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1. Introduction

In many biological diffusion-reaction studies, it was found that one should include the
effect of density dependent rates, drift terms and spatially varying growth rates, in order
to obtain more accurate results. (See e.g. [7], [10], [8], [3]). On the other hand, many
recent mathematical results on reaction-diffusion systems do not include such general
setting. This article investigates the behaviour of competing-species reaction-diffusion
model under this more general situation. Efforts are made to obtain results concerning
coexistence, survival and extinction, by methods similar to that in [5], [6].

We determine the nature of nonlinear density-dependent diffusion, which would still
allow results analogous to those in [6]. (Note the positivity and monotonic
nondecreasing property of a,(s) in (1.5) below). Conditions for existence of positive
coexistence steady states were found in [5], [6], [12]. They were of the nature that
growth rates of the species are uniformly larger than certain positive constants related
to the first eigenvalue. In the case of highly heterogeneous environment, such conditions
are difficult to satisfy in reality. In Theorem 2.1, we determine a sufficient condition for
survival, in terms of only regionally large enough growth rates (see (2.2b)). Theorem 2.3
generalizes Theorem 2.1 to the case of several coexistence species. Theorem 2.2
establishes a-priori bounds for the solutions by means of nonsmooth lower and upper
solutions. It extends some results given in [9] (see remarks before Theorem 2.2), and it
is used to prove all the other theorems in this article. Theorem 3.1 shows that results
concerning extinction are similar to that in [6], provided that the rate of change of
diffusion rate with respect to density is smaller than a certain constant. This constant is
related to the principle eigenfunction of a larger domain. Theorem 4.1 shows the
existence of solutions to the initial-boundary value problem, completing the validity of
our model for the actual problem. The existence theorem for quasilinear systems in [4]
presumes at most quadratic growth conditions of reaction terms in its dependence on
density. With the aid of a variation of Theorem 2.1, Theorem 4.1 shows that this
assumption can be removed. Moreover, bounds for the solutions are also found.

We now clarify our notations and equations. Let /, 0 < / < 1 be a fixed number. We
consider an open connected bounded set 3) in Um, m^.2, with Q) denoting its closure.
H2+l{2i) denotes the Banach space of all real-valued functions with all first and second
derivatives continuous in S), and with finite value for the norm | | a + / ) (as described in
[4], p. 7). The boundary of 3>, denoted by 5S), will belong to class H2+l ([4], p. 9). For
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132 ANTHONY W. LEUNG

any T > 0 , let S>T = 3> x{Q,T). H2+l-l+ll2{3)T) denotes the Banach space of all real-
valued functions having all derivatives of the form D"Dr

l, 2r + |a |^2, continuous in 3)T

and having finite norm | | s r
+ l ) ( a s described in [4]). For vector functions in H2 + l{§>) or

H2 + l-1+l/2(@T), we mean that all its components belong to the corresponding space.
For a vector v = (vl,...,vn), \v\ = (Z"=i vf)1'2. V = ((d/dxl),...,(d/dxJ) denotes the
gradient, div v~Yj = i(dvJdxi) denotes the divergence, and A = £|'=1(<32/dxf) denotes the
Laplacian.

In our equations below, we assume that diffusivity depends on concentration, giving
rise to the term div(<7,-(«j)Vu,-), with cr^u,) expressing the concentration dependence (cf.
[10], [7]). Moreover, the intrinsic growth rates will be assumed as functions of position
x = (xu...,xm). We consider the following initial Dirichlet boundary value problem for n
competing-species reaction-diffusion.

^ ,...,«.)] (1.1)

for (x,t) = (x1,...,xm,t)e@x(0,T\, T>0, i= l , . . . ,n ;

I; «l(x,t) = *,(x), (x,t)e5®x [0, T\.

The functions /f:IR"->[R have Holder continuous partial derivatives up to second order
in compact sets, i=l,...,n. (The smoothness and compatibility of <f>h <D, will be
prescribed later). The functions, / , , describing competing interactions satisfy:

^-<0,iJ = l,...,nin{(u1,...,un)\ui^0, i = l , . . . , n } , / ; ( 0 , 0 ) = 0; (1.2)

and

s u p | £ (0,..., 0, s, 0,..., 0)(d= V, < 0, (1.3)
s g 0 OUt

where s ^ 0 occurs at the ith component, i=\,...,n.

The intrinsic growth rate function of the ith species, a((x), is in Hi+l(<B) and

in <3), i=l,...,n. (1.4)

The diffusivity functions a^s) satisfy:

t7,(0)>0,crI(s) in H*(R), <r;(s)^0 in [0, oo), o"(s) is continuous in [0,oo), i= l , . . . , n

(1.5)

These assumptions and equations are biologically plausible, and include the more
general properties of diffusion-reaction described above. The smoothness and other
assumptions are made convenient enough so that excessive technicalities do not arise.
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2. A-priori and positive lower bounds, criteria for survival and coexistence

The initial-boundary value problem (1.1), under conditions (1.2) to (1.5) and
appropriate smoothness conditions for the initial boundary function, would possess a
solution in H2+l'1+'l2{S)T), each T > 0 . The detailed proof for existence is delayed to
Section 4, because we will need the method of establishing a-priori bound for solutions
given in Theorem 2.2.

The hypotheses in Theorems 2.1 and 2.3 are motivated by biological intuition. We
assume that the intrinsic growth rate, ak(x). of a particular /cth species is locally high in
a subdomain & of 2). We will obtain a criteria on ak(x) which ensures that the
population uk(x, t) will be bounded below by a positive constant in compact subsets of
Qi' for all t. Such criteria can thus be interpreted as a survival condition for the /cth
species. Comparing with results in [5], [6], condition (2.2b) below is much more
realistic, because the growth rate here does not have to be "large" on the entire domain.
One only needs locally high growth rates to sustain survival.

Theorem 2.1. Let k be an integer, lrgfc^n. Let u = (ul,...,un) be a solution o / ( l . l ) in
the class H2+l-1+ll2(@T), T > 0 , initially satisfying:

0SUi(x,0)^bhxe@, i=l,...,n (2.1)

where b( are positive numbers satisfying ft,.^|r1~
1|-max{aI-(x)|xe^}. Suppose that there

exists a subdomain 3)' £ 3) {with principle eigenvalue X' i.e. X = X' > 0 is the first eigenvalue
for the problem A0 + X<f> = 0 in @>', (f> = 0 on 53)') with the properties:

(2.2a)

ak(x)-<rk{0)X'+fk(bu...,bk-l,0,bk + u...,bl,)>0 (2.2b)

for all x e 3)'. Then the solution u satisfies:

0<uk(x,t) for {x,t)e@'x[O,T\. (2.3)

Moreover, uk(x,i)^S>0for all x in any compact set contained in 3>', O^t^T (where 5 is
some constant depending on the compact set, independent of T); and

, t )£6 , for ( x , t ) e 5 r , i = l , . . . , n . (2.4)

Proof. We shall construct lower and upper solutions vh wf satisfying differential
inequalities (2.9), (2.10), with vt, w, replacing a,-, /?, respectively. Then, we apply
Theorem 2.2 below to conclude uk(x, i) ̂  vk(x, t) in 2)T. The function vk will be positive
for x in the interior of 2>', thus implying the survival of the fcth species. Let 0(x) be a
positive eigenfunction in S>', associated with the principle eigenvalue X = X. Define
vt(x,t) = 0 in S>T for ij=k, l g i ^ n ; and
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134 ANTHONY W. LEUNG

in 2)T. Here £ is a sufficiently small positive constant to be determined later. For
i = 1,..., n, define w,(x, t) = b{ in n 3>T. We have the following inequality, for i = 1,..., n:

f^(0,..., 0, ut, 0,..., 0)dut2

H(x)|xe J } ] ^0 (2.6)

for (x, t)e3> x [0, T] . For i^/c, clearly we have

div(ff,(i>,)Vo,) + »,[fl,(x) + /,(w1,...,w,_1,i>,,wl + ! , . . . , w n ) ] — ^ = 0 (2.7)

for (x , r )e^x[0 , T]. For i = k, (2.7) is clearly valid for (x,t)e(@\@')x[0,r\. If
(x, ()e®'x [0, T], we have

div (^(uJVuJ + i;k[at(x) + /^w^. . . , wk _ u vk, wk + 1 ; . . . , wj ] —-±

= ak(vk)Avk+<j'k(vk)\grad vk\
2 +e6(x)[ak(x) + fk(wl, ...,vk,..., wj]

| | 2 (2.8)

Now, choose e>0 sufficiently small so that the expression in (2.8) is positive in
S>'x[0, T}. (This is possible due to hypotheses (1.5) and (2.1)). Let (uu...,un) be a
solution of (1.1) satisfying (2.2) as stated. Reduce the choice of £>0, if necessary, so that
uk(x, 0) > vk(x, 0) = £0(x) for xe3>' (note that this will not affect the sign of the expression
in (2.8)). Utilizing inequalities (2.6) to (2.8) and Theorem 2.2 below, we conclude that

for (x,i)s3) x [0, T]. From the definition of vk in (2.5), we have (2.3) and the strict
positivity of uk in compact subsets of Si' as stated in the theorem.

Remark. The following theorem is a comparison result similar to that found in [2].
As in [2], nonsmooth comparison functions are used. However, the differential operator
here, div(O-,(M,)VU,), has its coefficients cr,(M,) depending on u;; and for xe53)', our lower
solution vk is not the maximum of a finite collection of regular subsolution in a
neighbourhood of the point. Consequently, results in [2] need to be extended here for
our purpose.
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Theorem 2.2. Let &' c.Q) be a subdomain, with )' as its principle eigenvalue and 6(x) a
positive eigenfunction in &. Let] be an integer l ^ j ^ n ; a,(x,t) — 0 in S)T ifi=fcj, l ^ i ' ^n ,
and

, f<50W if(x,()e®'x[O,T]
a j l X ' ' [0 if (x, t) e{Si\3>') x [0, T]

where d>0 is a,constant. Let P{(x,t) be nonnegative functions in / / 2 + l > 1 + ( / 2 ( ^ r ) for
i=l,...,n. Suppose that a,-,/?,• satisfy:

a,(x, t)^p,(x,t) for {x,

...)ft_1;a1.^I. + 1 , . . . ,y?n)]-^^O (2.9)

...,ai._1,A,a1 + l ! - - - ,«n)]-^L^0 (2.10)

/or (x,t)e!3 x(0, T], i=l, . . . ,n, except for i=j in (2.9) ua/id o«/_y /or
(x,06(^\5^ ' )x(0, r ) . Ler («„...,«„), u,eH2 + '-l+ll2(3T), be a solution of the
differential equation in (1.1) wif/i initial boundary conditions satisfying:

(2.11)
a,(x, t) ^ u,(x, t) ^ ft(x, t), (x, t) e ̂  x [0, T]

/or i = 1,..., n. Then we have

a,(x, 0) = a,(x, t) g «((x, t) ^ /J,(x, t) (2.12)

Proof Since ui,cti,pieH2+l-i+l'2{^), there are constants K and M such that |a,|^/C,
|i?,|g/C, |u,|^X, |Au,|^M, |gradu,|2^M for all (x,t)e@T, i=\,...,n. The assumptions
on/-, a; and ot imply that there are constants R and B so that for each i=l,...,n, we
have |CT;(S)|^R, K ( S ) | ^ K for 0^s^2K, and |a,(x)+/(s1,...,s,,)|gJB for x e § ,

Let 0<e<X[l + 3(B + 2Mi? + XLn)r]"1, where ^L is a bound for the absolute values
of all first partial derivatives of/(s1,...,sn), 0^Sj^2K, i=l,...,n. Define, for (x,t)e@T,

uf{x, t) = u,(x, t) + e[l + 3(B + 2M/? + KLn)t~]
(2.13)
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136 ANTHONY W. LEUNG

By hypothesis, we have

at{x,t)<uf(x,t) and Ur{x,t)<pi(x,t) (2.14)

for x e i , t = 0, i=l,...,n. Suppose one of these inequalities fails at some point in
SixiO^i), where T,=min{7; l/(3(B + 2MR + KLri))}; and (x^tj is a point in ^X&TJ

with minimal tx where (2.14) fails. At (xi.ti), a, = u^ or u^=pt for some i. Assume the
former is the case; a similar proof holds for the latter case.

Suppose further that at (xj,^), aJ=ujH (a simpler proof will work if a,=U;+ at (xl,tl)
for i^j), we consider separately the situations for x^s(3)\3)') or xle@'. If x1e^\S>',
we have u/(x,t)>0 for t<tu xeS> and uf(xl,tl) = 0. Observe that xy$b9) because
uf(x,t1)>uj(x,t1)^O for xe52>, by (2.11). However, for {x,t)e® x(0, T]:

{

u,|2 - ^ [ ^ ( x ) +/j(w1)... ,un)]

j |2 + [u/ - uj Cay- +/>1;. . . , uj]

-uf[.aj+fj(u1,...,umy\-e3(B + 2MR + KLn). (2.15)

Recalling that <Tj(«/)>0; and at (x^t^ we have gradu,- = gradu/ = 0, AMJ=AU+^0 ,

(2.15) implies that

(2.16)

contradicting the definition of (xu tt).
If Xje®', we have uf(x,t)><Xj(x,t) for t< t 1 , x e ^ ; and u/(x1)t1) =

But for (x,i)e@'x(0, T]

- div (^(u^VUj) - u7. [a_,-+ fj(uu..., uj] - e 3(B + 2M« + KLn)
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- Oj(uf)Auj + [<ry(u/) - ojiujftbuj + [ » / ) - ff}K)] |grad u} |

-s3(B + 2MR + KLn). (2.17)

At (x^Jj), we have uf =a,-, grad Wj = grad u/=grad a,-, A(a,— uJ) = A(aJ— u/ )^0 , thus
(2.17) gives

- Uj Pj + L - - - ,

» / ) - ff}(«j)] |grad UJI

(2.18)

Moreover, at (x^tj) we have

f j ( P u . . . , P j - U OLj, Pj + i,..., Pn) - / j ( « l , • • - , « » )

^fj(u^,...,uj-i,u],uj+u...,u-)-fj(uu...,un)S n)t3n (2.19)

where Mi~(x1,J1) = max{Mi~(x1,t1), a^x^tj)}, because |u;— ii,~|^|us
+ — u[\. Consequently,

(2.18) gives

Jt
<«,-«; [l + 3(B + 2MR + KLn)tJ

g XLne2 + 4M«e + 2Be - s3(B + 2MR + KLn) < 0 (2.20)

contradicting the definition of (xl,tl). From these contradictions, we conclude that
u]~{x,t)>(Xj{x,t) for (x,t)e@x.[Q,T:l). Passing to the limit as e-»0+, we obtain
uj{x,t)^ctj{x,t) in Six [0,TJ.

If at (x^tj), we have am = u* for m=̂ =j, then u*(x,t)>0 for t<tu xe@ and
"m(*i,ti) = 0, with x^ibS). For x,e®, repeat the arguments in (2.15) to (2.16), with j
replaced by m. (There is no need for arguments analogous to (2.17) to (2.20)). We obtain
u^>a m =0 for (x,t)e^x[0,T1), and consequently um^am = 0 for (x,t)e@ x [O.TJ .

If at (x1; ti), U;~ =Pi for some i, we show that

>0 (2.21)
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138 A N T H O N Y W. LEUNG

by means of (2.10), in a way similar to the arguments that led to (2.17) to (2.20), but
with inequalities reversed. Passing to the limit as £->0+, we again obtain «,^/J; for

If Tj < T, we repeat the above arguments by starting to define u;
+, w|" with (2.13), with

t in the square brackets on the right side of the formulas, replaced by (t—Tt). This leads
to Zi^Ui^Pi for xef, xl^t^min{T,2/3(B+2MR + KLn)} etc. Eventually, we obtain
(2.12) i n ^ x [ 0 , T ] .

Remark. The assumption CTJ(S)2;0,i= 1,...,«, has never been used in the proof of
Theorem 2.2. However, <fk^0 is essential for establishing the positivity of expression
(2.8), in the proof of Theorem 2.1.

The following is an immediate consequence of Theorem 2.1. It gives a sufficient
condition for the coexistence of r species, 0 < r ^ n , in Q).

Theorem 2.3. Let bi^.\r^l\max{ai(x)\xe2i}, i = l,...,n. Suppose there exist r
subdomains @k ,...,@k (0<r^n,ku...,kr are distinct positive integers ^n) in Q), with
the property that:

ak,(x)-fft|(0)A4, +fki(bl,...,bki_!,0,bkl +! , . . . ,bn)>0 (2.22)

for xeS>k., i = l , . . . , r . (Here, l = Xk.>0 is the first eigenvalue for the problem: A<f> + X<j) = O
in 2k.,<i) — 0 on S3>k.). Let (u1,...,un) be a solution of (1.1) with each component in
H2 + l-'1+l/2(3iT), T>6; and assume initially that

x e l , i = l,...,n
(2.23)

Then the solution satisfies

0<uki(x,t), (x,t)e&ktx[0,T], i=\,...,r (2.24)

Moreover uk.(x,t)^3>0 for all x in any compact set contained in Q)ki, O^t^T (where 5
is some constant depending on the compact set, independent of T); and

Q^ut{x,t)^bi {x,t)e®T. (2.25)

Note that the fe.th species will have, for all time under consideration, its concentration
bounded below by positive constants in compact subsets of 3k.. The simplest situation
happens when 3)ki=3)k2... =3>k', otherwise, the different species will primarily survive
at different subregions in S>.

3. Criteria for extinction of the Acth species (uk tending to zero)

In this section we consider the initial boundary value problem:

^ ,. . . ,«,)] in Sx(0 ,T] , i=\,...,n (3.1)
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(3.2)
[0,T], i= l , . . . ,n

with the special homogeneous boundary condition on the /cth component:

<Dt(x) = 0 xe<5^ (3.3)

We assume all the hypotheses described in Section 1 (i.e. (1.2) to (1.5) etc). Moreover, we
assume <j>i(x) = <^i(x) if x e53>, <f>, eH2+'(S>), and

...,011)]}|je6a» = O for i=l , . . . ,n.

The following theorem describes a sufficient condition for the decay of the kth species.

Theorem 3.1. Suppose that

ak(x)<ok(0)/.1 for all xe<? (3.4)

(where k = X1 is the first eigenvalue of Aw + /.vv = 0 in V, n = 0 on <5S>). Let Ct >O,
i = 1,..., n be such that for xeS>

ai(x) + fi(0,...,0,Ch0,...,0)^0 (3.5)

(here C; appears in the ith component), and Cj=max{Ci,supx6^(/)1(x)}. Then there is a
constant q > 0 so that the property:

a'k(s)^q, for all 0^s^Ck (3.6)

implies that any solution (uu...,un) of (3.1) to (3.3) with each component in
H2+l'1+"2(3>T), T>0 must satisfy:

in S>T (3.7)

where K, e are positive constants independent of T. Moreover, we have

l,...,n in @T. (3.8)

Remarks. C; exist by hypothesis (1.3); the size of q is given in (3.17) in terms of the
principle eigenfunction of a domain 2>^>2i.

Proof. Define a(x, w) for x £ 3) x R by

•w[at(x)+/t(0,...,0,w,0,...,0)] if ( x , w ) e 5 x [ - C b C j

a(x,w) = -{ h(w)[ak(x) +fk(0,...,0,h(w),0,...,0)] if xe9,w^Ck

0,...,0,-h(-w),0,...,0) if
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140 ANTHONY W. LEUNG

where h(w) = 2Ck — Ckexp{Ck~
l(Ck — w)}, with w, ±h(w) appearing on the feth

component offk. Define

if ^
(0)-dY1w} if w<0

where 0 < 8 < <xt(0). (Note that a'(w) is uniformly Holder continuous with exponent / in
any bounded interval in R). Let w=wk{x,t) be a solution in H2+l(3>T) for the initial
boundary value problem:

dw
-— = div (CT(VV) grad w) + a(x, w) in 3>x(0, T\
at

w(x,0) = uk(x,0),

w(x,t) = 0, (x,t)e52>x[0,r\ (3.9)

(By C4]. Theorem 6.1, p. 452, (3.9) possesses a unique solution in H2 + l,1 + ll2{3>T). Note
that ai,a,u,pi in [4] correspond respectively to d(w)wx., — d(x,w), w, wx. in (3.9). Also
dd/dw exist in # x IR; and a, dd/dw are bounded. Conditions (a) to (f) in Theorem 6.1 in
[4] are all satisfied.)

The function fi(x) = Ck satisfies:

.. ,0,/?,0,. . . , 0 ) ] - ^ ^ 0 (3.10)

by (3.5) and (1.2); while the function a(x) = 0 satisfies:

div(afc(a)Va) + a[ak(x)+/ t(0, . . . ,0,a,0, . . . ,0)]-^0. (3.11)

As long as 0^w^Cfc, equation (3.9) is the same as

div((7fc(w)Vw) + w[at(x) + /t(0,...,0,w,0,..,0)]- — = 0. (3.12)

at

Since a(x) ^wk(x,0)^)9(x), x e S and a(x)^ wt(x, t)^)?(x) for (x,t)e8S> x [0, T], by a
variant of Theorem 2.2, we have

O = oc(x)£wk(x,t)^P(x) = Ck for (x,t)e3> x[0,T\. (3.13)

(Note that the proof of (3.13) is simpler than that of Theorem 2.2, and is completely
analogous. In proving Theorem 2.2 we essentially used the fact that/m is nonincreasing
in its dependence on the nth variable n^m, cf. (2.19). However in (3.12), there is simply
one equation with one unknown; therefore the details will be omitted.)
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We next prove that wk(x,t)->0 as £-*oo. Let 3)=>3> be a domain with its
corresponding principle eigenvalue 1 = 1 for the problem A0 + A0 = O in <§, 0 = 0 in 8S>,
satisfying

ak(x)«jk(0)X<ak(0)Xl (3.14)

for xeS>. Let 0 = 1̂  be a corresponding principle eigenfunction. We have il/(x)>0 in 3>.
Set wk{x,t) = z(x,t)ip(x)e~ct for (x, t)e3) x [0, T] (e>0 will be determined later).
Substituting into (3.12), multiplying by e"^" 1 and regrouping terms, we obtain:

<rk(wk)Az + [> " ^ ( w ^ g r a d I/J) + a'k(wk)e-
az2(grad ij/)

] • (grad z) + z[> " V ^

- ^ = 0 (3.15)

ot

in ^ x (0, T~\. The coefficient of z in (3.15) can be rewritten as

ak(x)-X(7k(Wk) + e+fk(0,...,0,wk,0,.-.,0) + (T'k(Wk)Wk\gmdil/\2ip-2 (3.16)

Since a'k(s) = 0 for s^O, (3.14) implies that we can choose e > 0 sufficiently small so that
ak(x) — X(Tk(wk) + e < 0 for (x,t)eS> x [0, T1]. The last two terms in (3.16) can be written as

Lo vuk

By hypothesis (1.3)

\^(0,...,swk,0,...,0)ds<rk for all wk = 0.
oduk

For hypothesis (3.6), we let

ip-2(x)}yl (3.17)

Clearly, we then have (3.16) negative for all 0 = wk^Ck, from hypothesis (3.6). Since
z(x, t) = 0 on bS> x [0, 7^], the maximum principle and (3.15) implies that

\ \ for (x,t)e& x [0, T\.
xeB

We therefore have

\wk(x,t)\ = Ke-rl for ( . v . O e C ^ x ^ T ] (3.18)

where the positive constants K and ;: are independent of T.
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Finally, define vt=0 for i=\,...,n and w^Ci for i^k. Then vh vv( satisfies (2.9),
(2.10) for (x,t)e@x(0,T], and (2.11) for {x,t)e(@x{0})v(8®x[0,T]), (with vt, w,
replacing a(, /?, respectively.) By a proof completely analogous to that in Theorem 2.2,
we conclude that

0 = v,£ui(x,t)£wt = Ct in ®T, (3.19)

for i=l,...,n. Moreover uk(x,t)^wk(x,t) and (3.18) imply that (3.7) is valid. (Note that
the proof of (3.19) is simpler than that in Theorem 2.2, because all u,=0; and to show
that Vi^Ui we need only arguments corresponding to (2.15) and (2.16). There is no need
for arguments corresponding to (2.17) and (2.20)).

4. Remarks on existence

We now finally give detailed conditions and proof for the existence of a solution to
the initial-boundary value problem (1.1). Theorem 4.1 justifies that the solutions in
H2 + '(@T), assumed in Sections 2 and 3, do indeed exist.

Theorem 4.1. Let S>, fh ah ah i=l,...,n satisfy all the conditions as described in
Section 1. Let the initial boundary functions 4>t, <!>, satisfy: <pi(x)=<S>l(x) for xedSl,
(/>,(x)^0 in §t, <pi has all third partial derivatives continuous in S>, and

{div(ff,(^)V0,) + ̂ [fl(W + / ( ( 0 i W , - , ^ W ] } | » » = O (4.1)

for i=l,...,n. Then,for any T > 0 , in the class of functions in H2 + l'1+lll(^>T), there exists
a unique solution for the initial boundary value problem (1.1).

Proof. Let dt be positive numbers satisfying:

d,-^|ri"
1|max{a1-(x)|jfe''?|, and

for i=l,...,n. Define c ^ u , «,), i = l,...,n,(x,uu...,un)eS>xU" by:

ct(x, u1,...,un) = M

s if \s\^di
where /i,(s) = . . .

[p(s) if \s\>d,

with pi(s) a twice continuously differentiable function for |s |^di, and \ \
pi(±di)=±di, p'i{±di)=\, and p"(di) = 0. Extend ff,(s) positively to ( —oo,0) by letting
(5,(s) = (T,(s) for se[0 , oo), with <j;(s) twice continuously differentiable for se ( — 00,00),
and <?,(s) ̂ (o-,(0)/2) > 0 for s e ( - oo, 0), i = 1,..., n.
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We consider the initial boundary value problem:

^ ( x , t)=SAhAzi+tf,M))Az,+mfct+</>,•)).£ [(*.)*,•+H4>i)xj] • (*i),,

+ d&hfc, + 4>d) t (&)*. + Wiizt + <t>i))Wi + c,(x, zx + </»!,..., zn + 4>n) (4.2)
j = l '

for (x, t)e3) x (0, 7"], i= 1,...,«;

z,(x,0) = 0 in ^ and z;(x,J) = 0 for (x, t) e 59 x [0, T\ (4.3)

(Note that if we let M,(x,t) = z,(x,t) + <t>i(x), and if 0^u;(x, t )^d: , i=\,...,n, then u,(x,t)
satisfies:

^ ,...,«.)]. (4.4)

Moreover, u; satisfies the initial boundary conditions of (1.1)). Apply Theorem 7.1 on p.
596 of [4]. The positivity of <?,• and the boundedness of the last three terms of (4.2)
imply that condition (a) in Theorem 7.1 is satisfied. (6.3) of (b) in [4] is satisfied by
letting P(\p\, |u|) = C(l + |p|)~2 for some large constant C and e(|w|) = 0. The smoothness of
</>;, ai and ht ensure that (c) is satisfied. Compatibility condition (4.1) gives (d).
Consequently, Theorem 7.1, p. 596 in [4], gives a unique solution z=(zl(x,t),...,zn(x,t))
to (4.2), (4.3) for (x,t)eS> x [0, T], in the class H2+l- 1 + l / 2 ( S r ) .

We next show that 0^z,(x,r)+ </>,(*)^d,-, i = l,...,n. Let a;(x,t) = 0 and ft(x,t) ==<*,-,
i = l , . . . , « . Each function it satisfies (2.9) in ®x(0 , T\ (with d,,/?, replacing ah fr
respectively). Each function /?, satisfies:

dfi
I ._1,^,aI. + l ! . . . , d n ) ] — ^

= d,lat(x)+ft(0,...,0,dlA.~,0y]

^ d, [a,(x) + r, d J ^ dt Zat(x) - max {at(x)\x e S}] ^ 0

in 0 x (0, 71. For i= 1,...,n, (x, t ) e ^ x [0, T], let

. (4-5)

The function u; satisfies (4.4) for x e S , 0 < J g t 1 ^ T as long as a,^u,(x,t)^)?,• for
(x, r)e<P x [0, t t ] . By arguments exactly as given in Theorem 2.2, we can show that
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a.^Mj^^i for all {x,i)s3) x [0, T], i=l,...,n. (Note that our present situation is even
simpler because all a, = 0, and we need only those arguments from (2.13) to (2.16). Those
arguments from (2.17) to (2.20) for the w,^a,- case will not be necessary). The a-priori
bound, di^Ui^fii in @ x [0, T], consequently implies that u(x, t) is the unique solution
of the initial value problem (1.1), in H2+l- 1+1/2(^T).

Remark 4.1. The above theorem shows that the solution u(x, t) exists in @T for all
T>0. Under the assumptions of Theorem 3.1 and Theorem 4.1, we therefore have
uk{x,r)->0 uniformly for x £ ^ , as t-* + oo.
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