R[[x]]$ for all $n \ge 1$ if $\lambda_i \in R$ for $i \ge 1$ and $\lambda_i \equiv 0 \mod \lambda_1$ for $i \ge 2$.

PROOF. From (1) we see by induction on k that $A_{j,k}$ is divisible by λ_1^j if $\lambda_i \equiv 0 \mod \lambda_1$ for $i \ge 2$. From (2) we see again by induction on k that $\lambda_1^k \cdot \mu_k \in R$, because $\mu_1 \lambda_r = \lambda_1^{-1}$ $\lambda_r \in R$ and $\mu_i \cdot A_{i,r-i} \in R$ for i < k by the induction hypothesis

and by the property of $A_{j,k}$ stated above. We conclude by (3) that all coefficients d_{kn+j} of $l^{-1} \circ x^n \circ l$ belong to R, because $\lambda_1^{kn} \cdot \mu_k \in R$ for all $n \ge 1$.

Now we can prove:

THEOREM 2. Let R be an integral domain. Then the P-chains

$$\left(\alpha x + \sum_{i=2}^{\infty} l_i x^i\right)^{-1} \circ \mathfrak{P}_{\mathcal{P}} \circ \left(\alpha x + \sum_{i=2}^{\infty} l_i x^i\right)$$
$$\left(\bar{\alpha} x + \sum_{i=2}^{\infty} l_i x^i\right)^{-1} \circ \mathfrak{P}_{\mathcal{P}} \circ \left(\bar{\alpha} x + \sum_{i=2}^{\infty} l_i x^i\right)$$

where α , $\bar{\alpha}$, l_i , $\bar{l}_i \in R$, $l_i \equiv 0 \mod \alpha$, $\bar{l}_i \equiv 0 \mod \bar{\alpha}$ and \mathfrak{P}_P is the P-chain of powers, are conjugate in R[[x]], if and only if α and $\overline{\alpha}$ are associates.

PROOF. By Lemma 1, these *P*-chains are *P*-chains over *R*. By considering the power series of order 2, one can easily check that any two distinct P-chains of this form are not conjugate over R: Let

$$f = \left(\alpha x + \sum_{i=2}^{\infty} l_i x^i\right)^{-1} \circ x^2 \circ \left(\alpha x + \sum_{i=2}^{\infty} l_i x^i\right)$$

and

$$g = \left(\bar{\alpha}x + \sum_{i=2}^{\infty} l_i x^i\right)^{-1} \circ x^2 \circ \left(\bar{\alpha}x + \sum_{i=2}^{\infty} l_i x^i\right).$$

If we assume that f and g were conjugate, then there exists a power series $l = \varepsilon x + \sum_{i=2}^{\infty} n_i x^i$ (ε is a unit in R) with $g = l^{-1}$ of ol. By comparing the coefficients of x^2 we get $\varepsilon \bar{\alpha} = \alpha$, so that α and $\bar{\alpha}$ were associates. On the other hand, if $\bar{\alpha} \in R$, $l_i \in R$, $l_i \equiv 0 \mod \bar{\alpha}$ and if α and $\bar{\alpha}$ are associates, then $l_i \equiv 0 \mod \alpha$.

Now we can find a power series $\varepsilon x + \sum_{i=2}^{\infty} v_i x^i \in R[[x]]$ such that

$$\bar{\alpha}x + \sum_{i=2}^{\infty} l_i x^i = \left(\alpha x + \sum_{i=2}^{\infty} l_i x^i\right) \circ \left(\varepsilon x + \sum_{i=2}^{\infty} v_i x^i\right), \quad l_i \equiv 0 \mod \alpha.$$

Let $A_{j,k}$ be the coefficient of x^{k+j} in $(\varepsilon x + \sum_{i=2}^{\infty} v_i x^i)^j$. We get by comparing the coefficients of powers of x:

$$x: \quad \bar{\alpha} = \alpha \cdot \varepsilon,$$

$$x^{n}: \quad l_{n} = \alpha v_{n} + l_{2} A_{2,n-2} + \ldots + l_{n} \varepsilon^{n}.$$

Hence $\alpha v_n = (l_n - l_2 A_{2,n-2} + \dots - l_n \varepsilon^n) \in R$, for $l_n \equiv 0 \mod \alpha$, $l_i \equiv 0 \mod \alpha$ and $A_{i,n-i} \in R$. We can check that $v_n \in R$ by induction on *n*. Therefore

$$\left(\bar{\alpha}x + \sum_{i=2}^{\infty} l_i x^i\right)^{-1} \operatorname{op}_{PO}\left(\bar{\alpha}x + \sum_{i=2}^{\infty} l_i x^i\right),$$

and

is conjugate in $\langle R[[x]], 0 \rangle$ to the chain

$$\left(\alpha x + \sum_{i=2}^{\infty} l_i x^i\right)^{-1} \circ \mathfrak{P}_p \circ \left(\alpha x + \sum_{i=2}^{\infty} l_i x^i\right).$$

This theorem shows that there is more than one class of conjugate *P*-chains. For this consider the *P*-chains over R[[x]] of the form

$$\left(\alpha x+\sum_{i=2}^{\infty} l_i x^i\right)^{-1} \circ \mathfrak{P}_P \circ \left(\alpha x+\sum_{i=2}^{\infty} l_i x^i\right),$$

where $l_i \equiv 0 \mod \alpha$, \mathfrak{p}_P is the *P*-chain of powers and α runs through a system of representatives for the non-zero classes of associative elements of *R*. It is an open problem whether these *P*-chains form a full system of representatives in the case that *R* is an integrally closed domain.

Acknowledgement

I wish to thank the referee, whose suggestions were essential for the elaboration of the final version.

References

- J. N. Baker (1961-62), 'Permutable power series and regular iteration', J. Australian Math. Soc. 2, 265-294.
- J. S. Gradstkeyn and J. M. Ryzhik (1965), Table of integrals, series and products (Academic Press, New York).
- H. Kautschitsch (1970), 'Kommutative Teilhalbgruppen der Kompositionshalbgruppe von Polynomen und formalen Potenzreihen', *Monatsh.* f. Math. 74, 421–436.
- H. Lausch and W. Nöbauer (1973), Algebra of polynomials (North-Holland Mathematical Library, Vol. 5, Amsterdam and London).

Universität für Bildungswissenschaften A---9010 Klagenfurt, Universitätsstrasse 67 Austria