ON CHARACTERS IN THE PRINCIPAL 2-BLOCK

THOMAS R. BERGER AND MARCEL HERZOG

(Received 5 August 1976)

Abstract

Let k be a complex number and let u be an element of a finite group G. Suppose that u does not belong to $O(G)$, the maximal normal subgroup of G of odd order. It is shown that G satisfies $X(1)-X(u)=k$ for every complex nonprincipal irreducible character X in the principal 2-block of G if and only if $G / O(G)$ is isomorphic either to C_{2}, a cyclic group of order 2 , or to $\operatorname{PSL}\left(2,2^{n}\right)$, $n \geqq 2$.

Let G be a finite group. It was shown by Kwok (1975) that if $u \in G^{*}$ satisfies

$$
\begin{equation*}
X(1)-X(u)=\dot{k} \tag{1}
\end{equation*}
$$

for every complex nonprincipal irreducible character X of G, then a Sylow 2 -subgroup of G is elementary abelian. Moreover, if G is simple, then $G \cong \operatorname{PSL}\left(2,2^{n}\right)$. A complex characterization of such groups is given in Herzog (1976). A more general equality is analyzed in Herzog (to appear).

The aim of this paper is to classify groups satisfying (1) for every complex nonprincipal irreducible character in the principal 2-block of G. We prove:

Theorem. Let G be a finite group, u an element of G and k a complex number. Suppose that (1) is satisfied by every complex nonprincipal irreducible character of G belonging to B, the principal 2 -block of G.

Then one of the following statements holds:
(a) $u \in O(G)$,
(b) $|G / O(G)|=2, u \notin O(G)$, or
(c) $G / O(G) \cong P S L\left(2,2^{n}\right), n \geqq 2, u \notin O(G)$ but $u^{2} \in O(G)$.

Conversely, if G and u satisfy (a), (b) or (c), then (1) holds.
Proof. It is well known for the principal block that

$$
O(G)=\cap\left\{\operatorname{ker} X \mid X \in B^{*}\right\}
$$

where B^{*} denotes $B \backslash 1_{G}$. Thus (1) holds with $k=0$ if and only if $u \in O(G)$.

It is easy to check that if G and u satisfy (b) or (c), then (1) holds. Consequently, it suffices to show that if
(i) $O(G)=1, u \neq 1$ (hence $k \neq 0$) and (1) holds, then either (b) or (c) is satisfied.

From now on we denote by Σ or Σ^{*} the summation over all $X \in B$ or $X \in B^{*}$, respectively.

By (i) $g=|G|$ is even. If z is an involution in G, then, by the orthogonality relations in blocks (O.R.B.), $\Sigma X(1) X(z)=0$. Since $X(z) \equiv$ $X(1)(\bmod 2), 1_{G}(1) 1_{G}(z)=1$, and $X(1)^{2} \equiv X(1)(\bmod 2)$, it follows that
(ii) $\Sigma^{*} X(1)$ is odd.

As $\Sigma^{*} X(u)$ is a rational integer, (1) implies that k is both rational and an algebraic integer, therefore,
(iii) k is a positive integer.

Suppose that $y \in G$ lies outside the 2 -sections of 1 and u. Then by the O.R.B. we get, in view of (1);

$$
0=\Sigma X(y)(X(1)-X(u))=k \Sigma^{*} X(y)
$$

hence

$$
\begin{equation*}
\Sigma^{*} X(y)=0 . \tag{2}
\end{equation*}
$$

Let w be a 2 -element of G of maximal order and let z be the involution in $\langle w\rangle$. Let \mathscr{P} be a prime ideal lying over 2 in \mathcal{O}, the integers in $Q(\sqrt{1})$. Since each of $X(w), X(z)$, and $X(1)$ is a sum of $X(1)$ 2-power roots of unity, we have

$$
X(w) \equiv X(z) \equiv X(1)(\bmod \mathscr{P})
$$

hence by (ii)

$$
\Sigma^{*} X(w) \equiv \Sigma^{*} X(z) \equiv \Sigma^{*} X(1) \equiv 1(\bmod \mathscr{P})
$$

Thus, by (2) w and z belong to the 2 -section of u. Consequently, if S denotes a Sylow 2-subgroup of G, then:
(iv) S is elementary abelian,
(v) G has one class of involutions, and
(vi) $|u|=2 d, d$ odd.

Choose H, a minimal normal subgroup in G. Then, by (iv) and (v), $|G: H|$ is odd and H is characteristically simple. Suppose that $H=$ $H_{1} \times \cdots \times H_{i}$, where H_{i} is nonabelian simple and $t>1$. Let $x \in H_{1}, y \in H_{2}$ be involutions. By the Krull-Schmidt Theorem the components of H are unique, so that, by conjugation, G acts to permute the components H_{i}. Hence x and $x y$ are nonconjugate involutions in G, contradicting (v). Thus we have proven
that H is either an elementary abelian 2-group or a nonabelian simple group with an elementary abelian Sylow 2-subgroup S. By Walter (1969), in the latter case H is isomorphic to one of the following groups: $\operatorname{PSL}(2, q), q>3$, $q \equiv 0,3$ or $5(\bmod 8)$, J (Janko's smallest group) or $\operatorname{Re}(q)$ (group of Ree type).

If $G=H$, then it is easy to check that either (b) or (c) holds. Thus assume, from now on, that
(vii) G / H is a nontrivial solvable group of odd order.

Let Y be a nonprincipal linear character of G / H and suppose that $Y \in B$. Then as $Y(1)=1$, by (1) and (iii) $Y(u)=-1$, in contradiction to (vii). Thus:
(viii) no nonprincipal linear character of G / H belongs to B.

By the Frattini argument $G=N(S) H$, hence $C_{G}(S) H \triangleleft G$. Suppose that $G \supset C_{G}(S) H$; then by the solvability of $G / C_{G}(S) H, G^{\prime} C_{G}(S) H \subset G$. Let M be a maximal (hence normal of prime index) subgroup of G containing $G^{\prime} C_{G}(S) H$ and let Y be a nonprincipal linear character of G / M. By (viii) $Y \notin B$, hence by Brauer's criterion for block membership for some $x \in G$

$$
c Y(x) \not \equiv c 1_{G}(x)(\bmod \mathscr{P})
$$

where $c=\left|G: C_{G}(x)\right|$ and \mathscr{P} is a prime ideal over 2 in \mathcal{O}, the integers of $Q(\sqrt[8]{1})$. We conclude that c is odd and $x \notin$ ker $Y=M$. Thus $G=\langle x\rangle M$ and $x \in C_{G}\left(S_{1}\right)$ for some Sylow 2-subgroup S_{1} of G. As $M \supseteq C_{G}\left(S_{1}\right), G=M$, a contradiction. We have shown that
(ix) $G=C_{G}(S) H$.

If H is a 2-group, then by Lemma 1.2.3 of Hall and Higman

$$
C_{G}(S) \subseteq S=H=G
$$

contradicting (vii). So assume, from now on, that
(x) H is a nonabelian simple group.

Suppose that $x \in C_{G}(H)$; then x is of odd order, hence $C_{G}(H) \subseteq$ $O(G)=1$. Thus
(xi) $G / H \tilde{\subset}$ Out (H).

As Out $(J)=1$ (Janko, 1966), by (vii) $H \not \equiv J$. If $H \cong \operatorname{PSL}\left(2,2^{n}\right), n \geqq 2$, then G is generated by H and odd order field automorphisms of H (Carter (1972), p. 211). Therefore these field automorphisms may be chosen to normalize and act faithfully on S, in contradiction to (ix). Since $\operatorname{PSL}(2,4) \cong$ PSL $(2,5)$, it remains to deal with the cases: $H \cong P S L(2, q), q>5, q \equiv 3$ or $5(\bmod 8)$ and $H \cong \operatorname{Re}(q)$.

First we prove, denoting by $\operatorname{Irr}(G / H)$ the set of the irreducible characters of G / H, that
(xii) If $Y \in \operatorname{Irr}(G / H) \cap B$, then $Y=1_{G}$.

Suppose that $Y \neq 1_{G}$. Since $\bar{G}=G / H$ is of odd order \bar{g}, Y does not belong to the principal 2-block of \bar{G} and there exists $x \in C_{G}(S)$ such that, denoting $x H$ by \bar{x}, and using Brauer's criterion for block membership,

$$
\frac{Y(\bar{x}) \bar{c}}{Y(1)} \not \equiv \bar{c} 1_{\bar{\sigma}}(\bar{x})=\bar{c}(\bmod \mathscr{P})
$$

where $\bar{c}=\left|\bar{G}: C_{\bar{G}}(\bar{x})\right|$ and \mathscr{P} is a prime ideal over 2 in \mathcal{O}, the integers of $Q(\sqrt[k]{1})$. As $Y(1)$ and \bar{c} are odd integers and $Y(\bar{x})=Y(x)$, it follows that

$$
Y(x) \not \equiv Y(1) \quad \text { hence } \quad \frac{Y(x) c}{Y(1)} \not \equiv c(\bmod \mathscr{P})
$$

where c is the odd integer $\left|G: C_{G}(x)\right|$. Thus $Y \notin B$, a contradiction.
Suppose that $H \cong \operatorname{Re}(q)$. Simple groups of Ree type were described in Ward (1966), where their character table is given on pp. 87-88. We shall use his notation for H. Since $|G: H|$ is odd, it is easily seen from the character table of $\operatorname{Re}(q)$ that each of the 8 irreducible characters $\xi_{i}, i=1, \cdots, 8$ belonging to $B_{0}(H)$ (the principal 2-block of H), is stable in G. Thus if $X \in B$, then $\left.X\right|_{H}=e_{x} Y_{x}$, where $Y_{x} \in B_{0}(H)$ and e_{x} is a positive integer. Consequently, if h and f denote elements of H of even and odd order, respectively, we get by the O.R.B.:

$$
\begin{equation*}
0=\Sigma X(h) X(f)=\Sigma e_{x}^{2} Y_{x}(h) Y_{x}(f)=\sum_{i=1}^{8} n_{i} \xi_{i}(h) \xi_{i}(f) \tag{3}
\end{equation*}
$$

Clearly $n_{i} \geqq 1$ for $i=1, \cdots, 8$ and since by (xii) 1_{G} is the only element of B with H in its kernel, $n_{1}=1$. Again in the notation of Ward, choose $h=J R^{a} \neq J$ and $f=V$, so that by (3) $0=n_{1}-n_{3}$, hence $n_{3}=n_{1}=1$. Subsequent choices of $h=J R^{a} \neq J, J R^{a} \neq J, J T^{-1}, J T^{-1}$ and $f=Y, X, V, W$, respectively, yield $n_{2}=1, n_{4}=1, n_{5}=n_{7}=1$ and $n_{6}=n_{8}=1$, respectively, since 1 , $\operatorname{im} \sqrt{3 / 2}$ are rationally independent. It follows that B consists of 8 characters $X_{i}, i=1, \cdots, 8$ such that $\left.X_{i}\right|_{H}=\xi_{i}, i=1, \cdots, 8$. Thus, by the O.R.B. and (1)

$$
\begin{aligned}
0 & =\Sigma X(u) X(W)=1-X_{3}(u)+X_{6}(u)+X_{8}(u) \\
& =1-X_{3}(1)+k+X_{6}(1)+X_{8}(1)-2 k
\end{aligned}
$$

hence

$$
k=1-q^{3}+(q-1) m(q+1-3 m)<0
$$

a contradiction.
Finally, suppose that $H \cong P S L(2, q), q>5, q \equiv 3$ or $5(\bmod 8)$. The character table of H is given in Ward (1966), p. 65. Since $|G: H|$ is odd, it is
easy to see from his character table that each of the 4 irreducible characters θ_{i}, $i=1, \cdots, 4$ belonging to $B_{0}(H)$ is stable in G. Thus we get a formula similar to (3) and by choosing $h=S_{0}^{(q-e) / 4}, S_{0}^{(q-e) / 4}$ and $f=R, T$, respectively, we get $1=n_{1}=n_{4}$ and $n_{2}=n_{3}=1$ since $(q-e) / 4$ is odd and $1, \sqrt{e q}$ are rationally independent. Hence B consists of 4 characters $X_{i}, i=1, \cdots, 4$, such that $\left.X_{i}\right|_{H}=\theta_{i}, i=1, \cdots, 4$. Thus, by the O.R.B.,

$$
0=\Sigma X\left(R^{a}\right) X(u)=1-e X_{4}(u)
$$

hence $X_{4}(u)=e$ and by (1) $k=q-e$. As $q>5$, a contradiction is then reached by considering the equality $\Sigma X(1) X(u)=0$, completing the proof of the theorem.

REFERENCES

Roger W. Carter (1972), Simple Groups of Lie Type (John Wiley, New York).
Marcel Herzog (1976), 'On groups with extremal blocks', Bull. Austral. Math. Soc. 14, 325-330.
Marcel Herzog (to appear), 'On linear relations between character values', J. Algebra.
Zvonimir Janko (1966), 'A new finite simple group with abelian Sylow 2 -subgroups and its characterization', J. Algebra 3, 147-186.
Chung-Mo Kwok (1975), 'A characterization of PSL ($2,2^{\text {m }}$), J. Algebra 34, 288-291.
John H. Walter (1969), 'The characterization of finite groups with abelian Sylow 2-subgroups', Ann. of Math. (2) 89, 405-514.
Harold N. Ward (1966), 'On Ree's series of simple groups', Trans. Amer. Math. Soc. 121, 62-89.
Department of Mathematics, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2600.

