ON MAXIMAL REGULAR IDEALS AND IDENTITIES IN THE TENSOR PRODUCT OF COMMUTATIVE BANACH ALGEBRAS

L. J. LARDY AND J. A. LINDBERG, JR.

1. Introduction. Let A_{1} and A_{2} be commutative Banach algebras and $A_{1} \odot A_{2}$ their algebraic tensor product over the complex numbers C. There is always at least one norm, namely the greatest cross-norm $\gamma(\mathbf{2})$, on $A_{1} \odot A_{2}$ that renders it a normed algebra. We shall write $A_{1} \otimes_{\alpha} A_{2}$ for the α-completion of $A_{1} \odot A_{2}$ when α is an algebra norm on $A_{1} \odot A_{2}$. Gelbaum (2; 3), Tomiyama (9), and Gil de Lamadrid (4) have shown that for certain algebra norms α on $A_{1} \odot A_{2}$, every complex homomorphism on $A_{1} \odot A_{2}$ is α-continuous. In $\S 3$ of this paper, we present a condition on an algebra norm α which is equivalent to the α-continuity of every complex homomorphism on $A_{1} \odot A_{2}$. Also, in $\S 3$, we give an example of an algebra norm on a particular tensor product that is not one of the types discussed by the above-mentioned authors but does satisfy our condition. In $\S 4$ we characterize those pairs $\left(A_{1}, A_{2}\right)$ for which the radical of $A_{1} \odot A_{2}$ is the intersection of the kernels of the complex homomorphisms on $A_{1} \odot A_{2}$. We also characterize those pairs (A_{1}, A_{2}) for which every maximal regular ideal in $A_{1} \odot A_{2}$ has co-dimension 1. Section 5 is devoted to a study of identities in $A_{1} \otimes_{\alpha} A_{2}$ versus identities in A_{1} and A_{2}.
2. Preliminaries. If A is a commutative complex algebra, then $H(A)$ denotes the collection of all complex homomorphisms from A onto the complex numbers, $R(A)$ denotes the radical of A and we set $K(A)=\cap_{h \in H(A)} h^{-1}(0)$. As usual, if A is a commutative Banach algebra, then the set $H(A)$ endowed with the Gelfand topology is denoted by $\Phi_{A}(7)$.

If $A_{i}, i=1,2$, are complex algebras, then it is known that the elements in $H\left(A_{1} \odot A_{2}\right)$ can be identified in a natural way with the set $H\left(A_{1}\right) \times H\left(A_{2}\right)$. More precisely, if $h_{i} \in H\left(A_{i}\right)$ and $h_{1} \otimes h_{2}$ is defined on $A_{1} \odot A_{2}$ by setting

$$
h_{1} \otimes h_{2}\left(\sum_{j=1}^{m} a_{j} \otimes b_{j}\right)=\sum_{j=1}^{m} h_{1}\left(a_{j}\right) h_{2}\left(b_{j}\right),
$$

then $h_{1} \otimes h_{2} \in H\left(A_{1} \odot A_{2}\right)$. Conversely, if $h \in H\left(A_{1} \odot A_{2}\right)$ and h_{1} is defined on A_{1} by setting $h_{1}\left(a_{1}\right)=h\left(a_{1} a_{0} \otimes b_{0}\right) / h\left(a_{0} \otimes b_{0}\right)$, where $h\left(a_{0} \otimes b_{0}\right) \neq 0$, then $h_{1} \in H\left(A_{1}\right)$. If h_{2} is defined similarly, then $h=h_{1} \otimes h_{2} ;$

[^0]see (9) for details. The natural identification of $H\left(A_{1} \odot A_{2}\right)$ with $H\left(A_{1}\right) \times$ $H\left(A_{2}\right)$ is given by $h_{1} \otimes h_{2} \rightarrow\left(h_{1}, h_{2}\right)$.

Lemma 1. $K\left(A_{1} \odot A_{2}\right)=K\left(A_{1}\right) \odot A_{2}+A_{1} \odot K\left(A_{2}\right)$ and

$$
A_{1} \odot A_{2} / K\left(A_{1} \odot A_{2}\right)
$$

is isomorphic with $A_{1} / K\left(A_{1}\right) \odot A_{2} / K\left(A_{2}\right)$, the isomorphism being $\sum a_{i} \otimes b_{i}+$ $K\left(A_{1} \odot A_{2}\right) \rightarrow \sum\left(a_{i}+K\left(A_{1}\right)\right) \otimes\left(b_{i}+K\left(A_{2}\right)\right)$.

Proof. It is easy to verify that $K\left(A_{1}\right) \odot A_{2}+A_{1} \odot K\left(A_{2}\right)$ is contained in $K\left(A_{1} \odot A_{2}\right)$.

Suppose that $\tau=\sum_{i=1}^{n} a_{i} \otimes b_{i} \in K\left(A_{1} \odot A_{2}\right) . \tau$ can be expressed in the form $\sum_{j=1}^{m} a_{j}{ }^{\prime} \otimes b_{j}{ }^{\prime}+\tau^{\prime}$, where $\tau^{\prime} \in A_{1} \odot K\left(A_{2}\right)$ and no non-trivial linear combination of the elements $b_{1}{ }^{\prime}, \ldots, b_{m}{ }^{\prime}$ is in $K\left(A_{2}\right)$. This follows from the fact that there exists a subset $\left\{b_{1}{ }^{\prime}, \ldots, b_{m}{ }^{\prime}\right\}$ of $\left\{b_{1}, \ldots, b_{n}\right\}$ which, modulo $K\left(A_{2}\right)$, is a basis for the linear span of the $b_{i}, i=1, \ldots, n$. Since $\tau^{\prime} \in A_{1} \odot$ $K\left(A_{2}\right) \subseteq K\left(A_{1} \odot A_{2}\right), \sum_{j=1}^{m} a_{j}^{\prime} \otimes b_{j}^{\prime} \in K\left(A_{1} \odot A_{2}\right)$, and hence

$$
0=h_{1} \otimes h_{2}\left(\sum_{j=1}^{m} a_{j}^{\prime} \otimes b_{j}^{\prime}\right)=\sum_{j=1}^{m} h_{1}\left(a_{j}^{\prime}\right) h_{2}\left(b_{j}^{\prime}\right)=h_{2}\left(\sum_{j=1}^{m} h_{1}\left(a_{j}^{\prime}\right) b_{j}^{\prime}\right)
$$

for all $h_{1} \in H\left(A_{1}\right)$ and $h_{2} \in H\left(A_{2}\right)$. This means that $\sum_{j=1}^{m} h_{1}\left(a_{j}{ }^{\prime}\right) b_{j}{ }^{\prime} \in K\left(A_{2}\right)$ for all $h_{1} \in H\left(A_{1}\right)$. Hence, $a_{j}{ }^{\prime} \in K\left(A_{1}\right)$ since $h_{1}\left(a_{j}{ }^{\prime}\right)=0$ for all $h_{1} \in H\left(A_{1}\right)$ and $j=1, \ldots, m$. Thus, $\sum_{j=1}^{m} a_{j}^{\prime} \otimes b_{j}^{\prime} \in K\left(A_{1}\right) \odot A_{2}$ and it follows that $K\left(A_{1} \odot A_{2}\right)=K\left(A_{1}\right) \odot A_{2}+A_{1} \odot K\left(A_{2}\right)$.

The last assertion of the lemma is well known; see, for example, (5).
Corollary 1. If A_{1} and A_{2} are complex algebras for which $K\left(A_{i}\right)=(0)$, $i=1,2$, then $A_{1} \odot A_{2}$ is semisimple.

The corollary, of course, follows from the lemma and the fact that $R\left(A_{1} \odot A_{2}\right) \subseteq K\left(A_{1} \odot A_{2}\right)$, the latter ideal being equal to (0) in the situation of the corollary.

The inclusion $R\left(A_{1} \odot A_{2}\right) \subseteq K\left(A_{1} \odot A_{2}\right)$ suggests the following question: When is $R\left(A_{1} \odot A_{2}\right)=K\left(A_{1} \odot A_{2}\right)$? We shall completely answer this question in §4 for the case where A_{1} and A_{2} are commutative Banach algebras.
3. Spectral tensor norms. Throughout the remainder of this paper, A_{i} will always denote a commutative Banach algebra with norm $\|\cdot\|_{i}$ and spectral radius $\nu_{i}, i=1,2 ; \alpha$ will always denote an algebra norm on $A_{1} \odot A_{2}$. We set $\nu_{\alpha}(\tau)=\lim _{n \rightarrow+\infty}\left(\alpha\left(\tau^{n}\right)\right)^{1 / n}$ for $\tau \in A_{1} \odot A_{2}$. The space $\Phi_{A_{1} \otimes A_{2}}$ can be identified with the set of α-continuous complex homomorphisms on $A_{1} \odot A_{2}$, and hence can be viewed in a natural way as a subset of $\Phi_{A_{1}} \times \Phi_{A_{2}}$. If $\Phi_{A_{1} \otimes A_{2}}$ exhausts $\Phi_{A_{1}} \times \Phi_{A_{2}}$, we say that $\Phi_{A_{1} \otimes_{\alpha} A_{2}}$ is full. In this section, we show that $\Phi_{A_{1} \otimes_{\alpha} A_{2}}$ is full if and only if $\nu_{\alpha}(a \otimes b)=\nu_{1}(a) \nu_{2}(b)$ holds for all simple tensors $a \otimes b \in A_{1} \odot A_{2}$. Smith (8) has presented necessary and sufficient conditions for $\Phi_{A_{1} \otimes_{\alpha A 2}}$ to be full when α is an algebra cross-norm.

Our results show that these conditions are always satisfied. A norm which satisfies (1): $\nu_{\alpha}(a \otimes b)=\nu_{1}(a) \nu_{2}(b)$ for all $a \otimes b \in A_{1} \odot A_{2}$ will be called a spectral tensor norm.

The norms that have been studied by Gelbaum (3), Tomiyama (9) and Gil de Lamadrid (4) are all spectral tensor norms. For each of these norms, there is a positive number k such that α satisfies (2): $k\|a\|_{1}\|b\|_{2} \leqq \alpha(a \otimes b)$ for all simple tensors $a \otimes b \in A_{1} \odot A_{2}$. Now, if (2) holds, then

$$
\nu_{1}(a) \nu_{2}(b)=\lim _{n \rightarrow+\infty} k^{1 / n}\left\|a^{n}\right\|_{1}^{1 / n}\left\|b^{n}\right\|_{2}^{1 / n} \leqq \nu_{\alpha}(a \otimes b), \quad a \otimes b \in A_{1} \odot A_{2}
$$

Since $\nu_{\alpha}(a \otimes b) \leqq \nu_{1}(a) \nu_{2}(b)$ is always true, it follows that (2) implies (1). Spectral tensor norms, however, need not satisfy (2). We offer below an example of a spectral tensor norm which does not satisfy $\alpha(a \otimes b) \geqq k\|a\|_{1}\|b\|_{2}$ for any $k>0$.

Example. Let $A_{1}=A_{2}=C^{1}[0,1]$, the algebra of continuously differentiable complex-valued functions on $[0,1]$, with $\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}, f \in C^{1}[0,1]$. Then $A_{1} \odot A_{2}$ is isomorphic to the set of all functions on the unit square S of the form

$$
\sum_{i=1}^{n} f_{i}(x) g_{i}(y), \quad f_{i}, g_{i} \in C^{1}[0,1] .
$$

Hence, $A_{1} \odot A_{2}$ can be viewed as a subalgebra of $A=\{f \in C(S): \partial f / \partial x$ and $\partial f / \partial y$ exist and are continuous on $S\}$. For $f \in A$, we set

$$
\alpha(f)=\|f\|_{\infty}+\left\|\frac{\partial f}{\partial x}\right\|_{\infty}+\left\|\frac{\partial f}{\partial y}\right\|_{\infty} .
$$

It is easy to verify that A is a Banach algebra under the norm α. It follows from a theorem of Butzer ${ }^{1}$ (1) that $A_{1} \odot A_{2}$ is α-dense in A. Now, set $f_{n}(x)=x^{n}, n=1,2, \ldots$. Since

$$
\lim _{n \rightarrow+\infty} \frac{\alpha\left(f_{n} \otimes f_{n}\right)}{\left\|f_{n}\right\|^{2}}=\lim _{n \rightarrow+\infty} \frac{1+n+n}{(1+n)^{2}}=0
$$

there exists no $k>0$ such that $\alpha(f \otimes g) \geqq k\|f\|\|g\|$ for all $f \otimes g \in A_{1} \odot A_{2}$.
We commented above that $\Phi_{A_{1} \otimes \alpha_{A_{2}}}$ can be viewed as a subset of $H\left(A_{1} \odot A_{2}\right)$. The following proposition describes the topological aspects of the embedding.

Proposition 1. $\Phi_{A_{1} \otimes^{\alpha} A_{2}}$ is a closed subset of $\Phi_{A_{1}} \times \Phi_{A_{2}}$, and the Gelfand topology on $\Phi_{A_{1} \otimes \alpha A_{2}}$ is the relativization of the product topology on $\Phi_{A_{1}} \times \Phi_{A_{2}}$.

The space $\Phi_{A_{1} \otimes \alpha A_{2}}$ is closed in $\Phi_{A_{1}} \times \Phi_{A_{2}}$ since

$$
\begin{aligned}
\operatorname{lub}\left\{\left|h_{1} \otimes h_{2}(\tau)\right|: h_{1} \otimes h_{2} \in \operatorname{cl}(\right. & \left.\left(\Phi_{A_{1} \otimes \alpha_{2}}\right)\right\} \\
& =\operatorname{lub}\left\{\left|h_{1} \otimes h_{2}(\tau)\right|: h_{1} \otimes h_{2} \in \Phi_{A_{1} \otimes \alpha_{2}}\right\} \leqq \alpha(\tau)
\end{aligned}
$$

${ }^{1}$ We would like to thank Professor G. G. Lorentz for suggesting this reference.
for all $\tau \in A_{1} \odot A_{2}$. Since the Gelfand topology on $\Phi_{A_{1} \otimes \alpha_{2}}$ is identical with the weak topology induced by $\left(A_{1} \odot A_{2}\right)^{\wedge}$ on $\Phi_{A_{1} \otimes \alpha A_{2}}$, the last assertion follows from the fact that the product topology on $\Phi_{A_{1}} \times \Phi_{A_{2}}$ is the weak topology induced by $\left(A_{1} \odot A_{2}\right)^{\wedge}$ (see 9, p. 150) and the relative product topology is the weak topology induced by $\left(A_{1} \odot A_{2}\right)^{\wedge}$ on $\Phi_{A_{1} \otimes \alpha_{2}}$.

Theorem 1. Let A_{1} and A_{2} be commutative Banach algebras. Then $\Phi_{A_{1} \otimes \alpha_{2}}$ is full if and only if α is a spectral tensor norm.

Proof. Suppose that $\Phi_{A_{1} \otimes \alpha_{2}}$ is full. Then

$$
\begin{aligned}
\nu_{\alpha}(a \otimes b) & =\operatorname{lub}\left\{\left|h_{1} \otimes h_{2}(a \otimes b)\right|: h_{i} \in \Phi_{A i}, i=1,2\right\} \\
& =\operatorname{lub}\left\{\left|h_{1}(a)\right|: h_{1} \in \Phi_{A_{1}}\right\} \operatorname{lub}\left\{\left|h_{2}(b)\right|: h_{2} \in \Phi_{A_{2}}\right\} \\
& =\nu_{1}(a) \nu_{2}(b) .
\end{aligned}
$$

Thus, α is a spectral tensor norm on $A_{1} \odot A_{2}$.
Suppose that α is a spectral tensor norm on $A_{1} \odot A_{2}$. By the above proposition, we know that $\Phi_{A_{1} \otimes A_{2}}$ is a closed subset of $\Phi_{A_{1}} \times \Phi_{A_{2}}$. We first show that if $\partial_{A_{i}}$ denotes the Silov boundary of $A_{i}, i=1,2$, then $\partial_{A_{1}} \times \partial_{A_{2}} \subseteq$ $\Phi_{A_{1} \otimes_{\alpha A_{2}}}$. To this end, suppose that $h_{1} \otimes h_{2} \in \partial_{A_{1}} \times \partial_{A_{2}} \backslash \Phi_{A_{1} \otimes_{\alpha} A_{2}}$. By a characterization of the Šilov boundary, there exist open neighbourhoods V_{1} and V_{2} of h_{1} and h_{2}, respectively, such that $V_{1} \times V_{2} \cap \Phi_{A_{1} \otimes_{\alpha_{A}}}=\emptyset$, and elements $a \in A_{1}$ and $b \in A_{2}$ such that $\left|\hat{a}\left(h_{1}{ }^{\prime}\right)\right|<\nu_{1}(a)$ for $h_{1}^{\prime} \notin V_{1}$ and $\left|\hat{b}\left(h_{2}{ }^{\prime}\right)\right|<\nu_{2}(b)$ for $h_{2}{ }^{\prime} \notin V_{2}$. On the other hand, there exists $h_{1}{ }^{0} \otimes h_{2}{ }^{0} \in$ $\Phi_{A_{1} \otimes \alpha A_{2}}$ such that $\nu_{\alpha}(a \otimes b)=\left|\hat{a}\left(h_{1}{ }^{0}\right)\right|\left|\hat{b}\left(h_{2}{ }^{0}\right)\right|$. Since $h_{1}{ }^{0} \otimes h_{2}{ }^{0} \notin V_{1} \times V_{2}$, then $h_{i}{ }^{0} \notin V_{i}$ for either $i=1$ or 2 . Hence, $\nu_{\alpha}(a \otimes b)<\nu_{1}(a) \nu_{2}(b)$, which contradicts the hypothesis that α is a spectral tensor norm. Thus, $\partial_{A_{1}} \times \partial_{A_{2}} \subseteq$ $\Phi_{A_{1} \otimes \otimes_{A_{2}}}$. If $h_{1} \otimes h_{2} \in \Phi_{A_{1}} \times \Phi_{A_{2}}$ and $\tau \in A_{1} \odot A_{2}$, then $\left|\hat{\tau}\left(h_{1} \otimes h_{2}\right)\right| \leqq$ $\operatorname{lub}\left\{\left|\hat{\tau}\left(h_{1}{ }^{\prime} \otimes h_{2}{ }^{\prime}\right)\right|: h_{1}{ }^{\prime} \otimes h_{2}{ }^{\prime} \in \partial_{A_{1}} \times \partial_{A_{2}}\right\}$; see (3, Theorem 2). Since the right-hand side is equal to or less than $\nu_{\alpha}(\tau)$, we have that every complex homomorphism on $A_{1} \odot A_{2}$ is α-continuous.

Corollary 2. If A_{1} and A_{2} are semisimple and regular, then any algebra norm on $A_{1} \odot A_{2}$ is a spectral tensor norm.

Proof. The argument is a modification of one that appears in (7, p. 175). Suppose that α is an algebra norm on $A_{1} \odot A_{2}$ that is not a spectral tensor norm. Then there is an element $h_{1} \otimes h_{2} \in \Phi_{A_{1}} \times \Phi_{A_{2}} \backslash \Phi_{A_{1} \otimes \alpha_{A_{2}}}$. We can choose open neighbourhoods U_{i} and V_{i} of h_{i} such that $U_{1} \times U_{2}$ is disjoint from $\Phi_{A_{1} \otimes \alpha A_{i}}, \bar{V}_{i}$ is compact and $\bar{V}_{i} \subseteq U_{i}$, for $i=1,2$. There are elements $a_{i} \in A_{i}$ and $b_{i} \in A_{i}$ such that $\hat{a}_{i}\left(h_{i}\right)=1$ and \hat{a}_{i} is identically 0 off V_{i}, \hat{b}_{i} is identically 1 on V_{i}, and \hat{b}_{i} is identically 0 off U_{i}. Now the simple tensors $u=a_{1} \otimes a_{2}$ and $v=b_{1} \otimes b_{2}$ have the property that $u v-u \in K\left(A_{1} \odot A_{2}\right)$. However, $K\left(A_{1} \odot A_{2}\right)=(0)$ since A_{1} and A_{2} are semisimple. Hence $u v=u$. Since \hat{v} is identically 0 on $\Phi_{A_{1} \otimes_{\alpha} A_{2}}, v \in R\left(A_{1} \otimes_{\alpha} A_{2}\right)$. Thus, v has a quasi-inverse $w \in A_{1} \otimes_{\alpha} A_{2}$, from which it follows that $0=v \circ w=(u \circ v) \circ w=$ $u \circ(v \circ w)=u$. This is impossible since $u \neq 0$.

The above proof yields the following stronger result. Suppose that A is a subalgebra of $C_{0}(\Omega), \Omega$ a locally compact Hausdorff space, and that each complex homomorphism of A onto C is given by point evaluation at some point of Ω. Suppose, further, that for each closed set $K \subset \Omega$ and for each point $w \in \Omega \backslash K$ there exists an $f \in A$ which vanishes on K and is identically 1 in a neighbourhood of w. Then every algebra norm on A majorizes the supremum norm over Ω. This result is not new for the case where A is also a Banach algebra under some norm; see (7, p. 176).
4. On the radical and maximal regular ideals of infinite codimension in $A_{1} \odot A_{2}$. In (2), Gelbaum assumed that A_{1}, A_{2}, and α were such that $A_{1} \odot A_{2}$ had no α-dense maximal regular ideals; that is, $A_{1} \odot A_{2}$ was a Q-algebra with respect to α. On the basis of this assumption, he showed that $\Phi_{A_{1} \otimes \alpha_{A}}$ was full. (If α is taken to be the greatest cross-norm, then this assumption can be dropped, as examination of his proof shows.) It is natural to ask: under what conditions is $A_{1} \odot A_{2}$ a Q-algebra under α ? Clearly, α must be a spectral tensor norm since $h^{-1}(0)$ is α-dense if h is α-discontinuous. Furthermore, every maximal regular ideal must have co-dimension 1 ; that is, it must be the kernel of a complex homomorphism. In Theorem 3, we characterize those pairs (A_{1}, A_{2}) for which every maximal regular ideal in $A_{1} \odot A_{2}$ has co-dimension 1. In the investigation leading to Theorem 3, we obtained a characterization (Theorem 2) of those pairs $\left(A_{1}, A_{2}\right)$ for which $R\left(A_{1} \odot A_{2}\right)=$ $K\left(A_{1} \odot A_{2}\right)$.

Lemma 2. Let A be a commutative Banach algebra and $r \in A$ with $\|r\| \leqq \frac{1}{2}$. If \hat{r} has infinite range or $r \in R(A)$ and r is not nilpotent, then $\sum_{n=1}^{\infty} \mu_{n} r^{n}=0$, where $\left\{\mu_{n}\right\}$ is a bounded sequence of complex numbers, implies that $\mu_{n}=0$ for $n=1,2, \ldots$

Proof. Suppose that \hat{r} has infinite range. To show that r satisfies the property of the lemma, suppose that $\left\{\mu_{n}\right\}$ is a bounded sequence of complex numbers and that $\sum_{n=1}^{\infty} \mu_{n} r^{n}=0$. Consider the power series $f(z)=\sum_{n=1}^{\infty} \mu_{n} z^{n}$. Since $\left\{\mu_{n}\right\}$ is a bounded sequence, this power series converges absolutely for $|z|<1$. By assumption, $f(\hat{r}(h))=0$ for all $h \in \Phi_{A}$ so that f has infinitely many zeros of moduli less than or equal to $\frac{1}{2}$. Thus, $f(z)$ is identically zero and $\mu_{n}=0$, $n=1,2, \ldots$

Next suppose that $r \in R(A)$ is not nilpotent. For this part, we can assume that A has an identity e since the adjunction of an identity does not change the radical. Let $\left\{\mu_{n}\right\}$ be a bounded sequence of complex numbers such that $\sum_{n=1}^{\infty} \mu_{n} r^{n}=0$ and let n_{0} be the smallest integer such that $\mu_{n_{0}} \neq 0$. Then

$$
\sum_{n=n_{0}}^{\infty} \mu_{n} r^{r}=r^{n_{0}}\left(\mu_{n 0} e+\sum_{n=n_{0}+1}^{\infty} \mu_{n} r^{n-n_{0}}\right)=0 .
$$

Since $\sum_{n=n_{0}+1}^{\infty} \mu_{n} r^{n-n_{0}} \in R(A)$ and $\mu_{n_{0}} \neq 0$, the right-hand factor is invertible in A, and hence $r^{n_{0}}=0$, a contradiction. This completes the proof of the lemma.

It is shown in (6) that if A is semisimple and infinite-dimensional, then A has an element with infinite spectrum. Hence, if Φ_{A} is infinite, then there exists $a \in A$ such that \hat{a} has infinite range.

Lemma 3. Suppose that $r \otimes s \in A_{1} \odot A_{2}$, with $\|r\|_{1} \leqq \frac{1}{2},\|s\|_{2} \leqq \frac{1}{2}$, satisfies one of the following conditions:
(i) $r \in R\left(A_{1}\right)$, not nilpotent, and $s \in R\left(A_{2}\right)$, not nilpotent,
(ii) $r \in R\left(A_{1}\right)$, not nilpotent, and \hat{s} has infinite range; or \hat{r} has infinite range and $s \in R\left(A_{2}\right)$, not nilpotent,
(iii) \hat{r} and \hat{s} both have infinite range,
then $r \otimes s$ is the relative identity for a maximal regular ideal which has infinite co-dimension.

Proof. We first show that if any of the above conditions obtain, then $r \otimes s$ is quasi-singular in $A_{1} \odot A_{2}$. Suppose that $r \otimes s$ is quasi-regular in $A_{1} \odot A_{2}$. Since $\gamma(r \otimes s)=\|r\|_{1}| | s \|_{2} \leqq \frac{1}{4}$, the quasi-inverse $(r \otimes s)^{0}$ of $r \otimes s$ in $A_{1} \otimes_{\gamma} A_{2}$ is given by $-\sum_{n=1}^{\infty}(r \otimes s)^{n}=-\sum_{n=1}^{\infty} r^{n} \otimes s^{n}$. On the other hand, $(r \otimes s)^{0}=\sum_{i=1}^{N} a_{i} \otimes b_{i} \in A_{1} \odot A_{2}$. Let f belong to the dual $A_{1}{ }^{*}$ of A_{1} and define

$$
T_{f}^{\prime}\left(\sum_{n=1}^{\infty} a_{n}^{\prime} \otimes b_{n}^{\prime}\right)=\sum_{n=1}^{\infty} f\left(a_{n}^{\prime}\right) b_{n}^{\prime},
$$

a continuous linear mapping of $A_{1} \otimes_{\gamma} A_{2}$ into A_{2}; see (9). Thus,

$$
T_{f}\left(\sum_{i=1}^{N} a_{i} \otimes b_{i}\right)=\sum_{i=1}^{N} f\left(a_{i}\right) b_{i}
$$

so that for all $f \in A_{1}{ }^{*}, \sum_{n=1}^{\infty} f\left(r^{n}\right) s^{n}$ lies in the finite-dimensional subspace of A_{2} spanned by b_{1}, \ldots, b_{N}. By Lemma 2 , we have that the $r^{n \prime}$ s are linearly independent. Hence, there exist $f_{1}, \ldots, f_{N+1} \in A_{1}{ }^{*}$ such that $f_{i}\left(r^{j}\right)=\delta_{i j}$, $1 \leqq i, j \leqq N+1$. Now, there are complex numbers $\lambda_{1}, \ldots, \lambda_{N+1}$, not all zero, such that

$$
0=\sum_{i=1}^{N+1} \lambda_{i}\left(\sum_{n=1}^{\infty} f_{i}\left(r^{n}\right) s^{n}\right)=\sum_{n=1}^{\infty}\left(\sum_{i=1}^{N+1} \lambda_{i} f_{i}\left(r^{n}\right)\right) s^{n}
$$

Since

$$
\left|\sum_{i=1}^{N+1} \lambda_{i} f_{i}\left(r^{n}\right)\right| \leqq \sum_{i=1}^{N+1}\left|\lambda_{i}\right|| | f_{i} \| \quad \text { for all } n \geqq 1
$$

Lemma 2 implies that $\sum_{i=1}^{N+1} \lambda_{i} f_{i}\left(r^{n}\right)=0, n \geqq 1$. In particular, if $1 \leqq n \leqq$ $N+1$, we have that $\lambda_{n}=\lambda_{n} f_{n}\left(r^{n}\right)=0$, a contradiction. Thus, $r \otimes s$ must be quasi-singular in $A_{1} \odot A_{2}$ and the ideal $I=\left\{(r \otimes s) \tau-\tau: \tau \in A_{1} \odot A_{2}\right\}$ is a proper ideal with relative identity $r \otimes s$. Hence, I is contained in a maximal regular ideal, say M. Now, M is not the kernel of any complex homomorphism $h_{1} \otimes h_{2} \in \Phi_{A_{1}} \times \Phi_{A_{2}}$. For this would mean that $1=h_{1} \otimes$ $h_{2}(r \otimes s)=h_{1}(r) h_{2}(s) \leqq\|r\|_{1}\left\|s^{\prime}\right\|_{2} \leqq \frac{1}{4}$.

If either (i) or (ii) holds in the above lemma, then it is obvious that $r \otimes s \in K\left(A_{1} \odot A_{2}\right)$.

It is convenient to introduce a name for a commutative Banach algebra which has a radical which is a nil ideal and has only a finite number of distinct complex homomorphisms. We shall simply refer to such an algebra as a fini Banach algebra.

Theorem 2. $R\left(A_{1} \odot A_{2}\right)=K\left(A_{1} \odot A_{2}\right)$ if and only if one of the following conditions hold:
(i) $R\left(A_{1}\right)$ and $R\left(A_{2}\right)$ are nil ideals;
(ii) A_{1} is a fini Banach algebra;
(iii) A_{2} is a fini Banach algebra.

Proof. Suppose first that $R\left(A_{1}\right)$ and $R\left(A_{2}\right)$ are nil ideals. Then $K\left(A_{1} \odot A_{2}\right)$ is a nil ideal, and hence $K\left(A_{1} \odot A_{2}\right) \subseteq R\left(A_{1} \odot A_{2}\right)$. Since $R\left(A_{1} \odot A_{2}\right) \subseteq$ $K\left(A_{1} \odot A_{2}\right)$, we have equality. Suppose next that A_{1} is a fini Banach algebra. From Lemma 1, we know that $K\left(A_{1} \odot A_{2}\right)=R\left(A_{1}\right) \odot A_{2}+A_{1} \odot R\left(A_{2}\right)$. Since the sum of nilpotent elements is again nilpotent, $R\left(A_{1}\right) \odot A_{2}$ consists entirely of nilpotent elements, and hence $R\left(A_{1}\right) \odot A_{2}$ is contained in $R\left(A_{1} \odot A_{2}\right)$. In order to show that $A_{1} \odot R\left(A_{2}\right)$ is contained in $R\left(A_{1} \odot A_{2}\right)$, let $\Phi_{A_{1}}=\left\{h_{1}, \ldots, h_{k}\right\}$ and $\left\{e_{1}, \ldots, e_{k}\right\}$ be the set of orthogonal idempotents in A_{1} such that $\hat{e}_{i}\left(h_{j}\right)=\delta_{i j}, 1 \leqq i, j \leqq k$ (7). Then we have that $A_{1}=$ $e_{1} A_{1} \oplus \ldots \oplus e_{k} A_{1} \oplus\left(1-e_{1}-\ldots-e_{k}\right) A_{1}$, where the last ideal is contained in $R\left(A_{1}\right)$. If $a \otimes s \in A_{1} \odot R\left(A_{2}\right)$, then $a \otimes s=\left(e_{1} a \otimes s\right)+\ldots+$ $\left(e_{k} a \otimes s\right)+\left(\left(1-e_{1}-\ldots-e_{k}\right) a \otimes s\right)$. Observe that the last term is in $R\left(A_{1} \odot A_{2}\right)$. It suffices to show that $e_{1} a \otimes s \in R\left(A_{1} \odot A_{2}\right)$. By a standard characterization of the radical of an algebra, all we need to show is that

$$
\tau=\left(\sum_{j=1}^{n} a_{j} \otimes b_{j}\right)\left(e_{1} a \otimes s\right)+\xi\left(e_{1} a \otimes s\right)=\sum_{j=1}^{n} e_{1} a_{j} a \otimes b_{j} s+\left(\xi e_{1} a \otimes s\right)
$$

is quasi-regular for all $a_{j} \in A_{1}, b_{j} \in A_{2}, j=1, \ldots, n$, and all complex numbers ξ. Since $e_{1} A_{1}=C e_{1} \oplus R\left(e_{1} A_{1}\right)$, we can write $e_{1} a_{j} a=\xi_{j} e_{1}+r_{j}, \xi e_{1} a=$ $\xi_{0} e_{1}+r_{0}$. Now $\tau=e_{1} \otimes s^{\prime}+\tau^{\prime}$, where τ^{\prime} is nilpotent. Thus, τ is the sum of a quasi-regular element and a nilpotent element. Hence, τ is quasi-regular, by direct calculation of the quasi-inverse, and $e_{1} a \otimes s \in R\left(A_{1} \odot A_{2}\right)$. Similarly, if A_{2} is a fini Banach algebra, then $R\left(A_{1} \odot A_{2}\right)=K\left(A_{1} \odot A_{2}\right)$.

To establish the converse, it suffices to consider the case where $R\left(A_{1}\right)$ is not a nil ideal and A_{2} is not a fini Banach algebra. Then either (i) or (ii) in Lemma 3 is satisfied. Hence, there exists a maximal regular ideal with relative identity u and $u \in K\left(A_{1} \odot A_{2}\right)$. Since $u \notin R\left(A_{1} \odot A_{2}\right), R\left(A_{1} \odot A_{2}\right)$ is a proper subset of $K\left(A_{1} \odot A_{2}\right)$. This completes the proof of the theorem.

In (5), Jacobson proved that if A_{1} is finite-dimensional over a field ϕ and A_{2} is a radical algebra over ϕ, then $A_{1} \odot A_{2}$ (over ϕ) is a radical algebra. For commutative Banach algebras, this also follows from the above theorem. Moreover, it follows that $A_{1} \odot A_{2}$ is a radical algebra if and only if A_{1} or A_{2} is a radical algebra and one of the three conditions of the theorem holds.

Theorem 3. Every maximal regular ideal in $A_{1} \odot A_{2}$ has co-dimension one if and only if A_{1} or A_{2} is a fini Banach algebra.

Proof. If either A_{1} or A_{2} is a fini Banach algebra, then $R\left(A_{1} \odot A_{2}\right)=$ $K\left(A_{1} \odot A_{2}\right)$ by Theorem 2 . Let M be a maximal regular ideal in $A_{1} \odot A_{2}$. Since $M \supset K\left(A_{1} \odot A_{2}\right), M+K\left(A_{1} \odot A_{2}\right)$ is a maximal regular ideal in $A_{1} \odot A_{2} / K\left(A_{1} \odot A_{2}\right)$. By Lemma 1, $A_{1} \odot A_{2} / K\left(A_{1} \odot A_{2}\right) \cong A_{1} / R\left(A_{1}\right) \odot$ $A_{2} / R\left(A_{2}\right)$. Now, if A_{1} is a fini Banach algebra, then $A_{1} / R\left(A_{1}\right) \cong C^{k}$, where k is the dimension of $A_{1 / R}\left(A_{1}\right)$. Hence,

$$
A_{1} / R\left(A_{1}\right) \odot A_{2} / R\left(A_{2}\right) \cong \sum_{i=1}^{k} \oplus A_{2} / R\left(A_{2}\right)
$$

Since the latter algebra is a Banach algebra, every maximal regular ideal has co-dimension one. Hence, both $M+K\left(A_{1} \odot A_{2}\right)$ and M have co-dimension one.

To prove the converse, suppose that A_{1} and A_{2} are both not fini Banach algebras. This implies that one of the three statements in Lemma 3 is satisfied, and hence there exists a maximal regular ideal M with relative identity $r \otimes s$, where $\|r\|_{1} \leqq \frac{1}{2}$ and $\|s\|_{2} \leqq \frac{1}{2}$. Therefore, $\left|h_{1} \otimes h_{2}(r \otimes s)\right| \leqq \frac{1}{4}$ for all $h_{1} \otimes h_{2} \in \Phi_{A_{1}} \times \Phi_{A_{2}}$. If $M=\left(h_{1} \otimes h_{2}\right)^{-1}(0)$ for some $h_{1} \otimes h_{2} \in \Phi_{A_{1}} \times \Phi_{A_{2}}$, then $h_{1} \otimes h_{2}(r \otimes s)=1$, which is impossible. Hence, M has infinite codimension.

Corollary 3. $A_{1} \odot A_{2}$ is a Q-algebra with respect to α if and only if α is a spectral tensor norm and A_{1} or A_{2} is a fini Banach algebra.
5. The identity in $A_{1} \otimes_{\alpha} A_{2}$. If both A_{1} and A_{2} have identities, then of course $A_{1} \odot A_{2}$ will also have an identity; hence, for any algebra norm α, $A_{1} \otimes_{\alpha} A_{2}$ will also have an identity. Gelbaum (3) has shown that when A_{1} and A_{2} are semisimple, then $A_{1} \otimes_{\gamma} A_{2}$ has an identity if and only if both A_{1} and A_{2} have identities. It follows from the theorem below that a similar result is valid for $A_{1} \otimes_{a} A_{2}$, where α is any spectral tensor norm, even without the semisimplicity assumption.

As usual, we view $\Phi_{A_{1} \otimes \alpha_{A},}$ as a closed subset of $\Phi_{A_{1}} \times \Phi_{A_{2}}$ and denote by π_{i} the natural mapping of $\Phi_{A_{1} \otimes^{\alpha} A_{2}}$ in to $\Phi_{A_{i}}$.

Theorem 4. Let α be an algebra norm on $A_{1} \odot A_{2}$. If $A_{1} \otimes_{a} A_{2}$ has an identity and if the mappings π_{i} are onto, then A_{1} and A_{2} have identities.

Proof. If $A_{1} \otimes_{\alpha} A_{2}$ has an identity u, then $\Phi_{A_{1} \otimes_{\alpha_{A}}}$ is compact. Since π_{i} is continuous and onto, $\Phi_{A_{i}}$ is compact for $i=1,2$. Hence, there exist idempotents $e_{i} \in A_{i}$ such that \hat{e}_{i} is identically 1 on $\Phi_{A i}$ for $i=1,2$ (7, p. 168). The element $u_{1}=e_{1} \otimes e_{2}$ is an idempotent in $A_{1} \odot A_{2}$ and \hat{u}_{1} is identically 1 on $\Phi_{A_{1} \otimes \alpha_{2}}$. Thus, u_{1} has an inverse in $A_{1} \otimes_{\alpha} A_{2}$, and since $u_{1}\left(u-u_{1}\right)=0$, it follows that $u=u_{1}$.

To show that $e_{1} a=a$ for all $a \in A_{1}$, we note that $\left(e_{1} a-a\right) \otimes e_{2}=$ $\left(\left(e_{1} a-a\right) \otimes e_{2}\right)\left(e_{1} \otimes e_{2}\right)=\left(e_{1} a-e_{1} a\right) \otimes e_{2}=0 \otimes e_{2}=0$. Since $e_{2} \neq 0$, $e_{1} a-a=0$ for all $a \in A_{1}$. Thus, e_{1} is an identity in A_{1}. Similarly, we conclude that e_{2} is an identity in A_{2}.

Corollary 4. If α is a spectral tensor norm, then $A_{1} \otimes_{\alpha} A_{2}$ has an identity if and only if A_{1} and A_{2} have identities.

As easily constructed examples show, if the mappings π_{i} are not onto, then $A_{1} \otimes_{\alpha} A_{2}$ may have an identity without either A_{1} or A_{2} possessing identities.

References

1. P. L. Butzer, On two-dimensional Bernstein polynomials, Can. J. Math. 5 (1953), 107-113.
2. B. R. Gelbaum, Tensor products of Banach algebras, Can. J. Math. 11 (1959), 297-310.
3. -- Tensor products and related questions, Trans. Amer. Math. Soc. 109 (1962), 525-548.
4. J. Gil de Lamadrid, Topological modules: Banach algebras, tensor products, algebras of kernels, Trans. Amer. Math. Soc. 126 (1967), 361-419.
5. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., Vol. 37 (Amer. Math. Soc., Providence, R.I., 1956).
6. I. Kaplansky, Ring isomorphisms of Banach algebras, Can. J. Math. 6 (1954), 374-381.
7. C. E. Rickart, General theory of Banach algebras (Van Nostrand, Princeton, N.J., 1960).
8. H. A. Smith, Proper tensor products of commutative Banach algebras, Notices Amer. Math. Soc. 11 (1964), 668; see also, Tensor products of topological algebras, Dissertation, University of Pennsylvania, 1964.
9. J. Tomiyama, Tensor products of commutative Banach algebras, Tôhoku Math. J. 12 (1960), 147-154.

Syracuse University, Syracuse, New York

[^0]: Received December 21, 1967. Presented at the Analysis Symposium at Queen's University, Kingston, Ontario, June, 1967.

