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Abstract. Compact hyperbolic surfaces of given genus g containing discs of the
maximum radius have been studied from various points of view. In this paper we
connect these different approaches and observe some properties of the Fuchsian
groups uniformizing both compact and punctured extremal surfaces. We also show
that extremal surfaces of genera g ¼ 2; 3 may contain one or several extremal discs,
while an extremal disc is necessarily unique for g � 4. Along the way we also con-
struct explicit families of extremal surfaces, one of which turns out to be free of
automorphisms.

2000 Mathematics Subject Classification. 30F35, 30F10.

1. Introduction. Extremal surfaces, that is hyperbolic surfaces containing discs
of maximum radius in given genus, appear in the literature from different points of
view: as cycloidal groups (Petterson and Millington, see [13]), as central curves
(Macbeath [12]), f rom the point of view of generic polygon side pairings (Fricke and
Klein [4] or Jorgensen and Näätänen [11]) and finally as genuine extremal surfaces
(Bavard [2]). In this paper we study some properties of extremal surfaces and the
groups which uniformize them. Its content is as follows.

In Section 2 we gather together the above mentioned points of view and show
that they are all equivalent. The key characterization is that extremal surfaces of
genus g arise, exactly, as semiregular covers of the sphere with three branch points
of order ð2; 3; 12g� 6Þ. We also construct two explicit families Xg, Yg of such
surfaces.

In Section 3 we show that the groups uniformizing extremal surfaces (resp.
extremal surfaces with the center deleted, called cycloidal) are never normal in the
triangle group of type ð2; 3; 12g� 6Þ (resp. in PSL2ðZÞ).

In Sections 4, 5 we show that while extremal surfaces of genera g ¼ 2; 3 may
contain several extremal discs, for g � 4 extremal surfaces contain exactly one. In
the case of genus 2 we, in fact, consider the eight extremal surfaces of genus 2, whose
description goes back to Fricke and Klein ([4], see also [11]), and detect the number
of centers each of them has. The uniqueness of discs when g � 4 is obtained by
linking extremality to arithmeticity (of the uniformizing groups). This result was
presented in the note [6] but we include it here for the sake of completeness.
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In Section 6 we use the fact that the surfaces Yg contain a unique extremal disc
to prove that they have trivial automorphism group, a property that while being
generically satisfied, is not usually held by the surfaces one can explicitly handle.
Other examples can be found in [18] from the algebraic curve point of view and in [3]
much in our vein.

2. Extremal discs and extremal surfaces. Let S be a compact hyperbolic surface
of genus g, and let DðRÞ be a disc of radius R isometrically embedded in S. It goes
without saying that S is understood to be equipped with the metric induced by the
Poincaré metric of the upper half plane H—or the unit disc D—via uniformization.
We have

Theorem 1 (Bavard [2]). Let R be the radius of a metric disc isometrically
embedded into a compact Riemann surface S of genus g.

Then R � Rg :¼ cosh�1 1=ð2 sin �
12g�6Þ, which is the radius of the inscribed circle to

the regular ð12g� 6Þ-gon. When the latter is attained, S has a regular ð12g� 6Þ-gon as
Dirichlet domain and DðRgÞ is its inscribed disc.

We shall refer to discs of such radius Rg as extremal discs and, accordingly,
surfaces containing extremal discs will be called extremal surfaces.

We may look at extremal surfaces from different points of view; this way we will
encounter different characterizations of the concept of extremality. Besides the
standard definitions on Fuchsian group theory, for which we refer to [10], we shall
need to recall the following concepts.

� A Riemann surface is called circular [12] if it is uniformized by a Fuchsian
group possessing a Dirichlet fundamental domain whose inscribed circle touches all
its edges. If in addition the Dirichlet domain can be chosen to be obtained by a
generic surface matching, that is an edge matching such that every vertex cycle has
length 3, the surface is called a central curve [12].

� A subgroup of the modular group PSL2ðZÞ is termed cycloidal [13] if it has
only one conjugacy class of parabolic elements.

� A (possibly ramified) covering of Riemann surfaces f : X ! Y is called semi-
regular if every two points belonging to the same fiber have the same multiplicity.
Clearly regular coverings, also called normal coverings, are semiregular.

We can now state our first result (compare with [2]).

Theorem 2. Let S be a compact Riemann surface of genus g, and let N ¼ NðgÞ ¼
12g� 6. The following statements are equivalent:

1) S is extremal.
2) S is uniformized by a Fuchsian group K which is an index N subgroup of a tri-

angle group 
ð2; 3;N Þ.
3) S is a central curve.
4) S is the compactified space of the quotient surface H=K	, where K	 is a torsion

free cycloidal subgroup of the modular group.
5) There exists a semiregular covering f : S�!bCC with degree N and ramified over

three points with indexes 2; 3;N.

Proof. We start by proving that 1) , 2).
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Assume that S is an extremal surface, and let K be the Fuchsian group uni-
formizing S. Then K admits the regular N-gon P as fundamental domain, and by the
Gauss-Bonnet formula the angle subtended by a vertex equals 2�

3 .
Consider the natural projection D�!D=K ’ S, and let p 2 S be the center of the

extremal disc. Then the Dirichlet polygons centered at the points in the fiber above
p form a tessellation of the hyperbolic disc D by regular polygons of angle 2�

3 and
12g� 6 sides. The group K can be recovered as the group of isometries of D which
preserve this tessellation and are compatible with the side identifications of the
polygons. But it is clear that these isometries leave also invariant the subtessellation
by quadrilaterals Q of angles �=2, �=2, 2�=3 and 2�=N obtained by drawing the
lines which connect the center of the polygons to the midpoints of each side. The
group which preserves the latter is the triangle group 
ð2; 3;N Þ, henceK < 
ð2; 3;N Þ.

Conversely let S be uniformized by a subgroup of index N in the group

ð2; 3;N Þ with fundamental domain given by a quadrilateral Q as above. Then a
fundamental domain for S, which is a regular N-gon, can be obtained by taking the
reunion of N copies of Q around the vertex of angle 2�=N.

The equivalence between 2) and 3) is the content of p. 139–140 of [12].

To prove 2) ) 4), suppose that S is uniformized by a subgroup K of the triangle

group 
ð2; 3;N Þ. Consider the natural quotient maps D �!
� D

K �!
f

D

ð2;3;N Þ

, and

denote by D
�

the open subset of D obtained by removing the branch points of f � �.
Following [12] we explicitly construct the universal cover of D

�

by first con-
sidering the Riemann mapping h from the triangle Tð2; 3;1Þ ¼ fz 2 H s:t: jzj > 1;
� 1

2 < ReðzÞ < 0g onto the triangle Tð2; 3;N Þ and then extending it to the whole
upper plane H by reflection across the sides (Schwarz’s principle). This way the
fundamental domain Q of PSL2ðZÞ (= two copies of Tð2; 3;1Þ) is bijectively map-
ped onto that of 
ð2; 3;N Þ and each of its translates �ðQÞ, � 2 PSL2ðZÞ onto
k� � hðQÞ for a uniquely defined k� 2 
ð2; 3;N Þ determined by the identity
h � � ¼ k� � h. Therefore the union of the N translates of Q under the transforma-
tion TðzÞ ¼ zþ 1, namely

SN
i¼1 T

iðQÞ, is mapped onto the regular N-gon P (with the
center removed). We thus see that the group K	 of covering transformations of
ðH; � � hÞ, which consists of those � 2 PSL2ðZÞ such that k� 2 K, admits

SN
i¼1 T

iðQÞ
as fundamental domain. We also observe that K	 is torsion free for �ðzÞ ¼ z would
imply k�ðhðzÞÞ ¼ hðzÞ, contradicting the fact that K is torsion free. It follows that K	

is the required cycloidal subgroup.

The implication 4) ) 5) is obvious: the required covering f : S�!bCC is obtained
by compactifying the projection H=K	�!H=PSL2ðZÞ.

The statement 5) ) 2) is a known result (see e.g. [15], [5]). &

Remark 1 (Monodromy). With the help of monodromy (see [14] for definitions
and first properties) we can give the following useful combinatorial description of
extremal surfaces.

Let f : S�!bCC be the semiregular covering associated to the extremal surface S in
the way described above. Let us denote by z2; z3; zN the three branch values of f and
by �2; �3; �N the canonical loops encircling them that generate the fundamental

group of bCC n fz2; z3; zNg. The semiregularity of f forces the monodromy to satisfy
Mð�kÞ ¼ 	k, where 	k is a product of N

k disjoint k-cycles. As the only relation in
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�1ð
bCC n fz2; z3; zNgÞ is �3 ¼ �N�2 we see, by normalizing 	N ¼ ð1; 2; . . . ;N Þ, that

extremal discs are in one to one correspondence with the set of permutations 	2
equal to the product of N

2 disjoint transpositions such that the composition 	N	2
equals a product of N

3 disjoint 3-cycles. We identify 	2 and a02 when 	02 ¼ 	jN	2	
�j
N ,

which geometrically corresponds to relabeling of sides of the N-gon. The corre-
sponding extremal surface is obtained from 	2 by pairing sides labeled k and 	2ðkÞ.

This remark shows that there are only finitely many generic surface matchings
(or, equivalently, extremal discs up to isometry) and suggests a combinatorial
approach to counting its number alternative to that employed in [1] (indeed see [12]).
It turns out that this number grows exponentially with g. Here are some explicit
examples of extremal surfaces.

Example 1. We shall denote by Xg (g � 2) the extremal surface given by

	2 ¼
Yg
k¼1

ð�1þ 2k; 6g� 4þ 2kÞð2gþ 2� 4k; 2g� 1þ 2kÞð4g� 3þ 4k; 4g� 2kÞ

Yg�2

k¼0

ð12g� 7� 2k; 6g� 4� 2kÞð8g� 5� 4k; 8g� 2þ 2kÞð10g� 5� 2k; 10g� 2þ 4kÞ

Example 2. Yg (g � 3) will denote the extremal surface defined by

	2 ¼ ð1; 6g� 2Þð3g� 4; 9g� 7Þð3gþ 3; 9gÞð3g� 3; 3gþ 1Þð9g� 1; 9g� 5Þ

ð3g; 12g� 6Þð9g� 4; 2Þð12g� 7; 3g� 2Þð3; 9g� 2Þð3gþ 2; 9g� 8Þ

ð3gþ 4; 9g� 6Þð3g� 1; 6g� 1Þð6g� 3; 9g� 3Þ
Yg�3

k¼0

ð9gþ 1þ 3k; 9g� 9� 3kÞ

ð3g� 5� 3k; 3gþ 5þ 3kÞ
Yg�3

k¼1

ð12g� 6� 3k; 3þ 3kÞð6g� 2� 3k; 6g� 1þ 3kÞ

Yg�4

k¼0

ð5þ 3k; 6gþ 1þ 3kÞð6g� 6� 3k; 12g� 10� 3kÞ

(in both cases notation should be understood modulo 12g� 6).
This way we have produced a constructive proof of the following theorem.

Theorem 3 (Bavard [2]). On each fixed genus g, there is a finite positive number of
extremal discs and extremal surfaces (up to equivalence).

Remark 2. It is a straightforward task to write down explicit generators for
the groups K uniformizing these surfaces. Only observe that the hyperbolic trans-
formation �k;l which sends the k-th side to the l-th one can be written as
�k;l ¼ Rl�1 � L � R1�k, where L is the order 2 elliptic transformation with the mid-
point of side 1 fixed, and R is the rotation around the origin through angle 2�

N .

From the point of view of cycloidal groups, we can proceed as follows. With the
notation of the proof of the part 2) ) 4) in Theorem 2, we can define the homo-
morphism of groups  : K	�!K given by � 7 �!k�.
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https://doi.org/10.1017/S0017089502010108 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502010108


It is not difficult to show that  is surjective: if TðzÞ ¼ zþ 1 and SðzÞ ¼ �1=z are
the usual generators of PSL2ðZÞ, preimages for the generators �k;l of K given above
are afforded by �k;l

�
¼ Tl�1 � S � T1�k. Moreover, the kernel of  agrees with the

cyclic group generated by TN and hence we have K ’ K	

<TN>.

3. Some peculiarities of Fuchsian groups uniformizing extremal surfaces. (a) We
maintain the same notation of Theorem 2 so that K (resp K	) is a Fuchsian group
uniformizing an extremal surface (resp. a punctured extremal surface).

Proposition 1. The inclusion K < 
ð2; 3;N Þ (resp. K	PSL2ðZÞ) is never normal;

in other words, the semiregular covering f : S�!bCC associated to an extremal surface is
never regular.

Proof. Suppose that K (resp. K	) is a normal subgroup of 
ð2; 3;N Þ (resp.

PSL2ðZÞ). Then the morphism f : S�!bCC can be viewed as a quotient map

S �!
f

S
H ’ bCC, where H ’ 
ð2; 3;N Þ=K (resp. ’ PSL2ðZÞ=K	) is a group of auto-

morphisms of S.

Now recall that f has degree N and ramifies with order N over a point zN 2 bCC.
Hence, the fiber above zN is a single point s 2 S and the H-stabilizer of s agrees with
the whole H. Since the stabilizer of a point is always cyclic, we conclude that H is a
cyclic group whose order equals degð f Þ ¼ 12g� 6. But this is not possible (see [8]).&

(b) In [13] the existence of cycloidal subgroups of the modular group was
studied, and an explicit family of examples was given. It turns out that his family of
cycloidal subgroups uniformize precisely the punctured surfaces obtained by remov-
ing the center of the extremal disc from our surfaces Xg (see part 3 of Theorem 2).

(c) We can ask whether the groups K	 are congruence subgroups of the modular
group 
 ¼ PSL2ðZÞ. Let us assume so and let d be the least positive integer such that
the principal congruence subgroup 
ðdÞ is contained in K	. Then by [19] we would
have d ¼ ½stab
ð1Þ : stabK	

ð1Þ� ¼ ½PSL2ðZÞ : K	� ¼ N. We thus conclude:

Proposition 2. The groups K	 are congruence subgroups of the modular group if
and only if they contain the group 
ðN Þ.

Remark 3. (i) The Riemann-Hurwitz formula applied to the covering
ĤH=
ðN Þ�!ĤH=K	 provided by a hypothetical inclusion 
ðN Þ < K	 would give the
expression gN ¼ 1þ �N

N�6
12N for the genus of H=
ðN Þ, where �N ¼ ½PSL2ðZÞ : 
ðN Þ�.

This is indeed the known expression for gN (see e.g. [10]). Nevertheless, at present we
do not have an answer to the question of whether K	 are congruence subgroups.

(ii) The existence of non-congruence subgroups was already known to Klein and
Fricke (see [9]). If no restriction is imposed on the number t of conjugacy classes of
parabolic elements G. Jones [9] has shown the existence of infinitely many non-
congruence subgroups in given genus.

4. Uniqueness of extremal discs when g � 4. In this section we summarize the
following result that was proved in [6].
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Theorem 4. A hyperbolic surface of genus g > 3 contains at most one extremal disc.

Proof. Suppose that S contains two extremal discs D1 and D2. From the char-
acterization of extremal discs given in Theorem 2 one sees that each of these discs
corresponds to an inclusion of the uniformizing group K in a triangle group 
i
(i ¼ 1; 2) of type ð2; 3;N Þ such that ½
i : K � ¼ N ¼ 12g� 6.

Let now � be any isometry of D conjugating the two triangle groups (of same
type) 
1;
2 so that we have 
1 ¼ ��1 � 
2 � �. We see that K � 
2 \ 
1ð Þ ¼


2 \ ��1 � 
2 � �
� �

, which shows that � 2 Comð
2Þ, the commensurator of 
2.
Now, when g > 3 then N > 30. It follows by a result of Takeuchi [17] that 
2 is

not arithmetic, which in turn implies by a well known theorem of Margulis that
Comð
2Þ is Fuchsian. Finally, we use the fact proved by Singerman in [16] that
groups of type ð2; 3; kÞ are maximal to deduce that Comð
2Þ ¼ 
2; in other words,
� 2 
2, which means that we have 
1 ¼ 
2. We conclude that D1 ¼ D2. &

5. The cases g ¼ 2; 3 (non-uniqueness of discs). Case g ¼ 2: Bavard gave in [2]
an example of a genus 2 extremal surface containing a unique extremal disc. In fact
it corresponds to our surface X2 of Example 1. He also showed an example of a
surface containing more than one disc.

Using the characterization 3 of Theorem 2 and the results of [4] (see also [11])
we can prove that there are exactly eight extremal surfaces of genus 2 up to con-
formal or anti-conformal isometry of surfaces with marked extremal disc. Namely,

� The extremal surfaces that occur in genus two are precisely the ones depicted in
page 267 of [4] (see also [11]). No pair of these eight surfaces are isometrically
equivalent as simple (i.e. unmarked) Riemann surfaces. The number of extremal discs
each one possesses is 2,1,2,2,2,4,2,2 respectively.

The proof of this statement is too long to be included here and can be found in
[7]. We content ourselves with presenting an

Idea of the proof: There are two key ingredients.
(a) To discover hidden discs in a given surface, we first look for isometries. Then

their action on the explicit extremal disc centered at the center o of the polygon will
uncover new extremal discs (except, of course, for the isometries fixing o).

For instance the rotation through angle � does not induce an isometry on sur-
face VI of [4], thus the hyperelliptic involution J does not fix o, hence JðoÞ is a second
center. On the other hand this surface has an isometry 	3 induced by the rotation
through angle 2�

3 , therefore, by known results relative to the automorphism group of
surfaces of genus two, it must possess a further isometry � of order 2 different from
J, hence �ðoÞ is a third center, the fourth one being J � �ðoÞ.

(b) To ensure that in this way we have found the whole set of discs we use the
fact (already employed by C. Bavard in the above mentioned work) that being the
center of an extremal disc imposes on a point z 2 D certain restrictions on the
amount this point is displaced under the group K of isometries of D generated by the
side pairing transformations. (For instance, dðz; �ðzÞÞ must be � 2R, since z and �ðzÞ
serve as centers of two non overlapping discs of radius R inside D).

(c) The fact that these surfaces are pairwise non isomorphic follows from explicit
knowledge of location of centers, group of isometries, and Weierstrass points.

Case g ¼ 3: In [1] (see also [12]) it has been computed the exact number of
(marked) extremal surfaces of genus 3, which turns out to be 927. We shall show
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that as in the case of genus 2, extremal surfaces of genus 3 may contain one or
several extremal discs:

Unique disc. It is not difficult to show that the surface X3 of Example 1 contains
only one extremal disc. This can be done using the techniques employed in [2].

Several discs. Let us consider the surface S defined by the following side pairing
in the 30-gon:

ð1þ k; 10þ kÞð2þ k; 5þ kÞð3þ k; 7þ kÞð4þ k; 8þ kÞð6þ k; 9þ kÞ; k ¼ 0; 10; 20:

It is clear that S admits an order 3 rotation � that fixes the points O and P,
corresponding to the center of the polygon and the common vertex of sides 30 and 1.

The natural projection � : S�! S
<�> maps S into a complex torus E with

branching over two points �ðOÞ and �ðPÞ.
Let us write E ¼ C=ðZþ Z	Þ, Imð	Þ > 0. If one performs translation by

1
2 ð��ðOÞ � �ðPÞÞ in E, then the branching values become w and �w, where w ¼
1
2 ð�ðOÞ � �ðPÞÞ. We have:

Proposition 3. The automorphism T : E�!E given by TðzÞ ¼ �z lifts to an iso-
metry eTT : S�!S which sends the point O to the point P. In particular P is the center of
another extremal disc of S.

Proof. Put S	 ¼ S n fO;Pg, E	 ¼ E n fw;�wg. Then, the quotient map � : S�!E
above, induces, by restriction, a non-ramified normal covering � : S	�!E	 whose
covering group, < � >, is isomorphic to the quotient �1ðE

	Þ=�	ð�1ðS
	ÞÞ.

It is a well known fact of covering space theory that the (induced) mapping
T : E	�!E	 lifts to an automorphism eTT of S	, and hence of S, if and only if
T	ð�	ð�1ðS

	ÞÞÞ is a subgroup of �	ð�1ðS
	ÞÞ.

Instead of studying the action of T on the homotopy group directly, we
address the more accesible question of understanding the action on the homology
group H1ðE

	Þ. One finds (see Lemma 1 below) that, at the homological level,
T	 ¼ �id.

Now we recall that H1ðE
	Þ is the abelianized group of �1ðE

	Þ, that is
H1ðE

	Þ ’ �1ðE
	Þ=½�1ðE

	Þ;�1ðE
	Þ�, where, as usual, the brackets ½ ; � stand for the

commutator subgroup. Thus, the fact that the quotient �1ðE
	Þ=�	ð�1ðS

	ÞÞ ’< � >
is abelian, means that ½�1ðE

	Þ;�1ðE
	Þ� is a subgroup of �	ð�1ðS

	ÞÞ.
With this in mind, for any � 2 �1ðS

	Þ, we write T	 ¼ �id as T	ð�	�Þ ¼ ð�	�Þ
�1,

modulo ½�1ðE
	Þ;�1ðE

	Þ�. We deduce that T	ð�	ð�1ðS
	ÞÞÞ is contained in �	ð�1ðS

	ÞÞ,
which proves the existence of a lift eTT.

The fact that eTTðOÞ ¼ P is a consecuence of the fact that TðwÞ ¼ �w. &

Lemma 1. Let us denote by E the complex torus E ¼ C=ðZ� Z	Þ, Imð	Þ > 0. Let
w be a point of E, and set E	 ¼ E n fw;�wg. Then, the action induced by T on H1ðE

	Þ

is multiplication by �1.

Proof. Let us regard the surface E as a parallelogram with sides identified in the
standard way. Let us denote by A and B the homology classes in E	 induced by its
sides and by W (resp. �W) that induced by a small circle around the point w (resp.
�w). Then direct inspection shows that T	ðAÞ ¼ �A, T	ðBÞ ¼ �B and
T	ðWÞ ¼ �W. Since H1ðE

	Þ is generated by A;B, and W, we are done. &
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6. An explicit family of extremal surfaces without automorphisms. In this section
we shall prove that the extremal surfaces Yg introduced in Example 2 lack iso-
metries. The idea is that the uniqueness of extremal discs shown in Theorem 4
almost implies that extremal surfaces of genus g � 4 have no automorphisms. More
precisely, an automorphism of such a surface has to fix both the extremal disc and
its center, and hence has to be a rotation; but it is a simple matter to check whether a
rotation induces an automorphism of a polygon with given side pairing.

In this way, we get the following result.

Theorem 5. Yg, (g � 4) is a family of extremal surfaces each of which has trivial
group of automorphisms.

Proof. It can be directly checked looking at the permutation that defines Yg that
there are exactly 3 pairs of opposite sides which have been identified, namely
ð1; 6g� 2Þ; ð3g� 4; 9g� 7Þ; ð3gþ 3; 9gÞ. Hence the only rotation that could induce
an automorphism on Y3 is the order 2 rotation. But side 3g� 3 is identified with side
3gþ 1, whereas side 9g� 6 is identified with side 3gþ 4 instead of 9g� 2. Therefore
no rotation induces an automorphism on Yg. &

Note: The above result still holds for g ¼ 3 but proving that Yg has only one
disc requires the use of techniques similar to those used in [2] or [7].

Added in proof. Concerning remark 3.(i), Professor G. Jones has kindly drawn
our attention to a paper by H. Pettersson (J. Reigne Angebe Math. 250 (1971), 182–
212) in which it is shown that in order to be a congruence subgroup the genus of K*

must be 2, 3, 4, 6, 8, 11, 17, 18, 28, 29, 53, 83, 116, 193 or 578.
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2. C. Bavard, Disques extrémaux et surfaces modulaires, Ann. de la Fac. des Sciences de
Toulouse V (1996), No. 2, 191–202.

3. B. Everitt, A family of conformally asymmetric Riemann Surfaces, Glasgow Math. J.
39 (1997), 221–225.

4. R. Fricke and F. Klein, Vorlesungen über die Theorie der automorphen Funktionen
(Teubner, 1897).

5. H. M. Farkas and I. Kra, Riemann surfaces, (Springer-Verlag, 1992).
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