ON MAXIMAL REGULAR IDEALS AND IDENTITIES
IN THE TENSOR PRODUCT OF COMMUTATIVE
BANACH ALGEBRAS

L. J. LARDY AND ]J. A. LINDBERG, ]JR.

1. Introduction. Let 4; and A, be commutative Banach algebras and
A1 © A, their algebraic tensor product over the complex numbers C. There
is always at least one norm, namely the greatest cross-norm v (2), on 4; © A4,
that renders it a normed algebra. We shall write 41 ®. 45 for the a-completion
of 4, ® A; when « is an algebra norm on A; © 4, Gelbaum (2; 3),
Tomiyama (9), and Gil de Lamadrid (4) have shown that for certain algebra
norms « on A1 © As, every complex homomorphism on 4; © 4: is a-con-
tinuous. In § 3 of this paper, we present a condition on an algebra norm «
which is equivalent to the a-continuity of every complex homomorphism on
A1 © A, Also, in § 3, we give an example of an algebra norm on a particular
tensor product that is not one of the types discussed by the above-mentioned
authors but does satisfy our condition. In §4 we characterize those pairs
(A1, A2) for which the radical of 41 © 4s is the intersection of the kernels
of the complex homomorphisms on 41 © 4, We also characterize those pairs
(44, A.) for which every maximal regular ideal in 4 © A4, has co-dimension 1.
Section 5 is devoted to a study of identities in 41 ®, A2 versus identities in
A1 and AQ.

2. Preliminaries. If 4 is a commutative complex algebra, then H(A4)
denotes the collection of all complex homomorphisms from 4 onto the complex
numbers, R(4) denotes the radical of 4 and we set K(4) = Muerwy #1(0).
As usual, if 4 is a commutative Banach algebra, then the set H(4) endowed
with the Gelfand topology is denoted by &, (7).

If 4,1 =1, 2, are complex algebras, then it is known that the elements in
H(4, ® A4,) can be identified in a natural way with the set H(41) X H(4,).
More precisely, if 2; € H(A;) and k1 ® he is defined on A1 © 4. by setting

hh® h2<zl a; ® bj) = 21 hl(aj)h2(bj),
= =

then % ® hy € H(A1 © A:). Conversely, if € H(A, ® A4:) and h; is
defined on A:; by setting hi(a1) = klaiae ® by)/h{as ® by), where
hay ® be) #= 0, then iy € H(A,). If ks is defined similarly, then & = h; ® hy;
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see (9) for details. The natural identification of H(4; © As) with H(4:) X
H(A4,) is given by hy ® ha — (hy, hs).

LEmMmaA 1. K(Al © AQ) = K(Al) O} A2 + A1 © K(AQ) and
A1®A2/K(A1©A2)

is isomorphic with A1/K(4:1) © Aq:/K(A.), the isomorphism being > a; @ b; +
K(A; © 45) = 2 (as + K(41)) @ (b: + K(41)).

Proof. 1t is easy to verify that K(4:) © 42 + 41 © K(A4:) is contained in
K(4, 0 4s).

Suppose that 7 = > %-1a; @ b; € K(4A1 © 4,). 7 can be expressed in the
form Y7-1a/ ® b/ + 7', where 7 € 4; © K(4:) and no non-trivial linear

combination of the elements by, ..., b, is in K(4.). This follows from the
fact that there exists a subset {b),..., b’} of {b1,...,b,} which, modulo
K (A,), is a basis for the linear span of the b, 2 =1,...,%. Sincer’ € 4, ®

K(4,) T K(4:10 42), Y7-1a/ ® b/ € K(4; © 4,), and hence

0=mhe ]’L2(Zl ai ® b,-'> = ‘2’1 hi(a )ha (b)) = flz(f_:l hl(aj’)b]”>
= = =

for all ; € H(A4,) and hy € H(4,). This means that 3.7, hi(a,/ )b, € K(4,)

for all hy € H(A1). Hence, a;/ € K(A41) since hi(a;) = 0 for all hy € H(41)

and j =1,...,m. Thus, X 7-1¢/ ® b/ € K(4:) © 4, and it follows that
The last assertion of the lemma is well known; see, for example, (5).

CoROLLARY 1. If A, and A are complex algebras for which K(4,) = (0),
1 = 1,2, then Ay © Az is semisimple.

The corollary, of course, follows from the lemma and the fact that
R(4, © A4:) T K(4:1 © A;), the latter ideal being equal to (0) in the
situation of the corollary.

The inclusion R(A; © 4.) C K(4: © 4,) suggests the following question:
When is R(4:1 © 4:) = K{(4;: © A4.)? We shall completely answer this ques-
tion in § 4 for the case where 4; and A4, are commutative Banach algebras.

3. Spectral tensor norms. Throughout the remainder of this paper,
A; will always denote a commutative Banach algebra with norm ||:[|; and
spectral radius »;, 7 = 1, 2; @ will always denote an algebra norm on 4; © 4.,.
We set v,(7) = limy_ 4o (@(z®))1™ for + € Ay © A, The space ®4,gq4, Can
be identified with the set of a-continuous complex homomorphismson 4; © 45,
and hence can be viewed in a natural way as a subset of ®,, X 4, If
D4 0aas exhausts By, X Dy, we say that P4, ga4, is full. In this section,
we show that @4, g4, is full if and only if v,(a ® D) = vi(a)v:(b) holds for
all simple tensors ¢ @ b € A; © A, Smith (8) has presented necessary and
sufficient conditions for ®4, g4, to be full when « is an algebra cross-norm.
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Our results show that these conditions are always satisfied. A norm which
satisfies (1): v.(a ® b) = v1(@)v2(b) for all e @ b € 4; © A4, will be called a
spectral tensor norm.

The norms that have been studied by Gelbaum (3), Tomiyama (9) and
Gilde Lamadrid (4) are all spectral tensor norms. For each of these norms, there
is a positive number %k such that « satisfies (2): k[{a}]1]/b]]: £ a(e ® b) for all

simple tensors ¢ ® b € 4; ® A, Now, if (2) holds, then
vi(a)r2(0) = lm EV*||a" i7" ||6"] 2" S vale ® b), ¢ ®bDE A1 O A,
n>+oo

Since vi(a ® b) = vi(a)r:(b) is always true, it follows that (2) implies (1).
Spectral tensor norms, however, need not satisfy (2). We offer below an
example of a spectral tensor norm which does not satisfy a(c ® b) = k||al[1][p]|
for any £ > 0.

Example. Let A1 = A = (0, 1], the algebra of continuously differentiable
complex-valued functions on [0, 1], with ||fll = [Iflle + lIf"lles f € C0, 11.
Then 4; ©® A, is isomorphic to the set of all functions on the unit square .S
of the form

3 @), fos€ €O, 1

Hence, 41 © A4: can be viewed as a subalgebra of 4 = {f € C(S): 9f/dx and
df/ 9y exist and are continuous on S}. For f € 4, we set

af
dx

a(f) = [1fllo + +”‘3§

It is easy to verify that 4 is a Banach algebra under the norm «. It follows
from a theorem of Butzer! (1) that 4; ® A4; is a-dense in A. Now, set

falx) = %", n=1,2,.... Since
Ym A T Im Ty =0

there exists no 2 > 0 such that a(f ® g) = k||f]| ||g]| forallf ® g € 41 O A..

We commented above that &,,g.4, can be viewed as a subset of
H(A: © A.). The following proposition describes the topological aspects of
the embedding.

PROPOSITION 1. ®4; 44, 5 @ closed subset of &4, X B4, and the Gelfand
topology on B4,gaa, 15 the relativization of the product topology on &4, X B4,

The space ®4;gq4, is closed in &4, X &,, since

lub{|hy @ ho(r)|: b1 ® ha € cl(Payge4s)}
= lub{|hs @ he(r)|: b1 @ hs € Buygau,} = alr),

1We would like to thank Professor G. G. Lorentz for suggesting this reference.
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for all r € A1 © A4,. Since the Gelfand topology on &4, .4, is identical with
the weak topology induced by (4d: © 4:)" on &4, gass, the last assertion
follows from the fact that the product topology on &4, X ®,, is the weak
topology induced by (4; © 4;)" (see 9, p. 150) and the relative product
topology is the weak topology induced by (41 © 42)" on &4, gass-

TaeorReM 1. Let A1 and A, be commutative Banach algebras. Then P4, gass
s full if and only if a is a spectral tensor norm.

Proof. Suppose that ®4,gaa, 1s full. Then

vala ® b) = lub{|h ® hela ® b)|: by € By4,,1 = 1,2)
= lub{|h:i(a)|: k1 € Pa,} lub{|he(B)]: hy € By}
= y1(a)r2(b).

Thus, a is a spectral tensor norm on 41 © A4..

Suppose that « is a spectral tensor norm on 4, © 4, By the above propo-
sition, we know that @4, g4, is a closed subset of &4, X ®,,. We first show
that if 94, denotes the Silov boundary of 4, i = 1,2, then 94, X 84, C
® 4, 0an,. Lo this end, suppose that ky ® ks € 84, X 04, \Paigassr BY @
characterization of the Silov boundary, there exist open neighbourhoods Vi
and Vs of %1 and ke, respectively, such that Vi X Vi) Pu;gas, = 0, and
elements ¢ € 4, and b € 4, such that [4(A)] < wila) for k' ¢ Vi and
lZ;(hg’)} < pe(b) for hy € V, On the other hand, there exists h® ® 2,0 €
b4, gaay such that (e ® b) = |4(h:%)] ]Z;(hgo)]. Since 5° ® byt ¢ Vi X Vo,
then 4, ¢ V; for either ¢ = 1 or 2. Hence, v,(a¢ ® b) < v1(a)re(b), which
contradicts the hypothesis that a is a spectral tensor norm. Thus, 94, X 94, &
@A1®aA2~ If hl ® hz E (I>A1 X @Az and T E A1 @ A2, then I‘?(kl ® hz)‘ §
lub{|7 (A ® k)|: b’ ® hy' € 84, X d4,}; see (3, Theorem 2). Since the
right-hand side is equal to or less than »,{(r), we have that every complex
homomorphism on A; © A: is a-continuous.

COROLLARY 2. If A1 and A, are semisimple and regular, then any algebra
norm on A1 © Aq is a spectral tensor norm.

Proof. The argument is a modification of one that appears in (7, p. 175).
Suppose that « is an algebra norm on 4; © 4, that is not a spectral tensor
norm. Then there is an element &1 ® Ay € $4, X P4, \Pu, gass. We can choose
open neighbourhoods U; and V; of %; such that U; X U, is disjoint from
D4y @asss Viis compactand V; & U,, for i = 1, 2. There are elements a; € A,
and b; € A, such that 4;(h;) = 1 and 4, is identically 0 off V, Z;l is identically
1 on V,, and 5, is identically 0 off U, Now the simple tensors # = a1 ® a
and v = b; ® b, have the property that wv — u € K(41 © 4,). However,
K(4, © A;) = (0) since A; and A, are semisimple. Hence uv = u. Since 9 is
identically 0 on @4, ge4,, v € R(4:1 ®,4:). Thus, v has a quasi-inverse
w € A1 ®, As, from which it follows that 0 =vow = (#uov) ow =
u 0 (wow) = u. This is impossible since u# = 0.
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The above proof yields the following stronger result. Suppose that 4 is a
subalgebra of Co(Q), @ a locally compact Hausdorff space, and that each
complex homomorphism of 4 onto C is given by point evaluation at some
point of Q. Suppose, further, that for each closed set K C @ and for each
point w € Q\K there exists an f € 4 which vanishes on K and is identically 1
in a neighbourhood of w. Then every algebra norm on 4 majorizes the supre-
mum norm over . This result is not new for the case where 4 is also a Banach
algebra under some norm; see (7, p. 176).

4. On the radical and maximal regular ideals of infinite co-
dimension in 4; ® 4.. In (2), Gelbaum assumed that 4;, 4,, and a were
such that 4; © 4, had no a-dense maximal regular ideals; that is, 4; © 4.
was a Q-algebra with respect to a. On the basis of this assumption, he showed
that @4, gaa, was full. (If « is taken to be the greatest cross-norm, then this
assumption can be dropped, as examination of his proof shows.) It is natural
to ask: under whatconditionsis 41 ® A:a Q-algebra under a? Clearly, @ must be
a spectral tensor norm since £~1(0) is a-dense if % is a-discontinuous. Further-
more, every maximal regular ideal must have co-dimension 1; that is, it must
be the kernel of a complex homomorphism. In Theorem 3, we characterize
those pairs (41, 42) for which every maximal regular ideal in 41 ©® A4, has
co-dimension 1. In the investigation leading to Theorem 3, we obtained a
characterization (Theorem 2) of those pairs (41, 42) for which R(4; © 4,) =
K(4: © As).

LeMMA 2. Let A be a commutative Banach algebra and v € A with ||r]] £ %.
If ? has infinite range or v € R(A) and r is not nilpotent, then -1 ™ = 0,
where {u,) ts a bounded sequence of complex numbers, tmplies that w, = 0 for
n=12....

Proof. Suppose that # has infinite range. To show that r satisfies the property
of the lemma, suppose that {u,} is a bounded sequence of complex numbers
and that Y ;-1 u" = 0. Consider the power series f(z2) = X -1 2" Since
{1z} is a bounded sequence, this power series converges absolutely for [z| < 1.
By assumption, f(?(k)) = 0 for all # € &, so that f has infinitely many zeros
of moduli less than or equal to 3. Thus, f(2) is identically zero and w, = 0,
n=12....

Next suppose that ¥ € R(A4) is not nilpotent. For this part, we can assume
that 4 has an identity e since the adjunction of an identity does not change
the radical. Let {u,} be a bounded sequence of complex numbers such that
S a1 ua® = 0 and let ny be the smallest integer such that u,, # 0. Then

@ QO
Z ﬂnrn = 7n0<ﬂnoe + Z ﬂnrn_m)) = 0.

n=ng n=n¢+1

Since X ponet1 ba?™ ™ € R{A4) and pu,, # 0, the right-hand factor is invertible
in A, and hence 7** = 0, a contradiction. This completes the proof of the lemma.
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It is shown in (6) that if A is semisimple and infinite-dimensional, then 4
has an element with infinite spectrum. Hence, if &, is infinite, then there
exists ¢ € A such that ¢ has infinite range.

LeEMMA 3. Suppose that r @ s € Ay © Ao, with |lr||1 £ 3, |[s]]: £ 3, satisfies

one of the following condilions:
(i) » € R(A1), not nilpotent, and s € R(A.), not nilpotent,
(i1) r € R(A41), not nilpotent, and § has infinite range; or * has infinite range
and s € R(A4), not nilpotent,

(iii) # and § both have infinite range,
then r @ s 1s the relative identity for o maximal regular ideal which has infinite
co-dimension.

Proof. We first show that if any of the above conditions obtain, then r @ s
is quasi-singular in 4y © 4,. Suppose that r ® s is quasi-regular in 4; © 4,.
Since y(r ® s) = ||r|]1]|s|]: £ 1, the quasi-inverse (r ® 5)° of 7 ® s in
A1 ®,Azisgiven by —> 71 (r ® s)" = —2 717" ® s*. On the other hand,
(r®s)° =10, ®b,C4; O 4. Let f belong to the dual 4* of 4,

and define
]‘j<z an’ ® bn’> = Z f(an’)bn’y
n=1 n=1
a continuous linear mapping of 4; ®, 4. into A,; see (9). Thus,
N N
Tf(ZIGi ® bz) = Zlf(ai)biy

so that for all f € A%, > _17(")s" lies in the finite-dimensional subspace

of A, spanned by by, ..., by. By Lemma 2, we have that the "'s are linearly
independent. Hence, there exist fy, ..., fy+1 € 4% such that f,(+7) = 5
1=1 j= N+ 1. Now, there are complex numbers Ay, ..., Ays1, not all
zero, such that
N+1 © =53 N+1
0= ; )\i<n§_:lfi(r")s"> = nZ1 ( 12_:1 XJ,(r"))s".

Since

N+1 N+1

12:1 A S 21 N fed forallm = 1,

Lemma 2 implies that 377 Nfi(r") =0, n = 1. In particular, if 1 £ # <

N 4+ 1, we have that X\, = A\,f,(#") = 0, a contradiction. Thus, » ® s must
be quasi-singular in 4; © 4. and theideal I = {(r @ s)r — r:7 € A, O A,}
is a proper ideal with relative identity » ® s. Hence, I is contained in a
maximal regular ideal, say M. Now, M is not the kernel of any complex
homomorphism %y ® hy € &4, X ®4,. For this would mean that 1 = #; ®
Ba(r ® 5) = k(ha(s) = [lllilsl]e = 1.

If either (i) or (ii) holds in the above lemma, then it is obvious that
r®s € K(4, © 4,).
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It is convenient to introduce a name for a commutative Banach algebra
which has a radical which is a nil ideal and has only a finite number of distinct
complex homomorphisms. We shall simply refer to such an algebra as a fini
Banach algebra.

THEOREM 2. R(4, © A,) = K(4y © A,) if and only if one of the following
conditions hold:
(i) R(A4.) and R(A») are nil ideals;
(ii) A s a fini Banach algebra;
(ii1) A 2s @ fins Banack algebra.

Proof. Suppose first that R(4,) and R(A,) are nil ideals. Then K(4; © 4,)
is a nil ideal, and hence K(4; © 4:) € R(4; © A;). Since R(4, © A4,) C
K(A; © A,), we have equality. Suppose next that 4, is a fini Banach algebra.
From Lemma 1, we know that K(4; © 4,) = R(4;) © 4, + 41 © R(4,).
Since the sum of nilpotent elements is again nilpotent, R(4,) © A: consists
entirely of nilpotent elements, and hence R(4:) © 4, is contained in
R(A1 © A4s). In order to show that 4; © R(A.) is contained in R(4; © 4,),
let ®4, = {hy, ..., )} and {ey, ..., &} be the set of orthogonal idempotents
in A, such that é;(h;) =84, 1 £14, j £k (7). Then we have that A, =
ad1@... ®DeAd; (A — e — ... — e)A1, where the last ideal is contained
in R(4,)). If a®s € A, ® R(4,), then a @ s=(e.a ® s) + ...+
(era®s)+ (1 —ey — ... — e)a ®s). Observe that the last term is in
R(4, © A4.). It suffices to show that ¢;a ® s € R(4: © 4:). By a standard
characterization of the radical of an algebra, all we need to show is that

T = <Zl a; ® bj>(ela ®s) + t(eia ®s) = 21 ewa @ bis + (kewr @ 5)
J= j=

is quasi-regular for all a; € 44, b, € 45,7 = 1,...,n, and all complex num-
bers £. Since e;41 = Ce; @ R(erd:), we can write eie;a0 = §e1 + 7y, ferg =
fe1 + ro. Now 7 = e; ® s’ + +/, where 7’ is nilpotent. Thus, 7 is the sum of a
quasi-regular element and a nilpotent element. Hence, 7 is quasi-regular, by
direct calculation of the quasi-inverse, and ei¢ ® s € R(4A1 © A,). Similarly,
if A, is a fini Banach algebra, then R(41 © 4:) = K(41 © 4.).

To establish the converse, it suffices to consider the case where R(4:) is
not a nil ideal and A4, is not a fini Banach algebra. Then either (i) or (ii) in
Lemma 3 is satisfied. Hence, there exists a maximal regular ideal with relative
identity # and # € K(41 © A4,). Since u ¢ R(A1 O 43), R(A1 O 4,) 1is
a proper subset of K(4; @ 4;). This completes the proof of the theorem.

In (5), Jacobson proved that if 4, is finite-dimensional over a field ¢ and
A, is a radical algebra over ¢, then 41 © A (over ¢) is a radical algebra. For
commutative Banach algebras, this also follows from the above theorem.
Moreover, it follows that 4, © 4, is a radical algebra if and only if 4, or 4,
is a radical algebra and one of the three conditions of the theorem holds.
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THEOREM 3. Every maximal regular ideal in A1 © A, has co-dimension one
if and only if Ay or As is a fini Banach algebra.

Proof. If either 4, or A, is a fini Banach algebra, then R{(4, © 4.) =
K(41 © A,) by Theorem 2. Let M be a maximal regular ideal in 4, © 4,.
Since M D K(4: 0 As), M+ K(4: © A4,) is a maximal regular ideal in
Al @ Az/K(Al O] Az) By Lemma ]., A1 O] AQ/K(AI @ Az) %”Al/R(Al) O
Aq/R(A,). Now, if 4, is a fini Banach algebra, then 4,/R(4:) = C*, where
k is the dimension of 41/R(A4,). Hence,

A1/R(41) © A9/R(4,) %_2: ® A:/R(4.,).

Since the latter algebra is a Banach algebra, every maximal regular ideal has
co-dimension one. Hence, both M + K(4,; ® A4.) and M have co-dimension
one.

To prove the converse, suppose that 41 and A4, are both not fini Banach
algebras. This implies that one of the three statements in Lemma 3 is satisfied,
and hence there exists a maximal regular ideal M with relative identity r ® s,
where |||}y = % and ||s|ls £ 3. Therefore, |k @ ho(r @ 5)| < + for all
]’Ll 03¢ hz E q)A1 X q’AQ. If M = (}’Ll [ hg)_l(o) fOI‘ some hl & h2 E q>A1 X ‘I)A._!,
then %1 ® ke(r ® s) = 1, which is impossible. Hence, M has infinite co-
dimension.

COROLLARY 3. 41 O A» is a Q-algebra with respect to o if and only if a is a
spectral tensor norm and Ay or As is a fini Banach algebra.

5. The identity in 4; ®. 4,. 1f both 4; and 4. have identities, then of
course A; © 4, will also have an identity; hence, for any algebra norm «,
A1 ®4 A2 will also have an identity. Gelbaum (3) has shown that when 4;
and 4, are semisimple, then 4, ®, 4, has an identity if and only if both 4,
and A, have identities. It follows from the theorem below that a similar
result 1s valid for 41 @, 4., whereais any spectral tensor norm, even without
the semisimplicity assumption.

As usual, we view P4, ga4, as a closed subset of &4, X ¥4, and denote by
m; the natural mapping of ®4,ga4, into dy,.

THEOREM 4. Let a be an algebra norm on A1 © A If A1 @, Aq has an identity
and if the mappings =, are onio, then A1 and A have identities.

Proof. If A1 ®, A, has an identity #, then ®4, 5.4, is compact. Since 7;
is continuous and onto, &, is compact for ¢ = 1, 2. Hence, there exist idem-
potents e¢; € A, such that é; is identically 1 on &, for ¢ = 1,2 (7, p. 168).
The element #; = e; ® es is an idempotent in 41 © 4. and 4, is identically 1
on @4, g.4,. Thus, #; has an inverse in 4, ®. A, and since u,(u — %) = 0,
it follows that # = u;.
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To show that eie = a for all a € 4,, we note that (eig —a) @ e, =
((81@ - Cl) ® 62) (61 ® 62) = (610 — 61(l> ® €9 = 0 ® &y = 0. Since ey # 0,
eia —a = 0foralla € 4;. Thus, e; is an identity in 4. Similarly, we conclude
that e, is an identity in A,.

COROLLARY 4. If a is a spectral tensor norm, then A1 ®q A2 has an identity
if and only if Ay and A, have identilies.

As easily constructed examples show, if the mappings =, are not onto, then
Ay ®, A, may have an identity without either 4, or 4, possessing identities.
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