ON TOPOLOGICAL PROPERTIES OF SOME COVERINGS. AN ADDENDUM TO A PAPER OF LANTERI AND STRUPPA

JAROSŁAW A. WIŚNIEWSKI

Abstract

Let $\pi: X^{\prime} \rightarrow X$ be a finite surjective morphism of complex projective manifolds which can be factored by an embedding of X^{\prime} into the total space of an ample line bundle \mathcal{L} over X. A theorem of Lazarsfeld asserts that Betti numbers of X and X^{\prime} are equal except, possibly, the middle ones. In the present paper it is proved that the middle numbers are actually non-equal if either \mathcal{L} is spanned and $\operatorname{deg} \pi \geq \operatorname{dim} X$, or if X is either a hyperquadric or a projective space and π is not a double cover of an odd-dimensional projective space by a hyperquadric.

Let $\pi: X^{\prime} \rightarrow X$ be a finite surjective morphism of connected complex projective manifolds. Throughout the present paper by k we denote $\operatorname{dim} X=\operatorname{dim} X^{\prime}$, by n we denote the degree of π and we assume that $n, k \geq 2$. We say that $\pi: X^{\prime} \rightarrow X$ (or simply X^{\prime}, or π) is a (smooth) n-section of a line bundle (invertible sheaf) \mathcal{L} over X if X^{\prime} embeds into $L-$ where $L=\operatorname{Spec}\left(\operatorname{Sym}_{X} \mathcal{L}^{\vee}\right)$ is the total space of \mathcal{L} - so that π is the restriction of the projection $\mathbf{p}: L \rightarrow X$.

If \mathcal{L} is an ample line bundle then a theorem of Lazarsfeld (2.1 of [La], see also (1.1) of the present paper) implies the equality of Betti numbers of X and X^{\prime} except, possibly, the middle one for which we have the inequality $b_{k}\left(X^{\prime}\right) \geq b_{k}(X)$. In [LS] Lanteri and Struppa studied smooth n-sections of ample line bundles which satisfy

$$
\begin{equation*}
b_{k}\left(X^{\prime}\right)=b_{k}(X) \tag{0.1}
\end{equation*}
$$

(Although they restricted their study to cyclic coverings, their methods cover all smooth n-sections-compare (1.2) and (1.4) of [LS] with (1.1)(b) and (c) of the present paper). Their results seem to indicate that this equality is a rather rare phenomenon among n-sections. Their observations were based on the study of the adjoint linear system $\left|O\left(K_{X}\right) \otimes \mathcal{L}^{n-1}\right|$ which in the case of surfaces was done by Lanteri and Palleschi in [LP] and in the case of higher dimensions by Sommese [So].

In the present paper their methods are improved and the difference $b_{k}\left(X^{\prime}\right)-b_{k}(X)$ is estimated in terms of dimensions of other cohomology groups $H^{p}\left(\Omega^{q} X \otimes \mathcal{L}^{s}\right)$, see (1.9). Using this estimate we complete the results of Section 4 of [LS] and prove that for $n \geq k$ no smooth n-section of an ample and spanned line bundle satisfies (0.1), see (2.10). We prove also that the only non-trivial smooth n-section of a line bundle over a projective space which satisfies (0.1) occurs for k odd and it is a double cover by a
smooth hyperquadric, (2.7), whilst non-trivial smooth n-sections of line bundles over the hyperquadric $\mathbf{Q}^{k}, k \geq 3$, never satisfy (0.1), see (2.9).

The notation used in the present paper is consistent with [LS].

1. General properties of n-sections. We summarize here general properties of smooth n-sections

Proposition 1.1. Let $\pi: X^{\prime} \rightarrow X$ be a smooth n-section of a line bundle \mathcal{L} with the total space $\mathbf{p}: L \rightarrow X$. Then
(a) $O_{L}\left(X^{\prime}\right) \simeq O_{L}\left(n X_{0}\right) \simeq \mathbf{p}^{*}\left(L^{n}\right)$, where X_{0} denotes a divisor of zero section in L;
(b) $\pi_{*} O_{X^{\prime}} \simeq O_{X} \oplus \mathcal{L}^{-1} \oplus \cdots \oplus \mathcal{L}^{-n+1}$;
(c) $O\left(K_{X^{\prime}}\right) \simeq \pi^{*}\left(O\left(K_{X}\right) \otimes \mathcal{L}^{n-1}\right)$;
(d) If \mathcal{L} is ample then the induced map of complex cohomology

$$
\pi^{*}: H^{i}(X, \mathbb{C}) \rightarrow H^{i}\left(X^{\prime}, \mathbb{C}\right)
$$

is isomorphismfor $i \neq k$ and injection for $i=k$.
PROOF. (d) is proved in a more general set-up in [La], Theorem 2.1; we sketch another proof of it in (1.7). The remaining properties seem to be known for specialists but I was not able to find any appropriate reference for them. To prove them we compactify L by adding a section at infinity. Namely, take a projectivization $\bar{L}=\mathbb{P}\left(\mathcal{L} \oplus O_{X}\right)$ with the projection $\overline{\mathbf{p}}: \bar{L} \rightarrow X$ (we understand \mathbb{P} as in [Ha], Section II.7), then \bar{L} has a zero section $X_{0}=\mathbb{P}(\mathcal{L})$ and a section at infinity $X_{\infty}=\mathbb{P}\left(O_{X}\right)$ and $L=\bar{L}-X_{\infty}$. The relative very ample line bundle $O_{\bar{L}}(1)$ is then isomorphic to $O_{\bar{L}}\left(X_{0}\right)$ and therefore $O_{\bar{L}}\left(X_{0}\right)_{\mid X_{0}} \simeq \mathcal{L}$, $O_{\bar{L}}\left(X_{0}\right)_{\mid X_{\infty}} \simeq O$. Now using the formula $\operatorname{Pic} \bar{L}=\overline{\mathbf{p}}^{*} \operatorname{Pic} X+\mathbb{Z}\left[X_{0}\right]$ we obtain the following identities:

$$
O_{\bar{L}}\left(X_{0}-X_{\infty}\right) \simeq \overline{\mathbf{p}}^{*} \mathcal{L} \text { and } O_{\bar{L}}\left(X^{\prime}\right) \simeq O_{\bar{L}}\left(n X_{0}\right) .
$$

Therefore $O_{\bar{L}}\left(X^{\prime}-n X_{\infty}\right) \simeq \overline{\mathbf{p}}^{*} \mathcal{L}^{n}$ which proves (a). If we use a formula for the canonical divisor on a projectivization and the adjunction formula we obtain (c) (it will be obtained below explicitly, see (1.4)). As for (b) let us note that $O_{\bar{L}}\left(n X_{0}\right)_{\mid X^{\prime}} \simeq \pi^{*} L^{n}$ and thus we obtain the following (divisorial) sequence of sheaves on \bar{L}

$$
0 \rightarrow O_{\bar{L}} \rightarrow O_{\bar{L}}\left(n X_{0}\right) \rightarrow i_{*} \pi^{*} \mathcal{L}^{n} \rightarrow 0
$$

where $i: X^{\prime} \rightarrow \bar{L}$ is the embedding. The direct image \mathbf{p}_{*} of this sequence is

$$
0 \rightarrow O_{X} \xrightarrow{\alpha} S^{n}\left(O_{X} \oplus \mathcal{L}\right)=O_{X} \oplus \mathcal{L} \oplus \cdots \oplus \mathcal{L}^{n} \rightarrow \mathcal{L}^{n} \otimes \pi_{*} O_{X^{\prime}} \rightarrow 0
$$

We claim that this sequence splits. Indeed, note that we have a splitting $\beta: O_{X} \oplus \mathcal{L} \oplus$ $\cdots \oplus \mathcal{L}^{n} \rightarrow O_{X}$ which comes from restricting sections of $O_{\bar{L}}\left(n X_{0}\right)$ to X_{∞}. Since X^{\prime} does not meet X_{∞} it follows that $\beta \alpha \neq 0$ which implies the splitting. Now (b) follows easily.

REMARK 1.2. I do not know whether (b) is a sufficient condition for a finite morphism $\pi: X^{\prime} \rightarrow X$ to be a smooth n-section of a line bundle \mathcal{L}; for $n \leq 3$ it is, see [Fu] (2.1).

For a complex manifold Y by ΩY we denote the sheaf of holomorphic 1-forms on Y and for $q=0,1, \ldots, \operatorname{dim} Y$, by $\Omega^{q} Y$ we denote the sheaf of holomorphic q-forms $\wedge^{q}(\Omega Y)$. Let us recall that $h^{p q}(Y)$ denotes $\operatorname{dim} H^{p q}(Y)=\operatorname{dim} H^{p}\left(Y, \Omega^{q} Y\right)$. The following observation is the key technical tool of the present note.

Lemma 1.3. Let $\pi: X^{\prime} \rightarrow X$ be a smooth n-section of a line bundle \mathcal{L}. Then for $q=1, \ldots, k+1$ we have the following two exact sequences of locally free $O_{x^{\prime}}$-modules, the middle term of each of them is the same:

$$
\begin{array}{lc}
\left(I_{q}^{\prime}\right) & 0 \rightarrow \pi^{*}\left(\Omega^{q} X \otimes \mathcal{L}^{n}\right) \rightarrow V_{q} \otimes \pi^{*} L^{n} \rightarrow \pi^{*}\left(\Omega^{q-1} X \otimes \mathcal{L}^{n-1}\right) \rightarrow 0 \\
\left(I I_{q}^{\prime}\right) & 0 \rightarrow \Omega^{q-1} X^{\prime} \rightarrow V_{q} \otimes \pi^{*} L^{n} \rightarrow \Omega^{q} X^{\prime} \otimes \pi^{*} L^{n} \rightarrow 0
\end{array}
$$

(where $V_{q}=\wedge^{q}\left(\Omega L_{\mid X^{\prime}}\right)$).
Proof. The cokernel of the differential of $\mathbf{p}: \mathbf{p}^{*}(\Omega X) \rightarrow \Omega L$ can be identified with 1forms cotangent to fibers of \mathbf{p} which constitute an invertible sheaf isomorphic to $\mathbf{p}^{*} \mathcal{L}^{-1}$. Thus we obtain an exact sequence of O_{L}-sheaves

$$
0 \rightarrow \mathbf{p}^{*} \Omega X \rightarrow \Omega L \rightarrow \mathbf{p}^{*} \mathcal{L}^{-1} \rightarrow 0
$$

By restricting this sequence to X^{\prime}, then taking its q-th exterior power (see eg. [Hi], 4.1.3) and finally twisting by $\pi^{*} \mathcal{L}^{n}$, we obtain I_{q}^{\prime} with $V_{q}=\wedge^{q}\left(\Omega L_{\mid X^{\prime}}\right)$. On the other hand since the normal bundle to X^{\prime} is isomorphic to $\pi^{*}\left(L^{n}\right)$ (because of (1.1)(a)) we obtain the following exact sequence of $O_{X^{\prime}}$-sheaves

$$
0 \rightarrow \pi^{*} \mathcal{L}^{-n} \rightarrow \Omega L_{\mid X^{\prime}} \rightarrow \Omega X^{\prime} \rightarrow 0
$$

whose q-th exterior power twisted by $\pi^{*} \mathcal{L}^{n}$ gives $I I_{q}^{\prime}$.
Remark 1.4. Combining I_{q+1}^{\prime} with $I I_{q+1}^{\prime}$ we get (1.1)(c).
LEmma 1.5. Let $\pi: X^{\prime} \rightarrow X$ be a smooth n-section of a line bundle \mathcal{L}, then for any $q=1, \ldots, k+1$ we have the following two exact sequences of locally free O_{X}-modules

$$
\begin{aligned}
&\left(I_{q}\right) \quad \rightarrow\left(\Omega^{q} X \otimes \mathcal{L}\right) \oplus \cdots \oplus\left(\Omega^{q} X \otimes \mathcal{L}^{n}\right) \rightarrow W_{q} \\
& \rightarrow \Omega^{q-1} X \oplus \cdots \oplus\left(\Omega^{q-1} X \otimes \mathcal{L}^{n-1}\right) \rightarrow 0 \\
&\left(I I_{q}\right) \quad 0 \rightarrow \pi_{*}\left(\Omega^{q-1} X^{\prime}\right) \rightarrow W_{q} \rightarrow \pi_{*}\left(\Omega^{q} X^{\prime} \otimes \pi^{*} L^{n}\right)=\pi_{*}\left(\Omega^{q} X^{\prime}\right) \otimes L^{n} \rightarrow 0
\end{aligned}
$$

Proof. Take the direct image π_{*} of $\left(I_{q}^{\prime}\right)$ and $\left(I I_{q}^{\prime}\right)$, and use (1.1)(b). Note that here (and in the subsequent proofs) we use the fact that π is finite and therefore the higher derived functors of π_{*} are trivial.

Lemma 1.6. For X, X^{\prime} and \mathcal{L} as above the following identity for the Euler-Poincaré characteristic χ holds

$$
\begin{aligned}
\chi\left(\Omega^{q-1} X^{\prime}\right)= & \chi\left(\Omega^{q-1} X\right)+\sum_{i=1}^{n-1} \chi\left(\Omega^{q-1} X \otimes \mathcal{L}^{i}\right) \\
& +\sum_{j=0}^{k-q}(-1)^{j} \sum_{i=1}^{n-1}\left(\chi\left(\Omega^{q+j} X \otimes \mathcal{L}^{n j+i}\right)-\chi\left(\Omega^{q+j} X \otimes \mathcal{L}^{n(j+1)+i}\right)\right)
\end{aligned}
$$

Proof. Combining $\left(I_{q}\right)$ and $\left(I I_{q}\right)$ we obtain for $q \leq k+1$ and arbitrary s

$$
\begin{aligned}
\chi\left(\Omega^{q-1} X^{\prime} \otimes \pi^{*} \mathcal{L}^{s}\right)= & \chi\left(\pi_{*} \Omega^{q-1} X^{\prime} \otimes \mathcal{L}^{s}\right) \\
= & \chi\left(\Omega^{q-1} X \otimes \mathcal{L}^{s}\right)+\sum_{i=1}^{n-1} \chi\left(\Omega^{q-1} X \otimes \mathcal{L}^{i+s}\right) \\
& +\sum_{i=1}^{n} \chi\left(\Omega^{q} X^{\prime} \otimes \mathcal{L}^{i+s}\right)-\chi\left(\pi_{*} \Omega^{q} X \otimes \mathcal{L}^{n+s}\right)
\end{aligned}
$$

and the lemma follows by (descending) induction on q.
From now on we assume the line bundle \mathcal{L} to be ample.
Sketch of proof of (1.1)(D) 1.7. Combining Lemma 1.5 together with Kodaira vanishing theorem as in a well known proof of Lefschetz hyperplane section theoremsee [GH] Section 1.2-we obtain a proof of (d). Namely, if \mathcal{L} is ample then $H^{p}\left(X, \Omega^{q} X \otimes\right.$ $\left.\mathcal{L}^{i}\right)=H^{p}\left(X^{\prime}, \Omega^{q} X^{\prime} \otimes \pi^{*} \mathcal{L}^{i}\right)=0$ if either $p+q>k$ and $i>0$ or $p+q<k$ and $i<0$. Thus I_{q} and $I I_{q}$ imply equality $h^{p, q-1}(X)=h^{p, q-1}\left(X^{\prime}\right)$ for $p>k-q+1$ whereas the same sequences twisted by \mathcal{L}^{-n} imply $h^{p, q}(X)=h^{p, q}\left(X^{\prime}\right)$ for $p<k-q$ and also the desired injectivity for $p=k-q$. Thus we have the following:

Let $\pi: X^{\prime} \rightarrow X$ is an n-section of an ample line bundle \mathcal{L} then $h^{p q}\left(X^{\prime}\right)=h^{p q}(X)$ for $p+q \neq k$ and $h^{p q}\left(X^{\prime}\right) \geq h^{p q}(X)$ for $p+q=k$.

Corollary 1.8. Under the above assumptions, for $p+q=k$

$$
h^{p q}\left(X^{\prime}\right)-h^{p q}(X)=(-1)^{p}\left(\chi\left(\Omega^{q} X^{\prime}\right)-\chi\left(\Omega^{q} X\right)\right) .
$$

Remark 1.9. Note that using Lemma 1.6 we can estimate the difference between $h^{p q}\left(X^{\prime}\right)$ and $h^{p q}(X)$ in terms of $\chi\left(\Omega^{r} X \otimes \mathcal{L}^{s}\right)$.
2. n-sections satisfying (0.1). We deal with the problem formulated in [LS]: find when a smooth n-section $\pi: X^{\prime} \rightarrow X$ of an ample line bundle \mathcal{L} satisfies (0.1). First let us note that the answer we are looking for should depend only on the manifold X, the line bundle \mathcal{L} and the number $n ; X^{\prime}$ is then obtained as divisor from the system $\left|\mathbf{p}^{*} \mathcal{L}^{n}\right|$ on L, see (1.1)(a). Here are some necessary conditions for (0.1) to occur.

Lemma 2.1. Let $\pi: X^{\prime} \rightarrow X$ be a smooth n-section of a line bundle \mathcal{L}. If \mathcal{L} is ample and $b_{k}(X)=b_{k}\left(X^{\prime}\right)$ then for $q=1, \ldots, k+1$ each of the following equations E_{q} is satisfied

$$
\sum_{j=-1}^{k-q}(-1)^{)^{i}} \sum_{i=1}^{n-1} \chi\left(\Omega^{q+j} X \otimes \mathcal{L}^{n(j+1)+i}\right)=0
$$

Proof. In view of (1.8) Lemma 1.6 implies

$$
\begin{aligned}
\sum_{j=-1}^{k-q}(-1)^{j} & \sum_{i=1}^{n-1} \chi\left(\Omega^{q+j} X \otimes \mathcal{L}^{n(j+1)+i}\right) \\
& +\sum_{j=-1}^{k-q-1}(-1)^{i} \sum_{i=1}^{n-1} \chi\left(\Omega^{q+1+j} X \otimes \mathcal{L}^{n(j+1)+i}\right)=0
\end{aligned}
$$

and the lemma follows by (descending) induction on q.
REMARK 2.2. The terms $\chi\left(\Omega^{r} X \otimes \mathcal{L}^{s}\right)$ appear in the equation E_{q} only if $r \geqq q-1$ and $n(r-q+1) \leq s \leq n(r-q+2)-1$.

Lemma 2.3. Let $\pi: X^{\prime} \rightarrow X$ be a smooth n-section of a line bundle \mathcal{L}. If \mathcal{L} is ample and $b_{k}(X)=b_{k}\left(X^{\prime}\right)$ then
(a) $H^{p}\left(\Omega^{q} X \otimes \mathcal{L}^{s}\right)=0$ for $p+q=k$ and $s=1, \ldots, n-1$.
(b) $h^{0}\left(\Omega^{k-1} X \otimes \mathcal{L}\right)+\cdots+h^{0}\left(\Omega^{k-1} X \otimes \mathcal{L}^{n-1}\right)=h^{0}\left(O\left(K_{X}\right) \otimes \mathcal{L}^{n+1}\right)+\cdots$ $\cdots+h^{0}\left(O\left(K_{X}\right) \otimes L^{2 n-1}\right)$.
Proof. Take the cohomology sequences for $\left(I_{q+1}\right)$ and $\left(I I_{q+1}\right)$
$\left(I_{q+1}^{p}\right)$

$$
\begin{gathered}
\cdots\left(I_{q+1}^{p}\right) \quad \rightarrow \sum_{s=1}^{n} H^{p}\left(\Omega^{q+1} X \otimes L^{s}\right) \rightarrow H^{p}\left(W_{q+1}\right) \\
\rightarrow H^{p}\left(\Omega^{q} X\right) \oplus \sum_{s=1}^{n-1} H^{p}\left(\Omega^{q} X \otimes \mathcal{L}^{s}\right) \\
\rightarrow \sum_{s=1}^{n} H^{p+1}\left(\Omega^{q+1} X \otimes L^{s}\right) \rightarrow \cdots \\
\left(I I_{q+1}^{p}\right) \quad \rightarrow \rightarrow H^{p-1}\left(\pi_{*} \Omega^{q+1} X^{\prime} \otimes L^{n}\right) \rightarrow H^{p}\left(\pi_{*} \Omega^{q} X^{\prime}\right) \\
\\
\rightarrow H^{p}\left(W_{q+1}\right) \rightarrow H^{p}\left(\pi_{*} \Omega^{q+1} X^{\prime} \otimes L^{n}\right) \rightarrow \cdots
\end{gathered}
$$

For $p+q=k$ the last terms in each of these two sequences vanish (Kodaira vanishing) thus we have an epimorphism

$$
H^{p}\left(\pi_{*} \Omega^{q} X^{\prime}\right) \rightarrow H^{p}\left(\Omega^{q} X\right) \oplus \sum_{s=1}^{n-1} H^{p}\left(\Omega^{q} X \otimes \mathcal{L}^{s}\right) \rightarrow 0
$$

which proves (a). This also implies that the middle map of $\left(I_{q+1}^{p}\right)$ is an injection, therefore for $p+q=k-1$ we have

$$
\begin{aligned}
\cdots & \rightarrow H^{p-1}\left(\pi_{*} \Omega^{q+1} X^{\prime} \otimes \mathcal{L}^{n}\right) \rightarrow H^{p}\left(\pi_{*} \Omega^{q} X^{\prime}\right) \\
& \rightarrow H^{p}\left(W_{q+1}\right) \rightarrow H^{p}\left(\pi_{*} \Omega^{q+1} X^{\prime} \otimes \mathcal{L}^{n}\right) \rightarrow 0 .
\end{aligned}
$$

Also for $p+q=k-1$ the last term of $\left(l_{q+1}^{p}\right)$ vanishes, so

$$
\cdots \rightarrow \sum_{s=1}^{n} H^{p}\left(\Omega^{q+1} X \otimes L^{s}\right) \rightarrow H^{p}\left(W_{q+1}\right) \rightarrow H^{p}\left(\Omega^{q} X\right) \oplus \sum_{s=1}^{n-1} H^{p}\left(\Omega^{q} X \otimes \mathcal{L}^{s}\right) \rightarrow 0 .
$$

For $p=0, q=k-1$ the above two sequences imply (b).
Corollary 2.4 ((4.3) in [LS]). For X, \mathcal{L} and n as above

$$
H^{0}\left(O\left(K_{X}\right) \otimes \mathcal{L}^{n-1}\right)=0
$$

2.5. Now assume that \mathcal{L} is spanned and $n \geq k \geq 3$. This situation was discussed in Section 4 of [LS]. In view of (2.2) the results of Sommese ([So], (4.1)) imply that the equality $b_{k}\left(X^{\prime}\right)=b_{k}(X)$ is possible only in one of the following cases (cf. [LS], 4.4)
(i) $n=k, k+1$ and $X \cong \mathbf{P}^{k}, \mathcal{L} \simeq O(1)$;
(ii) $n=k, X$ is a smooth hyperquadric in \mathbf{P}^{k+1} and $\mathcal{L} \simeq O(1)_{\mid X}$;
(iii) $n=k$ and (X, \mathcal{L}) is a scroll over a smooth curve C i.e. $X \cong \mathbb{P}(\mathcal{E})$ for some rank- k vector bundle on C and $\mathcal{L} \simeq O_{X}(1)$.
In (2.7) and (2.9) below we examine smooth n-sections of all line blundles over projective space and hyperquadric but let us note that the above cases (i) and (ii) can be eliminated by using the following simple observation: the total space of the line bundle $O(1)$ over \mathbf{P}^{k} is isomorphic to \mathbf{P}^{k+1} minus a point, the projection from the point is the projection on the base of the total space which is \mathbf{P}^{k}. Accordingly any n-section of $O(1)$ over \mathbf{P}^{k} is a divisor in \mathbf{P}^{k+1} of degree n. Similarly, any n-section of $O(1)$ over a hyperquadric in \mathbf{P}^{k+1} is an intersection of a cone over this hyperquadric in \mathbf{P}^{k+2} with a divisor in \mathbf{P}^{k+2} of degree n. In both cases the cohomology of the n-section can be computed easily.

Lemma 2.6. The pair (X, \mathcal{L}) in (2.5)(iii) does not satisfy the conditions (2.3)(b).
Proof. We start with two sequences of sheaves on X

$$
\begin{aligned}
& 0 \rightarrow O_{X} \rightarrow \mathcal{L} \otimes a^{*} \mathcal{E}^{\vee} \rightarrow T \mathcal{E} \rightarrow 0 \\
& 0 \rightarrow T \mathcal{E} \rightarrow T X \rightarrow a^{*} O\left(-K_{C}\right) \rightarrow 0
\end{aligned}
$$

where $a: X=\mathbb{P}(\mathcal{E}) \rightarrow C$ is the projection and $T \mathcal{E}$ is a relative tangent sheaf and $T X$ is the tangent sheaf. From these sequences we infer that $O\left(K_{X}\right) \simeq \mathcal{L}^{-k} \otimes a^{*}\left(O\left(K_{C}\right) \otimes \operatorname{det} \mathcal{E}\right)$. Now using the identity $\Omega^{k-1} X=T X \otimes O\left(K_{X}\right)$ we twist the above sequences to get

$$
\begin{gathered}
0 \rightarrow O\left(K_{X}\right) \otimes \mathcal{L}^{s} \rightarrow \mathcal{L}^{s+1} \otimes a^{*} E^{\vee} \otimes O\left(K_{X}\right) \rightarrow T \mathcal{E} \otimes O\left(K_{X}\right) \otimes \mathcal{L}^{s} \rightarrow 0 \\
0 \rightarrow T \mathcal{E} \otimes O\left(K_{X}\right) \otimes \mathcal{L}^{s} \rightarrow \Omega^{k-1} X \otimes \mathcal{L}^{s} \rightarrow a^{*} O\left(-K_{C}\right) \otimes O\left(K_{X}\right) \otimes \mathcal{L}^{s} \rightarrow 0
\end{gathered}
$$

If $s=1, \ldots, k-1$ then the line bundle term in each of these sequences has trivial cohomology (because it is a line bundle whose restriction to any fiber of a (which is isomorphic to $\left.\mathbf{P}^{k-1}\right)$ is $O(s-k)$) and therefore $H^{0}\left(\Omega^{k-1} X \otimes \mathcal{L}^{s}\right)=H^{0}\left(\mathcal{L}^{s+1} \otimes a^{*} \mathcal{E}^{\vee} \otimes\right.$ $O\left(K_{X}\right)$) where the latter cohomology is clearly 0 for $s<k-1$ (by the same argument
on restricting to fibers of a). On the other hand for $s=k-1$ using the formula on $O\left(K_{X}\right)$ and the identity $\mathcal{E}^{\vee} \otimes \operatorname{det} \mathcal{E}=\wedge^{k-1} \mathcal{E}$ we obtain

$$
\begin{gathered}
H^{0}\left(\Omega^{k-1} X \otimes \mathcal{L}^{s}\right)=H^{0}\left(\mathcal{L}^{k} \otimes a^{*} \mathcal{E}^{\vee} \otimes O\left(K_{X}\right)\right)=H^{0}\left(\mathcal{E}^{\vee} \otimes \operatorname{det} \mathcal{E} \otimes O\left(K_{C}\right)\right) \\
=H^{0}\left(\wedge^{k-1} \mathcal{E} \otimes O\left(K_{C}\right)\right)
\end{gathered}
$$

Let us note that $\wedge^{k-1} \mathcal{E}$ is ample and spanned (because \mathcal{L} is) and from Riemann-Roch we get

$$
\chi\left(\wedge^{k-1} \mathcal{E} \otimes O\left(K_{C}\right)\right)=k(g(C)-1)+(k-1) \operatorname{deg} \mathcal{E}
$$

where $g(C)$ is the genus of the curve C.
To the other end, similarly using the identity on $O\left(K_{X}\right)$, we find out that

$$
H^{0}\left(O\left(K_{X}\right) \otimes \mathcal{L}^{k+1}\right)=H^{0}\left(\mathcal{L} \otimes a^{*}\left(\operatorname{det} \mathcal{E} \otimes O\left(K_{C}\right)\right)\right)=H^{0}\left(\mathcal{E} \otimes \operatorname{det} \mathcal{E} \otimes O\left(K_{C}\right)\right)
$$

As above we note that $\mathcal{E} \otimes \operatorname{det} \mathcal{E}$ is ample and spanned, and $\operatorname{dim} H^{0}\left(\mathcal{E} \otimes \operatorname{det} \mathcal{E} \otimes O\left(K_{C}\right)\right) \geq \chi\left(\mathcal{E} \otimes \operatorname{det} \mathcal{E} \otimes O\left(K_{C}\right)\right)=k(g(C)-1)+(k+1) \operatorname{deg} \mathcal{E}$.

Now we use the following two facts which will be proved below.
(2.6.1) If \mathcal{F} is a spanned vector bundle on C then

$$
\operatorname{dim} H^{0}\left(\mathcal{F} \otimes O\left(K_{C}\right)\right) \leq \chi\left(\mathcal{F} \otimes O\left(K_{C}\right)\right)+\operatorname{rank} \mathcal{F}+1
$$

(2.6.2) If \mathcal{F} is an ample and spanned vector bundle on C then

$$
\operatorname{deg} \mathcal{F} \geq \operatorname{rank} \mathcal{F}
$$

To obtain the following estimate

$$
H^{0}\left(O\left(K_{X}\right) \otimes \mathcal{L}^{k+1}\right)-H^{0}\left(\Omega^{k-1} X \otimes \mathcal{L}^{s}\right) \geq 2 \operatorname{deg} \mathcal{E}-\operatorname{rank} \mathcal{E}-1>0
$$

which concludes the proof of the lemma.
Proof of (2.6.1). Let r be the rank of \mathcal{F}. We can choose $r+1$ sections of \mathcal{F} spanning it and therefore we produce a sequence

$$
0 \rightarrow \mathcal{K} \rightarrow O^{r+1} \rightarrow \mathcal{F} \rightarrow 0
$$

where \mathcal{K} is a kernel of the evaluation map. Twisting the sequence by $O\left(K_{C}\right)$ and considering cohomology of the twisted sequence we obtain $\operatorname{dim} H^{1}\left(\mathcal{F} \otimes O\left(K_{C}\right)\right) \leq r+1$, which proves (2.6.1).

Proof of (2.6.2). A direct proof of it is quite easy but let us show that (2.6.2) follows as an easy consequence of a result on coverings: namely note that the line bundle $\mathcal{O}_{\mathbb{P}(\mathcal{F})}(1)$ is ample and spanned and taking a linear subsystem of $\left|O_{\mathbb{P}(\mathcal{F})}(1)\right|$ we can produce a covering of $\mathbf{P}^{\text {rank }} \mathcal{F}$ whose degree is equal to $\operatorname{deg} \mathcal{F}$. Since $H^{2}(\mathbb{P}(\mathcal{F}), \mathbb{C}) \neq \mathbb{C}$, (2.6.2) follows from the main theorem of [La].

The next result is on n-sections of line bundles over \mathbf{P}^{k}.

THEOREM 2.7. The only smooth n-section ($n \geq 2$) of a line bundle over \mathbf{P}^{k} which has the same complex cohomology as \mathbf{P}^{k} is a double cover of \mathbf{P}^{k} by a smooth hyperquadric $\mathbf{Q}^{k} \subseteq \mathbf{P}^{k+1}$ for k odd .

Proof. Let $\pi: Y \rightarrow \mathbf{P}^{k}$ be a smooth n-section of a line bundle $O(d)$ which has the same complex cohomology as \mathbf{P}^{k}, clearly $d>0$. In view of the digression following (2.5) we will be done if we prove that k is odd, $d=1$ and $n=2$. Let $\Omega^{q}(a)$ denote the sheaf of q-forms on \mathbf{P}^{k} twisted by $O(a)$. Then from Bott formulas it follows that

$$
\operatorname{dim} H^{0}\left(\Omega^{q}(a)\right)=\left[\begin{array}{c}
a+k-q \\
a
\end{array}\right]\left[\begin{array}{c}
a-1 \\
q
\end{array}\right] \text { for } a>q
$$

$H^{q}\left(\Omega^{q}\right)=\mathbb{C}$, and the remaining cohomology $H^{p}\left(\Omega^{q}(a)\right)$ vanish for $a \geq 0$. Since $b_{k}(Y)=$ $b_{k}\left(\mathbf{P}^{k}\right)$, in view of (2.1), k, n and d must satisfy each of the following $k+1$ equations E_{q} :

$$
\sum_{j=-1}^{k-q}(-1)^{j} \sum_{i=1}^{n-1} \operatorname{dim} H^{0}\left(\Omega^{q+j}((n j+n+i) d)\right)=0
$$

Note that if $((k-q) n+2 n-1) \cdot d<k+1$ then all terms of this equation vanish. Because of the equation E_{k+1} (cf. (2.4)) we may assume that ($n-1$) $d<k+1$ and therefore, since $n \geq 2$, we may choose q such that

$$
\begin{aligned}
& ((k-q) n+2 n-1) \cdot d \geq k+1 \\
& ((k-q) n+n-1) \cdot d<k+1
\end{aligned}
$$

then from Bott formulas it follows that all terms of the equation E_{q} must vanish except the following terms (compare with (2.2)):

$$
\sum_{i=1}^{n-1} \operatorname{dim} H^{0}\left(\Omega^{k}((n(k-q+1)+i) d)\right)
$$

and possibly

$$
\operatorname{dim} H^{0}\left(\Omega^{k-1}(((k-q+1) n-1) d)\right)
$$

where the latter term is non-zero only if $((k-q+1) n-1) d=k$ and then it is equal to $k+1$. Since these two terms must cancel each other in E_{q} it follows that $d=1, n=2$ and subsequently k is odd.

COROLLARY 2.8. Assume that Y is a projective manifold of dimension $k, k \geq 4$, which has the same Betti numbers as \mathbf{P}^{k}. If there exists a spanned line bundle \mathcal{L} over Y whose degree d (i.e. the self-intersection $\left.\left(c_{1} \mathcal{L}\right)^{k}\right)$ satisfies inequalities $1 \leq d \leq 3$ then either $Y \cong \mathbf{P}^{k}$ or k is odd and Y is isomorphic to a smooth hyperquadric.

Proof. \mathcal{L} is ample and spanned and therefore a subsystem of $|\mathcal{L}|$ defines a finite map onto \mathbf{P}^{k}. The degree of this map is equal to $d \leq 3$ hence, in view of 3.2 from [La], Y is a d-section of a line bundle over \mathbf{P}^{k}, so (2.7) applies.

Similarly as (2.7) we prove

THEOREM 2.9. For $k \geq 3$ there is no non-trivial smooth n-section of a line bundle over a smooth hyperquadric $\mathbf{Q}^{k} \subset \mathbf{P}^{k+1}$ which has the same Betti numbers as \mathbf{Q}^{k}.

Proof. We use the same notation as above in the proof of (2.7), $\mathcal{L} \simeq O(d), d \geq 1$. The needed information on cohomology of twisted holomorphic forms on \mathbf{Q}^{k} is summarized in Table 3 of $[\mathrm{Sn}]$. First note that since $H^{k-q}\left(\mathbf{Q}^{k}, \Omega^{q} \mathbf{Q}^{k}(2 q-k)\right)=\mathbb{C}$ for $q>k / 2$, then the conditions (2.3)(a) imply that

- if k is odd then d is even, n is arbitrary,
- if k is even then d is odd and $n=2$.
(In both cases $d(n-1)<k$ because of (2.4).)
Therefore the terms $\chi\left(\Omega^{r} \mathbf{Q}^{k}(m)\right)$ which appear in any equation E_{q} from (2.1) have m of opposite parity than k, thus (use again the Table 3 in [ibid]) the positive cohomology of such $\Omega^{r} \mathbf{Q}^{k}(m)$ vanish (the cohomology in boxes in the table can be ignored). Now we conclude the proof as (2.7): we choose the largest q such that $d(n(k-q+2)-1)>k$ and comparing the Table in [ibid] with (2.2) conclude that E_{q} cannot be satisfied. Indeed, since $k \geq d(n(k-q+1)-1)$, it follows that the only (possibly) non-vanishing terms in E_{q} are

$$
\sum_{i=1}^{n-1} H^{0}\left(\mathbf{Q}^{k}, \Omega^{k} \mathbf{Q}^{k}((n(k-q+1)+i) d)\right)
$$

and because $k<d(n(k-q+2)-1)$ at least one of the components must be positive.
As a conclusion of the above discussion ((2.5), (2.6), (2.7), (2.9)) we obtain
THEOREM 2.10. If X^{\prime} is a smooth n-section of an ample and spanned line bundle over X and $n \geq k=\operatorname{dim} X \geq 3$ then $b_{k}\left(X^{\prime}\right)>b_{k}(X)$.

References

[Fu] T. Fujita, Triple covers by smooth manifolds, J. Fac. Sci. Univ. Tokyo 35(1988), 169-175.
[GH] Ph. Griffiths and J. Harris, Principles of algebraic geometry. John Wiley \& Sons, 1978.
[Ha] R. Hartshorne, Algebraic geometry. Springer-Verlag, 1977.
[Hi] F. Hirzebruch, Topological methods in algebraic geometry. Springer-Verlag, 1978.
[LP] A. Lanteri and M. Palleschi, About the adjunction process for polarized algebraic surfaces, J. reine angew. Math. 352(1984), 15-23.
[LS] A. Lanteri and D. Struppa, On topologicalproperties of cyclic coverings branched along an ample divisor, Can. J. Math. 41(1989), 462-479.
[La] R. Lazarsfeld, A Barth-type theorem for branched coverings of projective space, Math. Ann. 249(1980), 163-176.
[Sn] D. M. Snow, Cohomology of twisted holomorphic forms on Grassmann manifolds and quadric hypersurfaces, Math. Ann. 276(1986), 159-176.
[So] A. J. Sommese, On adjunction theoretic structure of projective varieties, in Complex analysis and algebraic geometry, 175-213, Lecture Notes Math. 1194, Springer-Verlag, 1986.

Warsaw University
Institute of Mathematics
ul. Banacha 2
00-913 Warszawa, Poland

