ON TOPOLOGICAL PROPERTIES OF SOME COVERINGS. AN ADDENDUM TO A PAPER OF LANTERI AND STRUPPA

JAROSŁAW A. WIŚNIEWSKI

ABSTRACT. Let $\pi: X' \to X$ be a finite surjective morphism of complex projective manifolds which can be factored by an embedding of X' into the total space of an ample line bundle \mathcal{L} over X. A theorem of Lazarsfeld asserts that Betti numbers of X and X' are equal except, possibly, the middle ones. In the present paper it is proved that the middle numbers are actually non-equal if either \mathcal{L} is spanned and deg $\pi \ge \dim X$, or if X is either a hyperquadric or a projective space and π is not a double cover of an odd-dimensional projective space by a hyperquadric.

Let $\pi: X' \to X$ be a finite surjective morphism of connected complex projective manifolds. Throughout the present paper by k we denote dim $X = \dim X'$, by n we denote the degree of π and we assume that $n, k \ge 2$. We say that $\pi: X' \to X$ (or simply X', or π) is a (smooth) n-section of a line bundle (invertible sheaf) \mathcal{L} over X if X' embeds into L where $L = \operatorname{Spec}(\operatorname{Sym}_X \mathcal{L}^{\vee})$ is the total space of \mathcal{L} — so that π is the restriction of the projection $\mathbf{p}: L \to X$.

If \mathcal{L} is an ample line bundle then a theorem of Lazarsfeld (2.1 of [La], see also (1.1) of the present paper) implies the equality of Betti numbers of X and X' except, possibly, the middle one for which we have the inequality $b_k(X') \geq b_k(X)$. In [LS] Lanteri and Struppa studied smooth *n*-sections of ample line bundles which satisfy

(0.1)
$$b_k(X') = b_k(X).$$

(Although they restricted their study to cyclic coverings, their methods cover all smooth *n*-sections—compare (1.2) and (1.4) of [LS] with (1.1)(b) and (c) of the present paper). Their results seem to indicate that this equality is a rather rare phenomenon among *n*-sections. Their observations were based on the study of the adjoint linear system $|O(K_X) \otimes L^{n-1}|$ which in the case of surfaces was done by Lanteri and Palleschi in [LP] and in the case of higher dimensions by Sommese [So].

In the present paper their methods are improved and the difference $b_k(X') - b_k(X)$ is estimated in terms of dimensions of other cohomology groups $H^p(\Omega^q X \otimes \mathcal{L}^s)$, see (1.9). Using this estimate we complete the results of Section 4 of [LS] and prove that for $n \ge k$ no smooth *n*-section of an ample and spanned line bundle satisfies (0.1), see (2.10). We prove also that the only non-trivial smooth *n*-section of a line bundle over a projective space which satisfies (0.1) occurs for *k* odd and it is a double cover by a

Received by the editors March 30, 1990.

AMS subject classification: 14F45, 14E22, 14C30.

[©] Canadian Mathematical Society 1992.

smooth hyperquadric, (2.7), whilst non-trivial smooth *n*-sections of line bundles over the hyperquadric \mathbf{Q}^k , $k \geq 3$, never satisfy (0.1), see (2.9).

The notation used in the present paper is consistent with [LS].

1. General properties of *n*-sections. We summarize here general properties of smooth *n*-sections

PROPOSITION 1.1. Let $\pi: X' \to X$ be a smooth n-section of a line bundle \mathcal{L} with the total space $\mathbf{p}: \mathcal{L} \to X$. Then

(a) $O_L(X') \simeq O_L(nX_0) \simeq \mathbf{p}^*(\mathcal{L}^n)$, where X_0 denotes a divisor of zero section in L;

(b)
$$\pi_* \mathcal{O}_{X'} \simeq \mathcal{O}_X \oplus \mathcal{L}^{-1} \oplus \cdots \oplus \mathcal{L}^{-n+1}$$

- (c) $\mathcal{O}(K_{X'}) \simeq \pi^* \big(\mathcal{O}(K_X) \otimes \mathcal{L}^{n-1} \big);$
- (d) If \mathcal{L} is ample then the induced map of complex cohomology

 $\pi^*: H^i(X, \mathbb{C}) \longrightarrow H^i(X', \mathbb{C})$

is isomorphism for $i \neq k$ and injection for i = k.

PROOF. (d) is proved in a more general set-up in [La], Theorem 2.1; we sketch another proof of it in (1.7). The remaining properties seem to be known for specialists but I was not able to find any appropriate reference for them. To prove them we compactify L by adding a section at infinity. Namely, take a projectivization $\overline{L} = \mathbb{P}(L \oplus O_X)$ with the projection $\overline{\mathbf{p}}: \overline{L} \to X$ (we understand \mathbb{P} as in [Ha], Section II.7), then \overline{L} has a zero section $X_0 = \mathbb{P}(L)$ and a section at infinity $X_{\infty} = \mathbb{P}(O_X)$ and $L = \overline{L} - X_{\infty}$. The relative very ample line bundle $O_{\overline{L}}(1)$ is then isomorphic to $O_{\overline{L}}(X_0)$ and therefore $O_{\overline{L}}(X_0)_{|X_0} \simeq L$, $O_{\overline{L}}(X_0)_{|X_{\infty}} \simeq O$. Now using the formula Pic $\overline{L} = \overline{\mathbf{p}}^*$ Pic $X + \mathbb{Z}[X_0]$ we obtain the following identities:

$$O_{\bar{L}}(X_0 - X_\infty) \simeq \bar{\mathbf{p}}^* \mathcal{L}$$
 and $O_{\bar{L}}(X') \simeq O_{\bar{L}}(nX_0)$.

Therefore $O_{\bar{L}}(X' - nX_{\infty}) \simeq \bar{\mathbf{p}}^* \mathcal{L}^n$ which proves (a). If we use a formula for the canonical divisor on a projectivization and the adjunction formula we obtain (c) (it will be obtained below explicitly, see (1.4)). As for (b) let us note that $O_{\bar{L}}(nX_0)_{|X'} \simeq \pi^* \mathcal{L}^n$ and thus we obtain the following (divisorial) sequence of sheaves on \bar{L}

$$0 \longrightarrow \mathcal{O}_{\bar{l}} \longrightarrow \mathcal{O}_{\bar{l}}(nX_0) \longrightarrow i_*\pi^*\mathcal{L}^n \longrightarrow 0$$

where $i: X' \rightarrow \overline{L}$ is the embedding. The direct image \mathbf{p}_* of this sequence is

$$0 \longrightarrow \mathcal{O}_X \xrightarrow{\alpha} S^n(\mathcal{O}_X \oplus \mathcal{L}) = \mathcal{O}_X \oplus \mathcal{L} \oplus \cdots \oplus \mathcal{L}^n \longrightarrow \mathcal{L}^n \otimes \pi_* \mathcal{O}_{X'} \longrightarrow 0.$$

We claim that this sequence splits. Indeed, note that we have a splitting $\beta: O_X \oplus \mathcal{L} \oplus \cdots \oplus \mathcal{L}^n \to O_X$ which comes from restricting sections of $O_{\overline{L}}(nX_0)$ to X_{∞} . Since X' does not meet X_{∞} it follows that $\beta \alpha \neq 0$ which implies the splitting. Now (b) follows easily.

REMARK 1.2. I do not know whether (b) is a sufficient condition for a finite morphism $\pi: X' \to X$ to be a smooth *n*-section of a line bundle \mathcal{L} ; for $n \leq 3$ it is, see [Fu] (2.1).

For a complex manifold Y by ΩY we denote the sheaf of holomorphic 1-forms on Y and for $q = 0, 1, ..., \dim Y$, by $\Omega^q Y$ we denote the sheaf of holomorphic q-forms $\wedge^q(\Omega Y)$. Let us recall that $h^{pq}(Y)$ denotes dim $H^{pq}(Y) = \dim H^p(Y, \Omega^q Y)$. The following observation is the key technical tool of the present note.

LEMMA 1.3. Let $\pi: X' \to X$ be a smooth n-section of a line bundle \mathcal{L} . Then for $q = 1, \ldots, k + 1$ we have the following two exact sequences of locally free $O_{X'}$ -modules, the middle term of each of them is the same:

$$(I'_q) \qquad 0 \to \pi^*(\Omega^q X \otimes \mathcal{L}^n) \to V_q \otimes \pi^* \mathcal{L}^n \to \pi^*(\Omega^{q-1} X \otimes \mathcal{L}^{n-1}) \to 0$$

$$(II'_q) 0 \to \Omega^{q-1}X' \to V_q \otimes \pi^* \mathcal{L}^n \to \Omega^q X' \otimes \pi^* \mathcal{L}^n \to 0$$

(where $V_q = \wedge^q (\Omega L_{|X'})$).

PROOF. The cokernel of the differential of \mathbf{p} : $\mathbf{p}^*(\Omega X) \to \Omega L$ can be identified with 1-forms cotangent to fibers of \mathbf{p} which constitute an invertible sheaf isomorphic to $\mathbf{p}^* \mathcal{L}^{-1}$. Thus we obtain an exact sequence of O_L -sheaves

$$0 \longrightarrow \mathbf{p}^* \Omega X \longrightarrow \Omega L \longrightarrow \mathbf{p}^* \mathcal{L}^{-1} \longrightarrow 0.$$

By restricting this sequence to X', then taking its q-th exterior power (see eg. [Hi], 4.1.3) and finally twisting by $\pi^* \mathcal{L}^n$, we obtain I'_q with $V_q = \wedge^q (\Omega L_{|X'})$. On the other hand since the normal bundle to X' is isomorphic to $\pi^*(\mathcal{L}^n)$ (because of (1.1)(a)) we obtain the following exact sequence of $O_{X'}$ -sheaves

 $0 \longrightarrow \pi^* \mathcal{L}^{-n} \longrightarrow \Omega \mathcal{L}_{|X'} \longrightarrow \Omega X' \longrightarrow 0$

whose q-th exterior power twisted by $\pi^* \mathcal{L}^n$ gives H'_q .

REMARK 1.4. Combining I'_{a+1} with II'_{a+1} we get (1.1)(c).

LEMMA 1.5. Let $\pi: X' \to X$ be a smooth n-section of a line bundle \mathcal{L} , then for any $q = 1, \ldots, k + 1$ we have the following two exact sequences of locally free O_X -modules

$$(I_q) \qquad \qquad 0 \longrightarrow (\Omega^q X \otimes \mathcal{L}) \oplus \dots \oplus (\Omega^q X \otimes \mathcal{L}^n) \longrightarrow W_q \longrightarrow \Omega^{q-1} X \oplus \dots \oplus (\Omega^{q-1} X \otimes \mathcal{L}^{n-1}) \longrightarrow 0$$

 $(II_q) \qquad 0 \to \pi_*(\Omega^{q-1}X') \to W_q \to \pi_*(\Omega^q X' \otimes \pi^* \mathcal{L}^n) = \pi_*(\Omega^q X') \otimes \mathcal{L}^n \to 0$

PROOF. Take the direct image π_* of (I'_q) and (II'_q) , and use (1.1)(b). Note that here (and in the subsequent proofs) we use the fact that π is finite and therefore the higher derived functors of π_* are trivial.

LEMMA 1.6. For X, X' and \mathcal{L} as above the following identity for the Euler-Poincaré characteristic χ holds

$$\begin{split} \chi(\Omega^{q-1}X') &= \chi(\Omega^{q-1}X) + \sum_{i=1}^{n-1} \chi(\Omega^{q-1}X \otimes \mathcal{L}^{i}) \\ &+ \sum_{j=0}^{k-q} (-1)^{j} \sum_{i=1}^{n-1} \Big(\chi(\Omega^{q+j}X \otimes \mathcal{L}^{nj+i}) - \chi(\Omega^{q+j}X \otimes \mathcal{L}^{n(j+1)+i}) \Big) \end{split}$$

PROOF. Combining (I_q) and (II_q) we obtain for $q \le k + 1$ and arbitrary s

$$\chi(\Omega^{q-1}X' \otimes \pi^* \mathcal{L}^s) = \chi(\pi_* \Omega^{q-1}X' \otimes \mathcal{L}^s)$$
$$= \chi(\Omega^{q-1}X \otimes \mathcal{L}^s) + \sum_{i=1}^{n-1} \chi(\Omega^{q-1}X \otimes \mathcal{L}^{i+s})$$
$$+ \sum_{i=1}^n \chi(\Omega^q X' \otimes \mathcal{L}^{i+s}) - \chi(\pi_* \Omega^q X \otimes \mathcal{L}^{n+s})$$

and the lemma follows by (descending) induction on q.

From now on we assume the line bundle \mathcal{L} to be ample.

SKETCH OF PROOF OF (1.1)(D) 1.7. Combining Lemma 1.5 together with Kodaira vanishing theorem as in a well known proof of Lefschetz hyperplane section theorem—see [GH] Section 1.2—we obtain a proof of (d). Namely, if \mathcal{L} is ample then $H^p(X, \Omega^q X \otimes \mathcal{L}^i) = H^p(X', \Omega^q X' \otimes \pi^* \mathcal{L}^i) = 0$ if either p + q > k and i > 0 or p + q < k and i < 0. Thus I_q and I_q imply equality $h^{p,q-1}(X) = h^{p,q-1}(X')$ for p > k-q+1 whereas the same sequences twisted by \mathcal{L}^{-n} imply $h^{p,q}(X) = h^{p,q}(X')$ for p < k - q and also the desired injectivity for p = k - q. Thus we have the following:

Let $\pi: X' \to X$ is an *n*-section of an ample line bundle \mathcal{L} then $h^{pq}(X') = h^{pq}(X)$ for $p + q \neq k$ and $h^{pq}(X') \geq h^{pq}(X)$ for p + q = k.

COROLLARY 1.8. Under the above assumptions, for p + q = k

$$h^{pq}(X') - h^{pq}(X) = (-1)^p \left(\chi(\Omega^q X') - \chi(\Omega^q X) \right).$$

REMARK 1.9. Note that using Lemma 1.6 we can estimate the difference between $h^{pq}(X')$ and $h^{pq}(X)$ in terms of $\chi(\Omega' X \otimes \mathcal{L}^s)$.

2. *n*-sections satisfying (0.1). We deal with the problem formulated in [LS]: find when a smooth *n*-section $\pi: X' \to X$ of an ample line bundle \mathcal{L} satisfies (0.1). First let us note that the answer we are looking for should depend only on the manifold X, the line bundle \mathcal{L} and the number *n*; X' is then obtained as divisor from the system $|\mathbf{p}^* \mathcal{L}^n|$ on L, see (1.1)(a). Here are some necessary conditions for (0.1) to occur.

LEMMA 2.1. Let $\pi: X' \to X$ be a smooth n-section of a line bundle \mathcal{L} . If \mathcal{L} is ample and $b_k(X) = b_k(X')$ then for $q = 1, \ldots, k + 1$ each of the following equations E_q is satisfied

$$\sum_{j=-1}^{k-q} (-1)^j \sum_{i=1}^{n-1} \chi(\Omega^{q+j} X \otimes \mathcal{L}^{n(j+1)+i}) = 0$$

PROOF. In view of (1.8) Lemma 1.6 implies

$$\sum_{j=-1}^{k-q} (-1)^j \sum_{i=1}^{n-1} \chi(\Omega^{q+j} X \otimes \mathcal{L}^{n(j+1)+i}) + \sum_{j=-1}^{k-q-1} (-1)^j \sum_{i=1}^{n-1} \chi(\Omega^{q+1+j} X \otimes \mathcal{L}^{n(j+1)+i}) = 0$$

and the lemma follows by (descending) induction on q.

REMARK 2.2. The terms $\chi(\Omega^r X \otimes \mathcal{L}^s)$ appear in the equation E_q only if $r \ge q-1$ and $n(r-q+1) \le s \le n(r-q+2)-1$.

LEMMA 2.3. Let $\pi: X' \to X$ be a smooth n-section of a line bundle \mathcal{L} . If \mathcal{L} is ample and $b_k(X) = b_k(X')$ then

- (a) $H^p(\Omega^q X \otimes \mathcal{L}^s) = 0$ for p + q = k and $s = 1, \dots, n-1$.
- (b) $h^0(\Omega^{k-1}X \otimes \mathcal{L}) + \cdots + h^0(\Omega^{k-1}X \otimes \mathcal{L}^{n-1}) = h^0(\mathcal{O}(K_X) \otimes \mathcal{L}^{n+1}) + \cdots + h^0(\mathcal{O}(K_X) \otimes \mathcal{L}^{2n-1}).$

PROOF. Take the cohomology sequences for (I_{q+1}) and (II_{q+1})

$$(I_{q+1}^{p}) \qquad \cdots \longrightarrow \sum_{s=1}^{n} H^{p}(\Omega^{q+1}X \otimes L^{s}) \longrightarrow H^{p}(W_{q+1})$$
$$\longrightarrow H^{p}(\Omega^{q}X) \oplus \sum_{s=1}^{n-1} H^{p}(\Omega^{q}X \otimes L^{s})$$
$$\longrightarrow \sum_{s=1}^{n} H^{p+1}(\Omega^{q+1}X \otimes L^{s}) \longrightarrow \cdots$$
$$(II_{q+1}^{p}) \qquad \cdots \longrightarrow H^{p-1}(\pi_{*}\Omega^{q+1}X' \otimes L^{n}) \longrightarrow H^{p}(\pi_{*}\Omega^{q}X')$$
$$\longrightarrow H^{p}(W_{q+1}) \longrightarrow H^{p}(\pi_{*}\Omega^{q+1}X' \otimes L^{n}) \longrightarrow \cdots$$

For p + q = k the last terms in each of these two sequences vanish (Kodaira vanishing) thus we have an epimorphism

$$H^p(\pi_*\Omega^q X') \longrightarrow H^p(\Omega^q X) \oplus \sum_{s=1}^{n-1} H^p(\Omega^q X \otimes \mathcal{L}^s) \longrightarrow 0$$

which proves (a). This also implies that the middle map of (II_{q+1}^p) is an injection, therefore for p + q = k - 1 we have

$$\cdots \longrightarrow H^{p-1}(\pi_*\Omega^{q+1}X' \otimes \mathcal{L}^n) \longrightarrow H^p(\pi_*\Omega^q X')$$
$$\longrightarrow H^p(W_{q+1}) \longrightarrow H^p(\pi_*\Omega^{q+1}X' \otimes \mathcal{L}^n) \longrightarrow 0.$$

Also for p + q = k - 1 the last term of (I_{q+1}^p) vanishes, so

$$\cdots \longrightarrow \sum_{s=1}^{n} H^{p}(\Omega^{q+1}X \otimes L^{s}) \longrightarrow H^{p}(W_{q+1}) \longrightarrow H^{p}(\Omega^{q}X) \oplus \sum_{s=1}^{n-1} H^{p}(\Omega^{q}X \otimes \mathcal{L}^{s}) \longrightarrow 0.$$

For p = 0, q = k - 1 the above two sequences imply (b).

COROLLARY 2.4 ((4.3) IN [LS]). For X, L and n as above

$$H^0\big(\mathcal{O}(K_X)\otimes \mathcal{L}^{n-1}\big)=0.$$

2.5. Now assume that \mathcal{L} is spanned and $n \ge k \ge 3$. This situation was discussed in Section 4 of [LS]. In view of (2.2) the results of Sommese ([So], (4.1)) imply that the equality $b_k(X') = b_k(X)$ is possible only in one of the following cases (cf. [LS], 4.4)

- (i) n = k, k + 1 and $X \cong \mathbf{P}^k, \mathcal{L} \simeq \mathcal{O}(1)$;
- (ii) n = k, X is a smooth hyperquadric in \mathbf{P}^{k+1} and $\mathcal{L} \simeq \mathcal{O}(1)_{|X}$;
- (iii) n = k and (X, \mathcal{L}) is a scroll over a smooth curve *C* i.e. $X \cong \mathbb{P}(\mathcal{E})$ for some rank-*k* vector bundle on *C* and $\mathcal{L} \simeq \mathcal{O}_X(1)$.

In (2.7) and (2.9) below we examine smooth *n*-sections of all line blundles over projective space and hyperquadric but let us note that the above cases (i) and (ii) can be eliminated by using the following simple observation: the total space of the line bundle O(1) over \mathbf{P}^k is isomorphic to \mathbf{P}^{k+1} minus a point, the projection from the point is the projection on the base of the total space which is \mathbf{P}^k . Accordingly any *n*-section of O(1) over \mathbf{P}^k is a divisor in \mathbf{P}^{k+1} of degree *n*. Similarly, any *n*-section of O(1) over a hyperquadric in \mathbf{P}^{k+1} is an intersection of a cone over this hyperquadric in \mathbf{P}^{k+2} with a divisor in \mathbf{P}^{k+2} of degree *n*. In both cases the cohomology of the *n*-section can be computed easily.

LEMMA 2.6. The pair (X, L) in (2.5)(iii) does not satisfy the conditions (2.3)(b).

PROOF. We start with two sequences of sheaves on X

$$0 \to \mathcal{O}_X \to \mathcal{L} \otimes a^* \mathcal{E}^{\vee} \to T \mathcal{E} \to 0$$
$$0 \to T \mathcal{E} \to T X \to a^* \mathcal{O}(-K_C) \to 0$$

where $a: X = \mathbb{P}(\mathcal{E}) \to C$ is the projection and $T\mathcal{E}$ is a relative tangent sheaf and TX is the tangent sheaf. From these sequences we infer that $O(K_X) \simeq \mathcal{L}^{-k} \otimes a^* (O(K_C) \otimes \det \mathcal{E})$. Now using the identity $\Omega^{k-1}X = TX \otimes O(K_X)$ we twist the above sequences to get

$$0 \to \mathcal{O}(K_X) \otimes \mathcal{L}^s \to \mathcal{L}^{s+1} \otimes a^* \mathcal{E}^{\vee} \otimes \mathcal{O}(K_X) \to T \mathcal{E} \otimes \mathcal{O}(K_X) \otimes \mathcal{L}^s \to 0$$
$$0 \to T \mathcal{E} \otimes \mathcal{O}(K_X) \otimes \mathcal{L}^s \to \Omega^{k-1} X \otimes \mathcal{L}^s \to a^* \mathcal{O}(-K_C) \otimes \mathcal{O}(K_X) \otimes \mathcal{L}^s \to 0$$

If s = 1, ..., k - 1 then the line bundle term in each of these sequences has trivial cohomology (because it is a line bundle whose restriction to any fiber of *a* (which is isomorphic to \mathbf{P}^{k-1}) is O(s-k)) and therefore $H^0(\Omega^{k-1}X \otimes \mathcal{L}^s) = H^0(\mathcal{L}^{s+1} \otimes a^* \mathcal{E}^{\vee} \otimes O(K_X))$ where the latter cohomology is clearly 0 for s < k - 1 (by the same argument

on restricting to fibers of *a*). On the other hand for s = k - 1 using the formula on $O(K_X)$ and the identity $\mathcal{E}^{\vee} \otimes \det \mathcal{E} = \wedge^{k-1} \mathcal{E}$ we obtain

$$H^{0}(\Omega^{k-1}X \otimes \mathcal{L}^{s}) = H^{0}(\mathcal{L}^{k} \otimes a^{*}\mathcal{E}^{\vee} \otimes \mathcal{O}(K_{X})) = H^{0}(\mathcal{E}^{\vee} \otimes \det \mathcal{E} \otimes \mathcal{O}(K_{C}))$$
$$= H^{0}(\wedge^{k-1}\mathcal{E} \otimes \mathcal{O}(K_{C})).$$

Let us note that $\wedge^{k-1}\mathcal{E}$ is ample and spanned (because \mathcal{L} is) and from Riemann-Roch we get

$$\chi\left(\wedge^{k-1}\mathcal{E}\otimes O(K_C)\right) = k(g(C)-1) + (k-1)\deg\mathcal{E}$$

where g(C) is the genus of the curve C.

To the other end, similarly using the identity on $O(K_X)$, we find out that

$$H^0(\mathcal{O}(K_X)\otimes \mathcal{L}^{k+1})=H^0(\mathcal{L}\otimes a^*(\det \mathfrak{E}\otimes \mathcal{O}(K_C)))=H^0(\mathfrak{E}\otimes \det \mathfrak{E}\otimes \mathcal{O}(K_C)).$$

As above we note that $\mathcal{E} \otimes \det \mathcal{E}$ is ample and spanned, and

$$\dim H^0(\mathcal{E} \otimes \det \mathcal{E} \otimes \mathcal{O}(K_C)) \ge \chi(\mathcal{E} \otimes \det \mathcal{E} \otimes \mathcal{O}(K_C)) = k(g(C) - 1) + (k+1) \deg \mathcal{E}.$$

Now we use the following two facts which will be proved below.

(2.6.1) If \mathcal{F} is a spanned vector bundle on *C* then

$$\dim H^0(\mathcal{F} \otimes \mathcal{O}(K_C)) \leq \chi(\mathcal{F} \otimes \mathcal{O}(K_C)) + \operatorname{rank} \mathcal{F} + 1$$

(2.6.2) If \mathcal{F} is an ample and spanned vector bundle on C then

$$\deg \mathcal{F} \geq \operatorname{rank} \mathcal{F}$$

To obtain the following estimate

$$H^0(\mathcal{O}(K_X) \otimes \mathcal{L}^{k+1}) - H^0(\Omega^{k-1}X \otimes \mathcal{L}^s) \ge 2 \deg \mathcal{E} - \operatorname{rank} \mathcal{E} - 1 > 0$$

which concludes the proof of the lemma.

PROOF OF (2.6.1). Let *r* be the rank of \mathcal{F} . We can choose r+1 sections of \mathcal{F} spanning it and therefore we produce a sequence

$$0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{O}^{r+1} \longrightarrow \mathcal{F} \longrightarrow 0$$

where \mathcal{K} is a kernel of the evaluation map. Twisting the sequence by $O(K_C)$ and considering cohomology of the twisted sequence we obtain dim $H^1(\mathcal{F} \otimes O(K_C)) \leq r + 1$, which proves (2.6.1).

PROOF OF (2.6.2). A direct proof of it is quite easy but let us show that (2.6.2) follows as an easy consequence of a result on coverings: namely note that the line bundle $\mathcal{O}_{\mathbb{P}(\mathcal{F})}(1)$ is ample and spanned and taking a linear subsystem of $|\mathcal{O}_{\mathbb{P}(\mathcal{F})}(1)|$ we can produce a covering of $\mathbb{P}^{\operatorname{rank} \mathcal{F}}$ whose degree is equal to deg \mathcal{F} . Since $H^2(\mathbb{P}(\mathcal{F}), \mathbb{C}) \neq \mathbb{C}$, (2.6.2) follows from the main theorem of [La].

The next result is on *n*-sections of line bundles over \mathbf{P}^k .

THEOREM 2.7. The only smooth n-section $(n \ge 2)$ of a line bundle over \mathbf{P}^k which has the same complex cohomology as \mathbf{P}^k is a double cover of \mathbf{P}^k by a smooth hyperquadric $\mathbf{Q}^k \subseteq \mathbf{P}^{k+1}$ for k odd.

PROOF. Let $\pi: Y \to \mathbf{P}^k$ be a smooth *n*-section of a line bundle O(d) which has the same complex cohomology as \mathbf{P}^k , clearly d > 0. In view of the digression following (2.5) we will be done if we prove that *k* is odd, d = 1 and n = 2. Let $\Omega^q(a)$ denote the sheaf of *q*-forms on \mathbf{P}^k twisted by O(a). Then from Bott formulas it follows that

$$\dim H^0(\Omega^q(a)) = \begin{bmatrix} a+k-q\\ a \end{bmatrix} \begin{bmatrix} a-1\\ q \end{bmatrix} \text{ for } a > q.$$

 $H^q(\Omega^q) = \mathbb{C}$, and the remaining cohomology $H^p(\Omega^q(a))$ vanish for $a \ge 0$. Since $b_k(Y) = b_k(\mathbf{P}^k)$, in view of (2.1), k, n and d must satisfy each of the following k + 1 equations E_q :

$$\sum_{j=-1}^{k-q} (-1)^j \sum_{i=1}^{n-1} \dim H^0 \Big(\Omega^{q+j} \big((nj+n+i)d \big) \Big) = 0.$$

Note that if $((k-q)n+2n-1) \cdot d < k+1$ then all terms of this equation vanish. Because of the equation E_{k+1} (cf. (2.4)) we may assume that (n-1)d < k+1 and therefore, since $n \ge 2$, we may choose q such that

$$\left((k-q)n+2n-1) \cdot d \ge k+1 \\ \left((k-q)n+n-1 \right) \cdot d < k+1. \right.$$

then from Bott formulas it follows that all terms of the equation E_q must vanish except the following terms (compare with (2.2)):

$$\sum_{i=1}^{n-1} \dim H^0\Big(\Omega^k\Big((n(k-q+1)+i)d\Big)\Big)$$

and possibly

$$\dim H^0\Big(\Omega^{k-1}\big(((k-q+1)n-1)d\big)\Big)$$

where the latter term is non-zero only if ((k - q + 1)n - 1)d = k and then it is equal to k + 1. Since these two terms must cancel each other in E_q it follows that d = 1, n = 2 and subsequently k is odd.

COROLLARY 2.8. Assume that Y is a projective manifold of dimension k, $k \ge 4$, which has the same Betti numbers as \mathbf{P}^k . If there exists a spanned line bundle \mathcal{L} over Y whose degree d (i.e. the self-intersection $(c_1 \mathcal{L})^k$) satisfies inequalities $1 \le d \le 3$ then either $Y \cong \mathbf{P}^k$ or k is odd and Y is isomorphic to a smooth hyperquadric.

PROOF. \mathcal{L} is ample and spanned and therefore a subsystem of $|\mathcal{L}|$ defines a finite map onto \mathbf{P}^k . The degree of this map is equal to $d \leq 3$ hence, in view of 3.2 from [La], *Y* is a *d*-section of a line bundle over \mathbf{P}^k , so (2.7) applies.

Similarly as (2.7) we prove

THEOREM 2.9. For $k \ge 3$ there is no non-trivial smooth n-section of a line bundle over a smooth hyperquadric $\mathbf{Q}^k \subset \mathbf{P}^{k+1}$ which has the same Betti numbers as \mathbf{Q}^k .

PROOF. We use the same notation as above in the proof of (2.7), $\mathcal{L} \simeq \mathcal{O}(d), d \ge 1$. The needed information on cohomology of twisted holomorphic forms on \mathbf{Q}^k is summarized in Table 3 of [Sn]. First note that since $H^{k-q}(\mathbf{Q}^k, \Omega^q \mathbf{Q}^k(2q-k)) = \mathbb{C}$ for q > k/2, then the conditions (2.3)(a) imply that

— if k is odd then d is even, n is arbitrary,

— if k is even then d is odd and n = 2.

(In both cases d(n-1) < k because of (2.4).)

Therefore the terms $\chi(\Omega^r \mathbf{Q}^k(m))$ which appear in any equation E_q from (2.1) have m of opposite parity than k, thus (use again the Table 3 in [ibid]) the positive cohomology of such $\Omega^r \mathbf{Q}^k(m)$ vanish (the cohomology in boxes in the table can be ignored). Now we conclude the proof as (2.7): we choose the largest q such that d(n(k - q + 2) - 1) > k and comparing the Table in [ibid] with (2.2) conclude that E_q cannot be satisfied. Indeed, since $k \ge d(n(k - q + 1) - 1)$, it follows that the only (possibly) non-vanishing terms in E_q are

$$\sum_{i=1}^{n-1} H^0 \left(\mathbf{Q}^k, \Omega^k \mathbf{Q}^k \left(\left(n(k-q+1)+i \right) d \right) \right)$$

and because k < d(n(k-q+2)-1) at least one of the components must be positive.

As a conclusion of the above discussion ((2.5), (2.6), (2.7), (2.9)) we obtain

THEOREM 2.10. If X' is a smooth n-section of an ample and spanned line bundle over X and $n \ge k = \dim X \ge 3$ then $b_k(X') > b_k(X)$.

REFERENCES

- [Fu] T. Fujita, Triple covers by smooth manifolds, J. Fac. Sci. Univ. Tokyo 35(1988), 169–175.
- [GH] Ph. Griffiths and J. Harris, Principles of algebraic geometry. John Wiley & Sons, 1978.
- [Ha] R. Hartshorne, Algebraic geometry. Springer-Verlag, 1977.
- [Hi] F. Hirzebruch, Topological methods in algebraic geometry. Springer-Verlag, 1978.
- [LP] A. Lanteri and M. Palleschi, *About the adjunction process for polarized algebraic surfaces*, J. reine angew. Math. **352**(1984), 15–23.
- [LS] A. Lanteri and D. Struppa, On topological properties of cyclic coverings branched along an ample divisor, Can. J. Math. 41(1989), 462–479.
- [La] R. Lazarsfeld, A Barth-type theorem for branched coverings of projective space, Math. Ann. 249(1980), 163–176.
- [Sn] D. M. Snow, Cohomology of twisted holomorphic forms on Grassmann manifolds and quadric hypersurfaces, Math. Ann. 276(1986), 159–176.
- [So] A. J. Sommese, On adjunction theoretic structure of projective varieties, in Complex analysis and algebraic geometry, 175–213, Lecture Notes Math. 1194, Springer-Verlag, 1986.

Warsaw University Institute of Mathematics ul. Banacha 2 00-913 Warszawa, Poland