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Abstract. The aim of this paper is to describe new statistical methods 
for determination of the correlations among and distributions of physical 
parameters from a multivariate data with general and arbitrary trunca
tions and selection biases. These methods, developed in collaboration 
with B. Efron of Department of Statistics at Stanford, can be used for 
analysis of combined data from many surveys with different and varied 
observational selection criteria. For clarity I will use the luminosity func
tion of AGNs and its evolution to demonstrate the methods. I will first 
describe the general features of data truncation and present a brief review 
of past methods of analysis. Then I will describe the new methods and 
results from simulations testing their accuracy. Finally I will present the 
results from application of the methods to a sample of quasars. 

1. INTRODUCTION 

One of the important ways of testing the models of AGN, or any other astro-
physical source, is through the investigations of the distributions, ranges, and 
more importantly the correlations among, the relevant physical characteristics, 
such as luminosity, spectrum, redshifts or distances. A reliable determination of 
these features requires large samples. As evident from papers presented in this 
proceedings the samples are becoming larger and larger. Combining the sam
ples, however, is a very challenging task, because different samples are obtained 
by different instruments and techniques, so that they suffer from different and 
varied selection biases and data truncations. Overcoming these biases requires 
care. 

The primary goal of this paper is to describe some of the relatively new 
methods we have developed at Stanford over the past decade (Efron & Petrosian 
1992, 1999). These methods are very general and are applicable to any data 
with well defined but arbitrary truncations. We have applied these to various 
astrophysical data such as solar flares (Lee, Petrosian, & McTiernan 1993, 1995), 
gamma-ray burst (see e.g. Lloyd, Petrosian, & Mallozzi 2000) and quasars 
(Meloney & Petrosian 1999). Instead of using abstract mathematical symbols, 
the method will be demonstrated using the luminosity function of AGNs and its 
cosmological evolution, i.e. its variation with redshift z\^{L, z). Without loss 
of generality, we can write the luminosity function as 

9(L,z) = p(zML/g(z),ai)/g(z), (1) 
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where p(z) describes the co-moving density evolution and g(z) (with #(0) = 1) 
describes the luminosity evolution of the population with L0 = L/g(z) as the 
luminosity adjusted to its present epoch value; ip{L0,oti) gives the local lumi
nosity function. Here I explicitly include the shape parameters aj , which could 
also vary with redshift. A surprising result has been the absence of evidence 
for a strong shape evolution. In this paper I ignore such effects and concentrate 
on the determination of the the density and luminosity evolution functions p(z) 
and g{z). 

In the next section we describe various kind of truncations and in §3 give a 
brief summary of some of the past methods used for this kind of analysis. The 
new methods and their accuracy are described in §4 and a sample of results from 
application to AGNs are summarized in §5. 

2. Types of Truncations 

The left panel of Figure 1 shows a set of arbitrary data points labeled as lumi
nosity L and redshift z and several generic truncations. The distribution may 
be truncated parallel to the axis as shown by the dotted lines. This only limits 
the observed ranges of the variables but does not introduce any bias. This kind 
of data will be referred to as untruncated data. However, this is rarely the case 
for astronomical data, and in general, one is dealing with cases where the trun
cation is not parallel to the axis. The simplest and most common case is when 
the data suffers a one-sided truncation from below as shown by the solid curve. 
This is the case for magnitude or flux limited samples; L > 47rd|/(J7j,z)/TOj„, 
where fmin is the limiting flux and d,L(£li,z) is the luminosity distance at z for 
an assumed cosmological model represented by ftj. In some cases the data may 
be truncated from above as shown by the dashed curve. The statistical methods 
do not distinguish between truncation from above or below. However, the data 
analysis is affected when there are truncations both from above and below. 
This is the case for some AGN samples. The situation becomes even more com
plex when the truncation boundaries are not monotonic, or when one tries to 
combine samples with different truncations, say different upper and lower flux 
limits. Such variation may be present even within a given catalog where data 
taken at different times and directions in the sky may have different limits. The 
most general truncation is when each data point, say [Lj,Zj], has its individual 
upper and lower limits, L~ < Lj < Lf and z~ < Zi < zf, as shown by the large 
cross for one point on Figure 1. The methods we have developed can treat this 
most general truncation. 

3. A Brief Historical Review 

The process of determination of the distribution of physical characteristics from 
truncated data has a long history starting with first and rudimentary observa
tions of stars in the disk of our galaxy. Here I will touch upon some of the 
relevant highlights. A more detailed discussion can be found in the references 
cited below and in a review article (Petrosian 1992). I will limit the discussion 
to works aimed at determination of the luminosity function and spatial distri
bution of sources; ^{L, r) from a magnitude limited data (one sided truncation) 
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Redshift, z Redshift, z 

Figure 1. Left Panel: Demonstration of various types of data trun
cations: Parallel to axis (dotted lines), from below (the solid curve), 
from above (the dashed curve), and a general truncation when each 
data point has its specific observable range (shown by the cross for 
only one of the points). Right Panel: Description of the constructs 
used for evaluation of the univariate distribution from uncorrelated 
data truncated from below. The large box contains Ni sources in the 
comparable or associated set of the source i located in the thin rectangle 
defined by the dashed horizontal line. 

as shown by the right panel in Figure 1. Almost all the methods I will describe 
ignore possible correlations between the variables and assume that these are in
dependent. In the case of the luminosity function this means that g(z) = 1, so 
that the bivariate distribution is separable; ty(L,r) — tp(L)p(r). Unfortunately 
this often unjustified simplification is prevalent even today. This unnecessary 
assumption often can lead to erroneous conclusions. As stressed below the first 
task must be testing the bivariate distribution for correlations between the vari
ables. 

In general, most of the methods can be divided into two categories, para
metric or non parametric. In the former one assumes a parametric form for the 
two functions ip(L) and p(r). In the non parametric methods one often ends up 
with a description for the cumulative functions 

roo rr 

<j>{L) = / il>(L')dL', a(r) = / (dV/dr)p(r')dr', (2) 
JL JO 

where V(r) is the volume of space (included in the observation) from the origin 
to distance r. In these relation r could be any measure of distance including 
redshift, look back time etc. 

3.1. Parametric Methods 

The first methods were developed for investigation of the luminosity function 
and spatial distribution of stars perpendicular to the galactic disk. These and 
subsequent applications to other sources have come to be known as correction 
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for Malmquist Bias after Malmquist (1922); Eddington (1915, 1940) also de
scribes this method. A more recent description can be found in Trumpler & 
Weaver (1953). These early works dealing with the distribution of stars assume 
a Gaussian distribution of absolute magnitudes (i.e. a log-normal luminosity 
function) and a Gaussian spatial distribution perpendicular to the disk. Be
cause of the truncation there is absence of low luminosity stars at large distance 
so that the raw observed distributions of L and r are biased. The essence of the 
method was to correct for this bias. It turns out that the method used was sound 
but the final results were incorrect because of the erroneous assumptions about 
the forms of the distributions. We know today that the luminosity function of 
stars is best represented by a broken power law and that the fall of the stars per
pendicular to the disk is exponential and not Gaussian. This demonstrates the 
shortcoming of this and other parametric methods. Similar parametric meth
ods have been used for extragalactic sources (galaxies and quasars) first by 
Neymann & Scott (1959) and in numerous works ever since. 

3.2. Non-parametric Methods 

One of the most commonly non parametric methods used is the so-called V/Vmax 

method first described by Kafka (1966) soon after the discovery of the quasars 
but used most successfully by Schmidt (1968). Independence is again assumed 
and the presence or absence of density evolution is tested by a single moment, 
namely the average value of V/Vmax, where Vmax is the volume up to the max
imum redshift (or distance) that a source of luminosity L can be visible given 
the limiting flux fmin\ L = 47rd|/(fii, zmax) (see Figure 1). In the absence of evo
lution one expects a value of 0.5 for this average. A more general method was 
described later by Avni & Bahcall (1980). Of course, one need not be limited 
only to one moment of the distribution. More information can be obtained by 
examining the distribution of (V/Vmax)i of the whole data set. 

Schmidt (1968) also described a method for determination of <j>(L), which 
was later dubbed as the "Schmidt Estimator" by Felten (1976). It is straight
forward to show that in absence of evolution, i. e. for a uniform spatial distri
bution, the contribution to this cumulative luminosity function of each source 
is proportional to V^xi. It is also easy to show that if there is evolution this 

contribution is proportional to o^axi defined in equation (2); a was denoted as 
V by Schmidt. 

Most other methods employ binning, which simplifies the problem concep
tually but has several shortcomings, the primary being loss of data points in the 
incomplete bins at the truncation boundaries. Examples of these are anlysis by 
Nicole & Segal (1978, 1983), Turner (1979) and Choloniewski (1986, 1987). As 
shown by Petrosian (1986), it turns out that all these procedures, in the limit of 
one source per bin reduce to Lynden-Bell's (1979) C~ method. For a detailed 
comparison of these methods see Petrosian (1992). 

3.3. The General Method 

The right panel of Figure 1 depicts two boxes. Let us assume that number 
of data points in the narrow box is n(L)dL and the number in the big box, 
excluding the narrow region is N(L). It is easy to show that if the variables are 
independent, i.e. the luminosity function is separable in L and z, then 
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nJ^dL = a{z mL)dL = 

N(L) o-{zmax)(t)(L) 

In the limiting case of one object per (narrow) bin, n{L) = 5{L — Li) and 
N(L) = Ni + @(L — Li), where 0 is the Heviside step function. 

Integration of the above equation then shows that the cumulative luminosity 
function 4>{L) increases by <51n</>(L) = ln(l + N^~ ) going across the source at Li. 
Thus, the cumulative luminosity function can be build in increments starting, 
say from the highest observed luminosity L\, as 

(̂L) = 0(Li) I ] Hl + N-1). (4) 
Li>L 

The set of Ni sources in the big box are referred to as the comparable or the 
associated set of the source with luminosity Lj. It is clear that because of 
the complete mathematical symmetry between the two variables we can get 
an identical expression for the cumulative distribution cr(z). The (different) 
associated sets are defined in a similar manner. 

In the next section I will describe the extension of this method to more 
complex truncations. I will consider only bivariate distributions. The general
izations to multivariate distributions is straightforward. 

4. The New Methods 

The complete description of the distributions is a two step process. The first step 
is to determine whether the two variables are correlated or they are independent, 
and if correlated, then find a way to account for this correlation. The latter 
step can be done only parametrically. For the luminosity function it entails the 
determination of the form of the luminosity evolution function g(z) such that a 
redefined luminosity LQ = L/g{z) is uncorrelated with, or is independent of, z. 
The second step is to determine the univariate distributions of the independent 
variables z and LQ. 

4.1. Untruncated Data 

If z and L are independent then the rank Ri of Zi (or Li) in an untruncated 
sample (i.e. a sample truncated parallel to the axes; z > zmin and L > Lmin) will 
be distributed uniformly between 1 and N with an expected mean E = ^(N+l) 
and variance V = ^{N2 — 1). We may then normalize Ri to have a mean of 0 
and a variance of 1 by defining the statistic Tj = (Ri — E)/V. The hypothesis 
of independence is then rejected or accepted using a statistics based on the 
distribution of the Tj. The quantity 

V^v (5) 

is one choice of such a test statistic with a mean of 0 and a variance of 1. The 
hypothesis of independence is rejected if |Trfata| is too large (e.g. Ir^ta I > 1 for 
rejection of independence at the 1 a level). This r is equivalent to Kendell's T 
statistic (see, e.g. Press et al. 1990) 
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If it turns out that |rdata| < 1 and that the variables are independent, then 
the determination of the univariate distributions in each variable is obtained 
ignoring the value of the other. For example, the cumulative luminosity function 
will be described by the histogram <jf>(I/j+i > L > Li) = i. However, if the 
variables are correlated, one must then carry out a transformation to remove 
the correlation by some parametric function, say LQ = L/g(z). It is important 
to note that the transformed data will now appear truncated in the LQ — Z plane 
with Lo.min = Lmin/g(z), which is no longer parallel to the z axis. The use of 
the method described by equation (3) is then required to obtain the univariate 
distributions. 

4.2. Data with One-sided Truncation 

A straightforward application of the above method to a truncated data will 
clearly give a false correlation signal. Efron & Petrosian (1992), and indepen
dently Tsai (1990), describe how this method can be applied to data with one
sided truncation. The above procedure is modified as follows. For each object 
define a new comparable or associated set 

Ji = {j : Lj > Lh LJ < Li}, (6) 

where L~ = 4ird\(£li, Zj)fmin. It is easy to see that this is the same set defined 
above (Figure 1) as the big box containing Ni sources. (Note that the set defined 
in Efron & Petrosian (1992) includes the object i in question.) This is the largest 
subset of luminosity and volume limited data that can be constructed for each 
point (Li,Zi). If z and L are independent then we expect the rank Ri of Zi 
(or Li) in this limited set, not in the whole sample to be uniformly distributed 
between 1 and JVj. The rest of the procedure follows the steps described above. 

Similarly the determination of the univariate distributions will require the 
use of the method described in the previous section for the transformed and un
correlated variables. Note again that the truncation boundary also gets trans
formed in case there is a correlation between L and z. 

4.3. Complex Truncations 

A generalization of the above method to doubly (or multiply) truncated data 
was developed by Efron & Petrosian (1999), which is valid for the most general 
truncation LJ < Li < Lf and z~ < Zi < zf. The method is equivalent to the 
previous method, with the associated set defined as 

Jl = {j:LJ>Ll, Lie{L~,L+)}. (7) 

In this case, however, the distribution of the rankings (or of r) is unknown. 
If the data are uncorrelated then r must still have a mean of zero. But a 
bootstrap method using simulations based on the ip(L) obtained from the data, 
as described below, is required for the purpose of the estimation of the variance. 

For doubly (or more complexly) truncated data the comparable set is not 
completely observed, thus a simple analytic method such as the one described 
in equation (4) is not possible. However, it turns out that a simple iterative 
procedure can lead to a maximum likelihood estimate of the distributions. Efron 
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and Petiosian (1999) give a thorough description of this method; for a more brief 
and transparent description see Maloney & Petrosian (1999). 

h o 

Figure 2. Variation of the r statistics with exponent 6 of the assumed 
correlation y oc x~s. For the parent sample S = 1.5. 

4.4. Tests of the Correlation Algorithm 

Lloyd et al. (2000) describe two simulations which test how well the above 
procedures reproduce known distributions. In one simulation the method was 
applied to a single sided truncation of an uncorrelated bivariate parent distribu
tion. The rank test applied to the untruncated simulated points gave a value of 
T = 0.9 But when applied to the truncated data without considering the effects 
of the truncation resulted in r > 5.0, indicating the presence of a strong (of 
course false) correlation that is introduced by the truncation. However, when 
the test was carried out correctly by accounting for the effects of the truncation 
(as described above) it was found that r = 0.6, recovering the fact that the 
variables were independent. In a second set the simulated parent sample had a 
strong anti correlation, with variables y and x correlated with average value of 
y oc x~15. Application of the correlation to the untruncated randomly selected 
sample, as expected, gave a negative value for the statistic; r < —5. The data 
was truncated and the method applied blindly. This resulted in the value of 
r = +2.5, or a (false) positive correlation. However, when applied properly it 
gave a value of r = —4.0 indicating the presence of the anti correlation at 4 sigma 
level. Assuming a correlation of y oc x~s, the data was transformed accordingly 
and the method applied to the new data. Figure 2 shows the variation of r with 
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the exponent d, from which we deduce a mean value and one sigma range of 
S = 1.51 ± 0.11. This is a strong support for the accuracy of the method. 

Further simulations are required to test the methods for determination of 
the distribution and correlations for more complex truncations. 

5. Some Results from AGN Data 

Our application of these methods to a combine set of several optically selected 
samples of quasars are described in Maloney & Petrosian (1999). Here is a brief 
summary. 

• We found a strong correlation between luminosity and redshift, indicating 
the presence of a rapid luminosity evolution. 

• The parametric model of luminosity evolution (1 + z)k provides a better 
description of the data than the model ekt(z\ where t(z) is the look back time. 
Neither parameterization perfectly removes the correlation in all areas of the 
L — z plane. In order to better model this evolution future analyses of quasar 
evolution could consider parametric forms, with more than one free parameter. 
Some of the more complex forms of evolution suggested in the literature, e.g. the 
used by La Franca & Cristiani (1996) are equivalent with a luminosity evolution 
form that contains two independent free parameters. 

Given the form of the luminosity evolution we make the simple transforma
tion of all luminosities to their hypothetical present epoch values, LQ = L/g(z), 
so that Lo a n d z are uncorrelated. This allows us to use our methods to deter
mine the univariate distributions of z (the density evolution) and LQ (the local 
luminosity function). 

• We find that the co-moving density of quasars also evolves, but its extent 
depends on the cosmological model. For example, for the Einstein—de Sitter 
model p ~ (1+z)2-5 for low redshifts and rapidly declines as p ~ (l+z)~5 for z > 
2. This is much slower evolution than is obtained when one (incorrectly) assumes 
a pure density evolution model; g(z) = 1 (Schmidt 1968; Miyaji, Hasionger & 
Schmidt 1998). 

• The cumulative local luminosity function <f){L0) has the double power law 
form found previously (Caditz & Petrosian 1990, La Franca & Cristiani 1996), 
with a break luminosity of L* — 6 x 1029 erg / (sec Hz), in the Einstein—de 
Sitter model. The power-law indices at the low and high luminosity ends are 
-1.5 and -2.3 in rough agreement with previous estimates. There is however, 
some evidence for evolution of the shape of the luminosity function. More data 
is required for a quantitative description of this evolution. 
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