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SOME CONSTRUCTIONS OF MODULAR FORMS FOR
THE WEIL REPRESENTATION OF SL2(Z)

NILS R. SCHEITHAUER

Abstract. Modular forms for the Weil representation of SL2(Z) play an impor-
tant role in the theory of automorphic forms on orthogonal groups. In this paper
we give some explicit constructions of these functions. As an application, we
construct new examples of generalized Kac–Moody algebras whose denomina-
tor identities are holomorphic automorphic products of singular weight. They
correspond naturally to the Niemeier lattices with root systems D2

12, E
3
8 and

to the Leech lattice.

§1. Introduction

The singular theta correspondence (see [3]; see also [5]) is a map from

modular forms for the Weil representation of SL2(Z) to automorphic forms

on orthogonal groups. More precisely, let L be an even lattice of signature

(n,2), n > 2 even with discriminant form D, and let F be a modular form

for the Weil representation of SL2(Z) on C[D] of weight (2− n)/2 which is

holomorphic on the upper half-plane and has integral principal part. Then

the integral ∫
F
F (τ)θ(Z, τ)y

dxdy

y2
,

where F is the standard fundamental domain of SL2(Z) on the upper half-

plane and θ is the Siegel theta function of L, can be regularized. Let Ψ(Z) be

the exponential of the regularized value. Then Ψ(Z) is an automorphic form

for a subgroup of O(L) which has nice product expansions at the rational

0-dimensional cusps. The function Ψ(Z) is called the automorphic product

associated to F . The weight of Ψ is determined by the constant coefficient

of F0, and its divisor is determined by the principal part of F .

The smallest possible weight of a nonconstant holomorphic automorphic

form on On,2(R) is given by (n − 2)/2. Holomorphic automorphic forms
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2 N. R. SCHEITHAUER

of this so-called singular weight are particularly interesting because their

Fourier coefficients are supported only on isotropic vectors. It has turned

out that the denominator identities of infinite-dimensional Lie algebras are

sometimes holomorphic automorphic products of singular weight. These Lie

algebras describe strings moving on suitable orbifolds and they seem to be

very rare (see [12]). So far there are only twelve known examples (see [13]).

In this article, we give some explicit constructions of modular forms for

the Weil representation of SL2(Z). As an application, we construct three new

generalized Kac–Moody algebras whose denominator identities are holomor-

phic automorphic products of singular weight. In contrast to the previous

examples, the corresponding vector-valued modular forms are not symmet-

ric under O(D), which makes their construction more difficult.

We describe the results in more detail.

First, we show how scalar-valued modular forms on congruence subgroups

induce modular forms for the Weil representation of SL2(Z). For Γ1(N), the

result is as follows (see Theorems 3.1 and 3.7).

Let D be a discriminant form of even signature and level dividing N , and

let ρD be the Weil representation of SL2(Z) on C[D]. Let γ ∈D, and let f

be a modular form on Γ1(N) with character χγ . Then

FΓ1(N),f,γ =
∑

M∈Γ1(N)\Γ
f |MρD(M

−1)eγ

is a modular form for ρD. Every modular form for ρD is a linear combination

of such functions. The function FΓ1(N),f,γ can be written as a sum
∑

Fs over

the cusps of Γ1(N), where

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
μ∈aγ+Dc∗

e
(
d(μ− aγ)2c/2

)
e(bμγ)e(−abγ2/2)

× tgmt,jμ

{
eμ + (−1)ke

(
sign(D)/4

)
e−μ

}
if N > 2 and s is regular, and similarly in the other cases.

There are analogous results for the congruence subgroups Γ(N) and

Γ0(N). However, the liftings are not equivalent. In Section 6 we give an

example of a modular form for the Weil representation which is not induced

from Γ0(N).

Next, we describe an induction from the isotropic subgroups of a discrim-

inant form (see Theorem 4.1).
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THE WEIL REPRESENTATION OF SL2(Z) 3

Let D be a discriminant form of even signature, and let H be an isotropic

subgroup of D. Let FDH
=
∑

γ∈DH
FDH ,γe

γ be a modular form for the Weil

representation of the discriminant form DH =H⊥/H. Then

F =
∑

γ∈H⊥

FDH ,γ+Heγ

is a modular form for ρD.

Modular forms which are induced in this way can be considered as old-

forms.

Let D be a discriminant form of even signature and level dividing N . We

have seen that all modular forms for ρD are induced from Γ(N) or Γ1(N).

However, calculating the corresponding liftings is often laborious because

the indices of these groups in SL2(Z) are rather large. We give a natural

sufficient condition for a modular form for ρD to be induced from Γ0(N)

(see Proposition 5.3 and Theorem 5.4).

Let D be a discriminant form of square-free level N , and let F =
∑

Fγe
γ

be a modular form for ρD which is invariant under O(D). Then the com-

plex vector space W spanned by the components Fγ , γ ∈D is generated by

the functions F0|M , M ∈ SL2(Z). Let W0 be the subspace of W with T -

eigenvalue e(0). Then the map

Φ :W0 −→W0,

f �−→ 0-component of FΓ0(N),f,0

is a bijection. In particular, F = FΓ0(N),f,0 for a suitable function f in W0.

Finally, we use the above results to construct some modular forms for

the Weil representation with nonnegative integral coefficients and reflective

poles. The theta lifts of these functions have singular weight and give the

denominator identities of some new generalized Kac–Moody algebras. The

simplest example is the following (see Section 6).

Let N be the Niemeier lattice with root system E3
8 . Let g be a permutation

of the three E8-components of order 3. Then the fixed-point sublattice Ng of

g is isomorphic to
√
3E8, and the orthogonal complement Ng⊥ is isomor-

phic to A2 ⊗ E8. The theta function θNg⊥ defines a modular form for the

discriminant form of Ng. This function is invariant under O(Ng) because

the centralizer of g in O(N) induces the full orthogonal group of Ng. Let

L=Ng⊕
(−2 3

3 0

)
. Then θNg⊥ induces a modular form on L. Denote the quo-

tient of this form by the invariant 3Δ by Fθ
Ng⊥/3Δ. Define ηg(τ) = η(3τ)8.
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4 N. R. SCHEITHAUER

Then the sum

F = Fθ
Ng⊥/3Δ +

1

3
FΓ0(9),1/ηg ,0

is a modular form for the Weil representation of L⊕ II 1,1 with nonnegative

integral coefficients and reflective poles. The theta lift of F is holomorphic,

has singular weight, and is up to a constant given by

e
(
(ρ,Z)

) ∏
α∈L′+

(
1− e

(
(α,Z)

))[Fα+L](−α2/2)

=
∑
w∈W

det(w)e
(
(wρ,Z)

)∏
n>0

(
1− e

(
(3nwρ,Z)

))8
.

This is the denominator identity of a generalized Kac–Moody algebra with

root lattice L′ whose multiplicities and simple roots can be described easily.

There are similar examples for the Niemeier lattice with root system D2
12

and for the Leech lattice.

Our article is organized as follows.

In Section 2 we recall some properties of modular forms for the Weil

representation of SL2(Z).

Section 3 describes the liftings from modular forms on congruence sub-

groups to modular forms for the Weil representation of SL2(Z).

In Section 4, we show that a modular form for the Weil representation of

an even lattice induces a modular form for the Weil representation of any

finite index sublattice.

In Section 5, we show that symmetric modular forms on discriminant

forms of square-free level N are induced from Γ0(N).

Finally, we use the above methods to construct some new generalized

Kac–Moody algebras with automorphic denominator identity. These Lie

algebras correspond naturally to the Niemeier lattices with root systems

D2
12 and E3

8 and to the Leech lattice.

§2. Modular forms for the Weil representation of SL2(Z)

In this section we recall some properties of modular forms for the Weil

representation of SL2(Z) from [13].

Let D be a discriminant form with quadratic form D → Q/Z, γ �→ γ2/2

(see also [9], [6]). The level of D is the smallest positive integer N such that

Nγ2/2 = 0 mod 1 for all γ ∈D.
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THE WEIL REPRESENTATION OF SL2(Z) 5

Let c be an integer. Then c acts by multiplication on D and we have an

exact sequence 0→Dc →D→Dc → 0, where Dc is the kernel and Dc the

image of this map. The group Dc is the orthogonal complement of Dc.

Let Dc∗ be the set of elements α ∈ D satisfying cγ2/2 + αγ = 0 mod 1

for all γ ∈Dc. Then Dc∗ is a coset of Dc. When we have chosen a Jordan

decomposition of D, then there is a canonical coset representative xc of

Dc∗ satisfying 2xc = 0. Write α ∈Dc∗ as α= xc + cγ. Then α2
c/2 = cγ2/2+

xcγ mod 1 is independent of the choice of γ. This gives a well-defined map

Dc∗ →Q/Z, α �→ α2
c/2.

More generally, let H be an isotropic subgroup of D. We define Dc∗
H

as the set of elements α ∈ D satisfying cγ2/2 + αγ = 0 mod 1 for all γ ∈
c−1(H)∩H⊥. Then Dc∗

H =Dc∗ if H = 0.

Suppose that D has even signature. We define a scalar product on the

group ring C[D] which is linear in the first (and antilinear in the second)

variable by (eγ , eβ) = δγβ . Then there is a unitary action of the group Γ =

SL2(Z) on C[D] defined by

ρD(T )e
γ = e(−γ2/2)eγ ,

ρD(S)e
γ =

e(sign(D)/8)√
|D|

∑
β∈D

e(γβ)eβ ,

where S =
(
0 −1
1 0

)
and T =

(
1 1
0 1

)
are the standard generators of Γ. This

representation is called the Weil representation of Γ on C[D]. It commutes

with O(D).

Let M =
(
a b
c d

)
∈ Γ. Then

ρD(M)eγ = ξ

√
|Dc|√
|D|

∑
β∈Dc∗

e(−aβ2
c /2)e(−bβγ)e(−bdγ2/2)edγ+β ,

where ξ = e(sign(D)/4)
∏

ξp. The local factors ξp can be expressed by means

of the Jordan components of D (see [13]).

Let

F (τ) =
∑
γ∈D

Fγ(τ)e
γ

be a holomorphic function on the upper half-plane with values in C[D], and

let k be an integer. Then F is a modular form for ρD of weight k if

F (Mτ) = (cτ + d)kρD(M)F (τ)
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6 N. R. SCHEITHAUER

for all M =
(
a b
c d

)
in Γ and F is meromorphic at ∞. Note that the transfor-

mation formula can be written equivalently as

F =
∑
γ∈D

Fγ |M−1ρD(M)eγ

for all M ∈ Γ.

The components of a modular form F =
∑

γ∈D Fγe
γ for ρD transform as

Fγ |M = ξ(M−1)

√
|Dc|√
|D|

∑
β∈Dc∗

e(−dβ2
c /2)e(−bβγ)e(−abγ2/2)Faγ+β,

where M =
(
a b
c d

)
∈ Γ, and ξ(M−1) is the above root of unity corresponding

to M−1.

Classical examples of modular forms transforming under the Weil rep-

resentation are theta functions. Let L be a positive definite even lattice of

even rank 2k with discriminant form D. For γ ∈D, define

θγ(τ) =
∑

α∈γ+L

qα
2/2

with qα
2/2 = e(τα2/2). Then

θ =
∑
γ∈D

θγe
γ

is a modular form for the dual Weil representation ρD of weight k which is

holomorphic at ∞.

Let D and D′ be two discriminant forms of even signature, and let i :D→
D′ be an isomorphism of groups satisfying i(γ)2/2 =−γ2/2 for all γ ∈D. If

FD′ =
∑

γ∈D′ Fγe
γ is a modular form for the dual Weil representation ρD′ ,

then FD =
∑

γ∈D Fi(γ)e
γ transforms under ρD. For example, if L is an even

unimodular lattice and K is a primitive sublattice of L with orthogonal

complement K⊥, then we have a natural isomorphism i :DK →DK⊥ such

that i(γ)2/2 =−γ2/2.

§3. Liftings from congruence subgroups

In this section we describe how modular forms on congruence subgroups

induce modular forms on Γ transforming under the Weil representation, and

we calculate these liftings explicitly. For the congruence subgroup Γ0(N),

these results are already known (see [13]). We include them here because

we need the corresponding formulas later.
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THE WEIL REPRESENTATION OF SL2(Z) 7

Let D be a discriminant form of even signature, and let N be a positive

integer such that the level of D divides N . Let F =
∑

γ∈D Fγe
γ be a modular

form for ρD, and let M =
(
a b
c d

)
∈ Γ0(N). Then the formula for ρD gives

ρD(M)eγ =
( a

|D|
)
e
(
(a− 1)oddity(D)/8

)
e(−bdγ2/2)edγ

and

Fγ |M =
( d

|D|
)
e
(
(d− 1)oddity(D)/8

)
e(−abγ2/2)Faγ .

We define the quadratic Dirichlet character χD : Γ0(N)→C∗ by

χD

((
a b

c d

))
=
( a

|D|
)
e
(
(a− 1)oddity(D)/8

)
and for γ ∈D the character χγ : Γ1(N)→C∗ with

χγ

((
a b

c d

))
= e(−bγ2/2).

Then F0 is a modular form on Γ0(N) of character χD, and Fγ is a modular

form on Γ1(N) with character χγ . Conversely, we have the following result.

Theorem 3.1. Let D be a discriminant form of even signature and level

dividing N .

(i) Let f be a scalar-valued modular form on Γ0(N) of weight k and

character χD, and let H be an isotropic subset of D which is invariant

under (Z/NZ)∗ as a set. Then

FΓ0(N),f,H =
∑

M∈Γ0(N)\Γ

∑
γ∈H

f |MρD(M
−1)eγ

is a modular form for ρD of weight k which is invariant under the automor-

phisms of the discriminant form that stabilize H as a set.

(ii) Let γ ∈D, and let f be a scalar-valued modular form for Γ1(N) of

weight k and character χγ . Then

FΓ1(N),f,γ =
∑

M∈Γ1(N)\Γ
f |MρD(M

−1)eγ

is a modular form for ρD of weight k which is invariant under the stabilizer

of γ in O(D).

(iii) Finally, if f is a scalar-valued modular form on Γ(N) of weight k

and γ ∈D, then
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8 N. R. SCHEITHAUER

FΓ(N),f,γ =
∑

M∈Γ(N)\Γ
f |MρD(M

−1)eγ

is a modular form for ρD of weight k which is invariant under the stabilizer

of γ in O(D).

Proof. We have to show that the liftings are well defined, transform cor-

rectly under Γ, and have the stated symmetries. We describe this in the

second case. The other cases are analogous.

For M ∈ Γ, we define the function FM = f |MρD(M
−1)eγ . Then

FKM = f |KMρD
(
(KM)−1

)
eγ = χγ(K)f |MρD(M

−1)ρD(K
−1)eγ = FM

for K ∈ Γ1(N). Hence F =
∑

M∈Γ1(N)\ΓFM is well defined. Now, let K =(
a b
c d

)
∈ Γ. Then

F (Kτ) =
∑

M∈Γ1(N)\Γ
f |M (Kτ)ρD(M

−1)eγ

= (cτ + d)k
∑

M∈Γ1(N)\Γ
f |MK(τ)ρD(M

−1)eγ

= (cτ + d)kρD(K)
∑

M∈Γ1(N)\Γ
f |MK(τ)ρD(K

−1)ρD(M
−1)eγ

= (cτ + d)kρD(K)
∑

M∈Γ1(N)\Γ
f |MK(τ)ρD

(
(MK)−1

)
eγ

= (cτ + d)kρD(K)F (τ)

by shifting the summation index. Finally, the functions FM and F are invari-

ant under the stabilizer of γ in O(D) because the Weil representation com-

mutes with O(D).

The liftings satisfy some obvious relations. However, they are not equiv-

alent. We will see that there are modular forms for the Weil representation

which are not induced from Γ0(N). On the other hand, let F =
∑

γ∈D Fγe
γ

be a modular form for ρD. Then

F =
1

|Γ/Γ1(N)|
∑

M∈Γ1(N)\Γ

∑
γ∈D

Fγ |MρD(M
−1)eγ

=
1

|Γ/Γ1(N)|
∑
γ∈D

FΓ1(N),Fγ ,γ .
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THE WEIL REPRESENTATION OF SL2(Z) 9

Hence F can be written as a linear combination of liftings from Γ1(N).

Finally, let V be the complex vector space generated by the components Fγ .

Then Γ acts on V ⊗C[D] by ρ(M)(f ⊗ eγ) = f |M−1 ⊗ρD(M)eγ . The invari-

ants (V ⊗C[D])Γ are modular forms for ρD. This space is spanned by the

functions FΓ(N),Fγ ,μ.

We calculate the liftings explicitly.

The group Γ0(N) has index N
∏

p|N (1 + 1/p) in Γ and
∑

c|N φ((c,N/c))

classes of cusps. Let a/c ∈Q with (a, c) = 1. Then the equivalence class of

a/c as a cusp of Γ0(N) is determined by the invariants (c,N) (a divisor

of N ) and ac/(c,N) (a unit in Z/(c,N/(c,N))Z). The width of a/c is t=

N/(c2,N), and the stabilizer of a/c in Γ0(N) is given by Γ0(N)a/c = {±Tn
a/c |

n ∈ Z} with

Ta/c =MT tM−1 =

(
1− act a2t

−c2t 1 + act

)

for any matrix M ∈ Γ satisfying M∞= a/c.

Let M =
(
a b
c d

)
∈ Γ. Then the cosets of Γ0(N)\Γ sending ∞ to a/c are

given by MTn, where n ranges over a complete set of residues modulo

t=N/(c2,N).

Let D be a discriminant form of even signature and level dividing N , and

let f be a modular form on Γ0(N) with character χD.

We denote the order of χD(Ta/c) by m.

For M =
(
a b
c d

)
∈ Γ, the function f |M has a Fourier expansion of the form

f |M (τ) =
∑

anq
n
mt

with qmt = e(τ/mt), and where n is integral if m = 1 and where n is odd

integral if m= 2.

Let a/c ∈Q with (a, c) = 1, and let μ ∈Dc∗. Then μ2/2 =−n/mt mod 1,

where n is integral if m= 1 and where n is odd integral if m= 2.

LetH be an isotropic subset ofD which is invariant under (Z/NZ)∗. Then
we can write

∑
γ∈H eγ as a linear combination of sums

∑
γ∈I e

γ , where I is

an isotropic subgroup of D. Therefore, it is sufficient to calculate the lift F

of f on H in the case that H is an isotropic subgroup. We will assume this

in the following.

We can write F as

F =
∑

s∈Γ0(N)\P
Fs,
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10 N. R. SCHEITHAUER

where P is the set of cusps of Γ and

Fs =
∑

M∈Γ0(N)\Γ
M∞=s

∑
γ∈H

f |MρD(M
−1)eγ .

The function Fs is T -invariant; that is, Fs(Tτ) = ρD(T )Fs(τ). We have the

following.

Theorem 3.2. Let a/c ∈Q be a representative of s with (a,N) = 1 and

c |N , and let M =
(
a b
c d

)
∈ Γ. Decompose f |M = gmt,0+ · · ·+gmt,mt−1 into T -

invariant functions gmt,j satisfying gmt,j |T = e(j/mt)gmt,j , and for w ∈Dc∗

define jw by w2/2 =−jw/mt mod 1. Then

Fs = ξ(M−1)

√
|Dc|√
|D|

|H ∩ cH⊥|

×
∑

v∈H/(H∩Dc)

∑
w∈(Dc∗∩Dc∗

H )

e(dw2
c/2)ΦH,a,c(w)tgmt,jwe

v+w,

where

ΦH,a,c(w) =
∑

γ∈GH,c

e(acγ2/2 +wγ)

and

GH,c =
c−1(H)/Dc

((c−1(H)∩H⊥) +Dc)/Dc
.

The group Γ1(N) has index N2
∏

p|N (1− 1/p2) in Γ and

2 if N = 2,

3 if N = 4,

(1/2)
∑

d|N φ(d)φ(N/d) if N = 3 or N > 4

classes of cusps. Two cusps a/c and a′/c′ in Q with (a, c) = (a′, c′) = 1 are

equivalent modulo Γ1(N) if and only if(
a′

c′

)
=±

(
a+ jc

c

)
mod N

for some j (see [7, Section 3.8]). The cusp 1/2 of Γ1(4) is irregular and

has width t= 1. All other classes of cusps a/c are regular and have width

t=N/(c,N). For a cusp a/c in Q with (a, c) = 1 and width t, define as above
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THE WEIL REPRESENTATION OF SL2(Z) 11

Ta/c =MT tM−1, where M is any matrix in Γ sending ∞ to a/c. Then the

stabilizer of a/c in Γ1(N) is given by {Tn
a/c | n ∈ Z} if a/c is regular and by

{(−Ta/c)
n | n ∈ Z} if a/c is irregular.

It is easy to prove the following result.

Proposition 3.3. Let M =
(
a b
c d

)
∈ Γ. Then the cosets of Γ1(N)\Γ send-

ing ∞ to a/c are represented by

MTn if N = 2,

±MTn if N > 2,

where n ranges over a complete set of residues modulo t.

Let D be a discriminant form of even signature and level dividing N , and

let γ ∈D with γ2/2 =−j/N mod 1.

Proposition 3.4. Let a/c ∈Q with (a, c) = 1 be a cusp of Γ1(N). If a/c

is regular, then χγ(Ta/c) has order m= (c,N)/(c,N, j). If a/c is irregular,

then χγ(−Ta/c) has order m= 4/(4, j).

Let f be a modular form on Γ1(N) of weight k and character χγ .

Proposition 3.5. Let a/c ∈ Q with (a, c) = 1 be a cusp of Γ1(N), and

let M =
(
a b
c d

)
∈ Γ.

If a/c is regular, then

f |M (τ) =
∑

anq
n
mt,

where n is integral and n= a2jmt/N mod m.

Suppose that a/c is irregular. If km is even, then

f |M (τ) =
∑

anq
n
m,

where n is integral and n= km/2− jm/4 mod m. If km is odd, then

f |M (τ) =
∑

anq
n
2

with n= 1 mod 2.

Proof. Let a/c be regular. Then

f |M (T tτ) = f |MT t(τ) = f |Ta/cM (τ) = χγ(Ta/c)f |M (τ).

https://doi.org/10.1215/00277630-3335405 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-3335405


12 N. R. SCHEITHAUER

Since χγ(Ta/c) has order m, it follows that the function f |M has an expan-

sion in integral powers of qmt. Write f |M (τ) =
∑

anq
n
mt. Then f |M (T tτ) =∑

ane(nt/mt)qnmt so that fM (T tτ) = χγ(Ta/c)f |M (τ) holds if and only if

e(n/m) = χγ(Ta/c) for all n with an 
= 0. But this is equivalent to n =

a2jmt/N mod m.

If a/c is irregular, then

f |M (Tτ) = f |Ta/cM (τ) = χγ(−Ta/c)f |−M (τ) = (−1)kχγ(−Ta/c)f |M (τ)

and the statement follows by a similar argument.

Proposition 3.6. Let a/c ∈ Q with (a, c) = 1 be a cusp of Γ1(N), and

let μ ∈ aγ +Dc∗.
If a/c is regular, then μ2/2 =−n/mt mod 1, where n is an integer such

that n= a2jmt/N mod m.

Suppose that a/c is irregular and that (−1)ke(sign(D)/4)e(γμ) = 1. If km

is even, then μ2/2 = k/2+ j/4 mod 1. If km is odd, then μ2/2 = 1/2 mod 1.

Proof. Choose a Jordan decomposition of D, and let xc be the canonical

coset representative of Dc∗. Write μ= aγ + (xc + cβ). Then

μ2/2 = a2γ2/2 + x2c/2 + c2β2/2 + acγβ + axcγ mod 1.

Let a/c be regular. Then tx2c/2 = tc2β2/2 = tacγβ = taxcγ = 0 mod 1

and mta2γ2/2 = 0 mod 1. Therefore, we have mtμ2/2 = 0 mod 1. Moreover,

define n=−mtμ2/2 mod m. Then n=−mta2γ2/2 = a2jmt/N mod m.

Now let a/c be irregular. Then N = 4, a = 1 mod 2, and c = 2 mod 4.

The Jordan decomposition of D is of the form 2ε2n2
II 4ε4n4

II or 2ε2n2
t2

4ε4n4
II . In

the first case, sign(D) = oddity(D) = 0 mod 4 and xc = 0, and in the second

case, sign(D) = oddity(D) = t2 mod 4 and x2c/2 = t2/4 = sign(D)/4 mod 1.

The formula for the norm of μ simplifies to

μ2/2 = γ2/2 + x2c/2 + cγβ + xcγ mod 1.

Using γμ= cγ2/2 + xcγ + cγβ mod 1, we obtain

μ2/2 =−γ2/2 + x2c/2 + γμ mod 1.

Finally, k/2 + sign(D)/4 + γμ= k/2 + x2c/2 + γμ= 0 mod 1 so that

μ2/2 = k/2− γ2/2 mod 1.

This implies the last statement.
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Let F be the lift of f on γ. Then as above

F =
∑

s∈Γ1(N)\P
Fs

with

Fs =
∑

M∈Γ1(N)\Γ
M∞=s

f |MρD(M
−1)eγ .

The functions Fs are given in the following theorem.

Theorem 3.7. Let a/c ∈Q with (a, c) = 1 be a representative of s, and

let M =
(
a b
c d

)
∈ Γ.

If s is regular here, then write f |M = gmt,0+ · · ·+ gmt,mt−1 with gmt,j |T =

e(j/mt)gmt,j , and for μ ∈ aγ + Dc∗, define jμ by μ2/2 = −jμ/mt mod 1.

Then

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
μ∈aγ+Dc∗

e
(
d(μ− aγ)2c/2

)
e(bμγ)e(−abγ2/2)

× tgmt,jμ

{
eμ + (−1)ke

(
sign(D)/4

)
e−μ

}
if N > 2, and

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
μ∈aγ+Dc∗

e
(
d(μ− aγ)2c/2

)
e(bγμ)e(−abγ2/2)tgmt,jμe

μ

if N = 2.

If a/c is irregular, then

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
μ∈aγ+Dc∗

e
(
d(μ− aγ)2c/2

)
e(bμγ)e(−abγ2/2)

×
{
1 + (−1)ke

(
sign(D)/4

)
e(μγ)

}
f |Meμ.

Proof. Let s be regular, and let N > 2. The cosets of Γ1(N) sending

∞ to s are represented by ±MTn, where n ranges over a complete set

of residues modulo t = N/(c,N). Using f |−1 = (−1)kf and ρD(−1)eγ =

e(sign(D)/4)e−γ , we get
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Fs =
∑

n mod t

f |MTnρD(T
−n)ρD(M

−1)eγ

+ (−1)ke
(
sign(D)/4

) ∑
n mod t

f |MTnρD(T
−n)ρD(M

−1)e−γ .

Now

ρD(M
−1)eγ = ξ(M−1)

√
|Dc|√
|D|

∑
β∈Dc∗

e(dβ2
c /2)e(bβγ)e(abγ

2/2)eaγ+β

so that

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
n mod t

f |MTnρD(T
−n)

×
{ ∑
β∈Dc∗

e(dβ2
c /2)e(bβγ)e(abγ

2/2)eaγ+β

+ (−1)ke
(
sign(D)/4

) ∑
β∈Dc∗

e(dβ2
c /2)e(−bβγ)e(abγ2/2)e−aγ+β

}
.

Replacing β by −β in the last sum and putting μ= aγ + β gives

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
μ∈aγ+Dc∗

∑
n mod t

f |MTne(nμ2/2)

× e
(
d(μ− aγ)2c/2

)
e(bμγ)e(−abγ2/2)

{
eμ + (−1)ke

(
sign(D)/4

)
e−μ

}
.

The formula now follows from∑
n mod t

f |MTne(nμ2/2) = tgmt,jμ .

The case N = 2 is now clear.

Suppose that s is irregular; that is, N = 4, a= 1 mod 2, and c= 2 mod 4.

We argue slightly differently here because aγ + Dc∗ = −aγ − Dc∗ in this

case. We have

Fs = f |MρD(M
−1)eγ + f |−MρD(−M−1)e−γ

= f |MρD(M
−1)eγ + (−1)ke

(
sign(D)/4

)
f |MρD(M

−1)e−γ

and
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ρD(M
−1)e−γ

= ξ(M−1)

√
|Dc|√
|D|

∑
β∈Dc∗

e(dβ2
c /2)e(−bβγ)e(abγ2/2)e−aγ+β

= ξ(M−1)

√
|Dc|√
|D|

∑
β∈2aγ+Dc∗

e(dβ2
c /2)e(−bβγ)e(abγ2/2)e−aγ+β

= ξ(M−1)

√
|Dc|√
|D|

∑
β∈Dc∗

e
(
d(2aγ + β)2c/2

)
e
(
−b(2aγ + β)γ

)
e(abγ2/2)eaγ+β

= ξ(M−1)

√
|Dc|√
|D|

∑
β∈Dc∗

e(dβ2
c /2)e(cγ

2/2 + γβ)e(bγβ)e(abγ2/2)eaγ+β

because d(2aγ + β)2c/2 = dβ2
c /2 + cγ2/2 + γβ mod 1 and −b(2aγ + β)γ =

bβγ mod 1. Hence

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
β∈Dc∗

e(dβ2
c /2)e(bγβ)e(abγ

2/2)

×
{
1 + (−1)ke

(
sign(D)/4

)
e(cγ2/2 + γβ)

}
f |Meaγ+β .

Let μ = aγ + β. Then abγ2/2 + bγβ = −abγ2/2 + bγμ mod 1 and cγ2/2 +

γβ = γμ mod 1 so that

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
μ∈aγ+Dc∗

e
(
d(μ− aγ)2c/2

)
e(bμγ)e(−abγ2/2)

×
{
1 + (−1)ke

(
sign(D)/4

)
e(μγ)

}
f |Meμ.

This proves the theorem.

The group Γ(N) has index N3
∏

p|N (1− 1/p2) in Γ and

3 if N = 2,

(N2/2)
∏

p|N (1− 1/p2) if N > 2

classes of cusps. Two cusps a/c and a′/c′ in Q with (a, c) = (a′, c′) = 1 are

equivalent modulo Γ(N) if and only if(
a′

c′

)
=±

(
a

c

)
mod N.
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The width of a/c is N , and the stabilizer of a/c in Γ(N) is generated by

Ta/c defined as above.

Let M =
(
a b
c d

)
∈ Γ. Then the cosets of Γ(N)\Γ sending ∞ to a/c are

represented by

MTn if N = 2,

±MTn if N > 2,

where n ranges over a complete set of residues modulo N .

Let D be a discriminant form of even signature and level dividing N , and

let f be a modular form on Γ(N) of weight k.

The function f |M has a Fourier expansion in integral powers of qN for all

M ∈ Γ.

Let F be the lift of f on γ ∈D. Then F =
∑

s∈Γ(N)\P Fs, and as above

we find the following.

Theorem 3.8. Let a/c ∈Q with (a, c) = 1 be a representative of s, and

let M =
(
a b
c d

)
∈ Γ. Decompose f |M into T -eigenfunctions gN,j , and for μ ∈

aγ +Dc∗, define jμ by μ2/2 =−jμ/N mod 1. Then

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
μ∈aγ+Dc∗

e
(
d(μ− aγ)2c/2

)
e(bμγ)e(−abγ2/2)

×NgN,jμ

{
eμ + (−1)ke

(
sign(D)/4

)
e−μ

}
if N > 2, and

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
μ∈aγ+Dc∗

e
(
d(μ− aγ)2c/2

)
e(bγμ)e(−abγ2/2)NgN,jμe

μ

if N = 2.

§4. Induction from isotropic subgroups

Let L be an even lattice, and let M be a sublattice of L of finite index.

We show that a modular form on the discriminant form of L induces in a

canonical way a modular form on the discriminant form of M .

Let D be a discriminant form of even signature. Let H be an isotropic

subgroup of D, and let H⊥ be the orthogonal complement of H in D.

Then DH =H⊥/H is a discriminant form of the same signature as D with
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|DH |= |D|/|H|2. Let FDH
=

∑
γ∈DH

FDH ,γe
γ be a modular form for ρDH

.

Define

F =
∑

γ∈H⊥

FDH ,γ+Heγ .

Then we have the following.

Theorem 4.1. The function F is a modular form for ρD.

Proof. It is sufficient to show that F =
∑

γ∈D Fγe
γ transforms correctly

under the generators of Γ. This is clear for T .

For γ ∈H⊥, we have

Fγ |S(τ) = FDH ,γ+H |S(τ)

=
e(sign(DH)/8)√

|DH |
∑

β∈DH

e
(
(γ +H)β

)
FDH ,β(τ)

=
e(sign(DH)/8)

|H|
√

|DH |
|H|

∑
β∈DH

e
(
(γ +H)β

)
FDH ,β(τ)

=
e(sign(DH)/8)

|H|
√

|DH |
∑

β∈H⊥

e(γβ)Fβ(τ)

=
e(sign(D)/8)√

|D|
∑
β∈D

e(γβ)Fβ(τ).

If γ /∈H⊥, then Fγ |S(τ) = 0 and∑
β∈D

e(γβ)Fβ(τ) =
∑

β∈H⊥

e(γβ)Fβ(τ)

=
∑

β∈H⊥/H

∑
μ∈H

e
(
γ(β + μ)

)
Fβ+μ(τ)

=
∑

β∈DH

e
(
(γ +H)β

)
FDH ,β(τ)

∑
μ∈H

e(γμ)

= 0

because
∑

μ∈H e(γμ) is the sum over a nontrivial character of H and there-

fore is 0.

We can easily construct some automorphisms of F . An automorphism of

D stabilizes H as a set if and only if it stabilizes H⊥. Such automorphisms

act on H⊥/H = DH so that we get a natural map from the stabilizer of
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H in O(D) to O(DH). The inverse image of O(FDH
) under this map is a

subgroup of O(F ).

A standard situation in which the above result can be applied is the

following. Let L be an even lattice of even signature, and let M be a sub-

lattice of L of finite index. Then we have embeddings M ⊂ L ⊂ L′ ⊂M ′,
and H = L/M is an isotropic subgroup of DM = M ′/M . The orthogonal

complement of H in DM is H⊥ = L′/M , and H⊥/H is naturally isomor-

phic to DL = L′/L. The theorem then shows that a modular form for the

discriminant form of L induces a modular form for the discriminant form

of the sublattice M .

§5. Discriminant forms of square-free level

Let D be a discriminant form of even signature and level N . Let f be a

modular form on Γ0(N) of character χD. Then FΓ0(N),f,0 is a modular form

for ρD which is invariant under O(D). We show now that every modular

form for ρD which is invariant under O(D) can be obtained in this way if

N is square-free.

First, we describe some properties of discriminant forms of prime level.

Proposition 5.1. Let D be a discriminant form of prime level, and let

β and γ be two nonzero elements in D of the same norm. Then β and γ

are conjugate under O(D).

Proof. Let p be the level of D. If p is an odd prime, we can consider D as a

vector space over Fp with a quadratic form. The statement then follows from

Witt’s theorem (see [10]). For p= 2, we can argue as follows. The statement

is true if D has 2-rank 2. Suppose that the 2-rank is at least 4. If β2/2 =

0 mod 1, then there is an α ∈ D such that αβ = 1/2 mod 1. Replacing α

by α + β if necessary, we can assume that α2/2 = 0 mod 1. Similarly, if

β2/2 = 1/2 mod 1, we can find α ∈D such that αβ = α2/2 = 1/2 mod 1. In

both cases, D decomposes into the orthogonal sum D = 〈α,β〉 ⊕ 〈α,β〉⊥.
This proves the proposition for p= 2.

For a discriminant formD, we denote by I the subset of isotropic elements

and we denote by Ik the isotropic elements of order k.

Proposition 5.2. Let D be a discriminant form of prime level p. Then

we have, for γ ∈ Ip, ∑
β∈Ip

e(βγ) = |Ip| −
|D|
p

.
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Proof. We prove the statement in the case that D has Jordan decompo-

sition pεn with p odd and n≥ 3. The other cases are similar. We can assume

that

D =D′ ⊕D′′,

where D′ is generated by γ1, γ2 with γ21/2 = 1/p mod 1, γ22/2 =−1/p mod 1,

γ1γ2 = 0 (it has Jordan decomposition pε
′2 with ε′ = (2p)(

−2
p ) = (−1

p ) and

contains γ) and where D′′ has Jordan decomposition pε
′′(n−2) with ε′′ =

(−1
p )ε. Then

γ⊥ = 〈γ〉 ⊕D′′,

so that by [12, Proposition 3.2],

|γ⊥ ∩ I|= p

{
pn−3 + ε′′(−1

p )(n−2)/2(p(n−2)/2 − p(n−4)/2) if n is even,

pn−3 if n is odd

=

{
pn−2 + ε(−1

p )n/2(pn/2 − p(n−2)/2) if n is even,

pn−2 if n is odd.

Define Aj = {β ∈ I | γβ = j/p mod 1}. Then

I =

p−1⋃
j=0

Aj .

We have A0 = γ⊥ ∩ I and |A1|= · · ·= |Ap−1|=m because multiplication by

elements in (Z/pZ)∗ maps the sets into each other. Hence applying again

[12, Proposition 3.2], we obtain

m=
|I| − |A0|
p− 1

= pn−2.

It follows that ∑
β∈I

e(γβ) = |A0|+m

p−1∑
j=1

e(j/p)

= |A0| −m

= |A0| − pn−2

= |I| − pn−1

= |Ip|+ 1− |D|
p

.

This proves the statement.
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Let D be a discriminant form of square-free level N . Then Proposition 5.1

implies that two elements of D are in the same orbit under O(D) if and only

if they have the same norm and order. Let F =
∑

γ∈D Fγe
γ be a modular

form for ρD which is invariant under O(D). Then the components Fγ with

isotropic γ are modular forms on Γ0(N) with character χD.

Proposition 5.3. Let D be a discriminant form of square-free level N ,

and let F =
∑

γ∈D Fγe
γ be a modular form for ρD which is invariant under

O(D). Then the complex vector space W spanned by the components Fγ ,

γ ∈D is generated by the functions F0|M , M ∈ Γ. In particular, F = 0 if

F0 = 0.

Proof. ClearlyW contains the functions F0|M ,M ∈ Γ. LetM =
(
a b
c d

)
∈ Γ.

Then F0|M decomposes into T -eigenfunctions, that is,

F0|M = gt,0 + · · ·+ gt,t−1,

where t=N/(c2,N) is the width of a/c and gt,j |T = e(j/t)gt,j . The function

gt,j can be written as

gt,j =
1

t

∑
n mod t

e(−jn/t)F0|MTn ,

and hence it is in W . Now let M =
(
a b
c d

)
∈ Γ with c |N and let d= 0 mod c′,

where c′ =N/c. Then

F0|M = ξ(M−1)
1√
|Dc′ |

∑
γ∈Dc′

Fγ .

Since Fγ is determined by the norm and order of γ, we see that Fγ can be

written as a linear combination of functions F0|M , M ∈ Γ.

The main result of this section is the following.

Theorem 5.4. Let D be a discriminant form of square-free level N , and

let F =
∑

γ∈D Fγe
γ be a modular form for ρD which is invariant under

O(D). Let NR be the product over the primes with nonvanishing Ip. For

k |NR, define Fk = Fγ , where γ is any element in Ik. Then the functions

Fk span the subspace W0 of W with T -eigenvalue e(0). Define
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Φ :W0 −→W0,

f �−→ 0-component of FΓ0(N),f,0.

Then

Φ(Fk) =
∑
j|NR

ajkFj

with

ajk =
N

|D| |Ij |
∑

c|(N/j,N/k)

|Dc|
c

=
N

|D|
∏
p|j

|Ip|
∏

p|(N/j,N/k)

(
1 +

|Dp|
p

)
.

The matrix A= (ajk) has determinant

det(A) =
( N

|D|
)σ(NR)( ∑

d|N/NR

|Dd|
d

)σ(NR) ∏
d|NR

|Id|
∏
d|NR

|Dd|
d

.

In particular, Φ is invertible.

Proof. Let γ ∈ Ik, where k |NR. Then

Φ(Fγ) =
∑

s∈Γ0(N)\P
Φs(Fγ)

with

Φs(Fγ) =
∑

M∈Γ0(N)\Γ
M∞=s

Fγ |M
〈
ρD(M

−1)e0, e0
〉
.

The cusps of Γ0(N) are given by 1/c, where c ranges over the positive

divisors of N , and the cusp 1/c has width c′ =N/c.

Let c | N . Choose M =
(
a b
c d

)
∈ Γ with d = 1 mod c and d = 0 mod c′.

Then

Φ1/c(Fγ) =
∑

n mod c′

Fγ |MTn

〈
ρD

(
(MTn)−1

)
e0, e0

〉

=
∑

n mod c′

∑
α∈D

Fα

〈
ρD(MTn)eα, eγ

〉〈
ρD

(
(MTn)−1

)
e0, e0

〉
.
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The function Φ1/c(Fγ) is T -invariant so that the contributions of the α ∈D

with nonzero norm cancel each other. Hence

Φ1/c(Fγ) =
N

c

∑
α∈D

α2/2=0 mod 1

Fα

〈
eα, ρD(M

−1)eγ
〉〈
ρD(M

−1)e0, e0
〉
.

Now

ρD(M
−1)eγ = ξ(M−1)

√
|Dc|√
|D|

∑
β∈Dc′

e(bβγ)eaγ+β

= ξ(M−1)

√
|Dc|√
|D|

∑
β∈Dc′

e(−c−1βγ)eaγ+β ,

where c−1 is the inverse of c modulo c′ so that

Φ1/c(Fγ) =
N

c

|Dc|
|D|

∑
α∈D

α2/2=0 mod 1

Fα

∑
β∈Dc′

e(c−1βγ)〈eα, eaγ+β〉

=
N

c

|Dc|
|D|

∑
α∈(γ+Dc′ )

α2/2=0 mod 1

e(c−1αγ)Fα

and

Φ(Fγ) =
∑
c|N

N

c

|Dc|
|D|

∑
α∈(γ+Dc′ )

α2/2=0 mod 1

e(c−1αγ)Fα.

Since ∑
α∈(γ+Dc′ )

α2/2=0 mod 1

e(c−1αγ)Fα =
∑
j|NR

Fj

∑
α∈(γ+Dc′)∩Ij

e(c−1αγ),

we get

Φ(Fk) =
∑
j|NR

ajkFj

with

ajk =
∑
c|N

N

c

|Dc|
|D|

∑
α∈(γ+Dc′ )∩Ij

e(c−1αγ).
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The elements in γ +Dc′ have order (k, c)d, where d | c′ and the elements in

Ij have order j. Hence

ajk =
∑
c|N

(k,c)|j|(k,c)c′

N

c

|Dc|
|D|

∑
α∈(γ+Dc′ )∩Ij

e(c−1αγ)

=
∑
c|N

(k,c)|j|(k,c)c′

N

c

|Dc|
|D|

∑
α∈Ij/(k,c)

e(c−1αγ)

=
∑
c|N

(j,c)=(k,c)

N

c

|Dc|
|D|

∑
α∈I(j,c′)

e(αγ).

We can evaluate the last sum using Proposition 5.2. We get

ajk =
N

|D|
∑
c|N

(j,c)=(k,c)

|Dc|
c

∏
p|(j,c′)
p|/k

|Ip|
∏

p|(j,c′)
p|k

(
|Ip| −

|Dp|
p

)
.

Induction on the number of prime divisors of N shows

ajk =
N

|D|
∏
p|j

|Ip|
∑

c|(N/j,N/k)

|Dc|
c

=
N

|D| |Ij |
∏

p|(N/j,N/k)

(
1 +

|Dp|
p

)

=
N

|D|
∏

p|N/NR

(
1 +

|Dp|
p

)
|Ij |

∏
p|(NR/j,NR/k)

(
1 +

|Dp|
p

)
.

We can write A= (ajk) as

A=
N

|D|
∏

p|N/NR

(
1 +

|Dp|
p

)
BC,

where B = (bjk) is a diagonal matrix with entries

bjk = δjk|Ij |,
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and C = (cjk) is a symmetric matrix with entries

cjk =
∏

p|(NR/j,NR/k)

(
1 +

|Dp|
p

)
.

We have

det(B) =
∏
d|NR

|Id|

and

det(C) =
∏
d|NR

|Dd|
d

so that

det(A) =
( N

|D|
)σ(NR)( ∑

d|N/NR

|Dd|
d

)σ(NR) ∏
d|NR

|Id|
∏
d|NR

|Dd|
d

,

where σ(NR) denotes the number of divisors of NR. This finishes the proof

of the theorem.

Proposition 5.3 and Theorem 5.4 imply the following.

Corollary 5.5. Let D be a discriminant form of square-free level N ,

and let F be a modular form for ρD which is invariant under O(D). Then

F = FΓ0(N),f,0 for a suitable modular form f on Γ0(N) with character χD.

This result (Corollary 5.5) is also stated as Theorem 4.2.17 in [1]. How-

ever, the proof given there is incomplete because the author does not show

that the matrix A is invertible.

§6. Some new generalized Kac–Moody algebras

In this section we use the above results to construct some modular forms

for the Weil representation with nonnegative integral coefficients and reflec-

tive poles. The theta lifts of these modular forms are holomorphic automor-

phic products of singular weight. They give new examples of generalized

Kac–Moody algebras with automorphic denominator identity.

The automorphic forms of this section are related to automorphisms of

the Leech lattice with cycle shapes 212, 38, and 3.21. However, we will see

that the first two examples can be constructed more naturally from the

Niemeier lattices with root systems D2
12 and E3

8 .
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Table 1: The orbits of O(
√
3E8) on the discriminant form of

√
3E8.

norm length order name

0 1 1 00
0 2240 3 0

1/3 240 3 1S
1920 3 1L

2/3 2160 3 2

We have used the computer algebra systems Magma (see [4]) and PARI/

GP (see [11]) in the proof of some statements.

We begin with the case of cycle shape 38 because this is the simplest

example.

Cycle shape 38

Let Λ be the Leech lattice, and let g be an automorphism of Λ of cycle

shape 38. Then the fixed-point sublattice Λg of g is a primitive sublattice

of Λ isomorphic to
√
3E8.

The lattice
√
3E8 has genus II 8,0(3

+8) and represents the unique class in

this genus. The orthogonal group of
√
3E8 acts transitively on the vectors

of norm 6, 12, and 18. The vectors of norm 24 decompose into two orbits

of length 240 and 17280. It follows that O(
√
3E8) has five orbits on the

discriminant form of
√
3E8, which we describe in Table 1.

The centralizer C(g) of g in O(Λ) does not induce the full orthogonal

group of Λg. It acts transitively on the vectors of norm 6, 12, and 18 in

Λg, and the vectors of norm 24 decompose into three orbits of length 240,

2160, and 15120. The orbit 1L in Table 1 splits into two orbits under C(g)

which we denote by 1LS
and 1LL

. They contain 240 and 1680 elements,

respectively.

The orthogonal complement Λg⊥ of Λg in Λ is isomorphic to A2 ⊗E8.

The lattice A2 ⊗E8 is 3-modular and has genus II 16,0(3
+8). The orthog-

onal group of A2 ⊗E8 has five orbits on the discriminant form of A2 ⊗E8

which are described in Table 2. The theta functions of the corresponding

cosets are given by

θ00(τ) = 1+ 720q2 + 13440q3 + 97200q4 + 455040q5 + 1714320q6 + · · · ,

θ0(τ) = 6q+ 765q2 + 12960q3 + 97863q4 + 463068q5 + 1672083q6 + · · · ,
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Table 2: The orbits of O(A2 ⊗E8) on the discriminant form of A2 ⊗E8.

norm length order name

0 1 1 00
0 2240 3 0

1/3 2160 3 1

2/3 240 3 2S
1920 3 2L

θ1(τ) = 45q4/3 + 2232q7/3 + 27306q10/3 + 170064q13/3 + · · · ,

θ2S (τ) = 3q2/3 + 168q5/3 + 6009q8/3 + 51960q11/3 + 288600q14/3 + · · · ,

θ2L(τ) = 216q5/3 + 5697q8/3 + 52920q11/3 + 287820q14/3 + · · · .

Under the action of the centralizer C(g), the orbit 2L splits into two

orbits of length 240 and 1680, which we denote by 2LS
and 2LL

.

Since Λg is a primitive sublattice of Λ, we have a natural isomorphism of

groups

i :DΛg →DΛg⊥

satisfying i(γ)2/2 = −γ2/2 for all γ ∈DΛg . The map i sends the orbit 1S
into 2LS

and 1LS
into 2S because Λ has no vectors of norm 2.

LetH be a lattice with Gram matrix
(−2 3

3 0

)
. ThenH has genus II 1,1(9

−1)

and we can consider H as a sublattice of II 1,1 of index 3. Hence θΛg⊥/3Δ

induces a modular form Fθ
Λg⊥/3Δ of weight −4 for the Weil representation

of L=Λg ⊕H (see the remarks at the end of Section 2, Theorem 4.1, and

the remark at the end of Section 4). We decompose DL =DΛg ⊕DH . Then

the components of Fθ
Λg⊥/3Δ are given by

Fθ
Λg⊥/3Δ,γ = θi(γΛg )+Λg⊥/3Δ

if γ = (γΛg , γH) with γH ∈D3
H and by Fθ

Λg⊥/3Δ,γ = 0 otherwise.

The function ηg(τ) = η(3τ)8 is a modular form for Γ0(9) of weight 4 with

trivial character. This function is related to the theta functions by

(θ2S − θ2L)/3Δ(τ) = 1/ηg(τ/3).

We decompose

1/ηg(τ/9) = g0(τ) + · · ·+ g8(τ),
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where gj |T (τ) = e(j/9)gj(τ). Note that the only nonvanishing gj are g2, g5,

and g8. Then the lifting of 1/ηg on the trivial subgroup of DL is given by

FΓ0(9),1/ηg ,0 =
3

ηg
e0 −

∑
γ∈D3

L

1

ηg
eγ + 3

∑
γ∈DL

gjγe
γ ,

where jγ is defined by jγ/9 =−γ2/2 mod 1 (see Theorem 3.2). Let

F = Fθ
Λg⊥/3Δ +

1

3
FΓ0(9),1/ηg ,0.

Then we have the following.

Theorem 6.1. The function F is a modular form for ρDL
of weight −4.

The components of F are given by

F0 =
1

ηg
+

1

3

(θ00
Δ

− 1

ηg

)
= q−1 + 8+ 108q+ 1072q2 + 8790q3 + 64512q4 + 440176q5 + · · ·

and

Fγ =
1

3

(θ00
Δ

− 1

ηg

)
= 8+ 108q+ 1064q2 + 8790q3 + 64512q4 + 440132q5 + · · ·

if γ ∈D3
L\{0},

Fγ =
θ0
3Δ

= 2+ 303q+ 11088q2 + 225321q3 + 3204240q4 + · · ·

if γ2/2 = 0 mod 1 and γ /∈D3
L,

Fγ =
θ2S
3Δ

= q−1/3 + 80q2/3 + 3671q5/3 + 86736q8/3 + 1365702q11/3 + · · ·

if γ2/2 = 1/3 mod 1 and γ = (γΛg , γH) with γΛg ∈ 1LS
,

Fγ =
θ2L
3Δ

= 72q2/3 + 3627q5/3 + 86544q8/3 + 1364976q11/3 + · · ·

if γ2/2 = 1/3 mod 1 and γ = (γΛg , γH) with γΛg ∈ 1S ∪ 1LL
,

Fγ =
θ1
3Δ

= 15q1/3 + 1104q4/3 + 31818q7/3 + 564192q10/3 + · · ·
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if γ2/2 = 2/3 mod 1,

Fγ = g8 = q−1/9 + 192q8/9 + 7704q17/9 + 164560q26/9 + · · ·

if γ2/2 = 1/9 mod 1,

Fγ = g5 = 44q5/9 + 2464q14/9 + 62337q23/9 + 1020416q32/9 + · · ·

if γ2/2 = 4/9 mod 1, and

Fγ = g2 = 8q2/9 + 726q11/9 + 22528q20/9 + 417140q29/9 + · · ·

if γ2/2 = 7/9 mod 1.

The Fourier coefficients of the Fγ are nonnegative rational integers.

The poles of F define a reflection group of L which has a Weyl vector

(see [3, Theorems 12.1 and 10.4]). For our purposes, it is more convenient

to consider the corresponding dual notions. We define W as the reflection

group of the dual lattice L′ generated by the roots

α ∈ L with α2 = 2,

α ∈ L′ with α2 = 2/3 and αΛg +Λg ∈ 1LS
,

α ∈ L′ with α2 = 2/9.

Then W has a Weyl vector ρ in R⊗L; that is, the simple roots of W are the

roots α satisfying ρα=−α2/2. The vector 3ρ is a primitive norm 0 vector

in L′, and 3ρ + L is in D3
L\{0}. The primitive norm 0 vectors in H ′ are

conjugate under O(H ′). We can choose any of these vectors for 3ρ.

Let

M = L⊕ II 1,1.

Then F defines a modular form for ρDM
. The singular theta correspondence

(see [3, Theorem 13.3]) maps F to an automorphic form Ψ on the Grass-

mannian of 2-dimensional negative definite subspaces of R⊗M . The lattice

M has one orbit of primitive norm 0 vectors of level 1 under O(M) and has

no primitive norm 0 vectors of level 9.

Theorem 6.2. The automorphic form Ψ is holomorphic and has singular

weight 4. The level 1 expansion is given by

e
(
(ρ,Z)

) ∏
α∈L′+

(
1− e

(
(α,Z)

))[Fα+L](−α2/2)
=

∑
w∈W

det(w)ηg
(
(wρ,Z)

)
.

https://doi.org/10.1215/00277630-3335405 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-3335405


THE WEIL REPRESENTATION OF SL2(Z) 29

Proof. The level 1 product expansion of Ψ is

e
(
(ρ,Z)

) ∏
α∈L′+

(
1− e

(
(α,Z)

))[Fα+L](−α2/2)
.

Since Ψ is holomorphic and has singular weight, its Fourier expansion is

supported only on norm 0 vectors. Furthermore, Ψ is antisymmetric under

the Weyl group W because the roots of W have multiplicity 1. It follows

that Ψ has the sum expansion∑
w∈W

det(w)e
(
(wρ,Z)

)∏
n>0

(
1− e

(
(3nwρ,Z)

))8
.

This proves the theorem.

The above identity is also the denominator identity of a generalized Kac–

Moody algebra whose real simple roots are the simple roots of W and whose

imaginary simple roots are the positive integral multiples of 3ρ with multi-

plicity 8. The root lattice is L′, and the multiplicity of a root α in L′ is given
by [Fα+L](−α2/2). This Lie algebra can also be constructed by orbifolding

the fake monster algebra with a lift of g (see [2], [12]).

We describe a slight variation of the above construction which simpli-

fies some aspects. Let N be the Niemeier lattice with root system E3
8 (see

[6]). Then the direct product O(E8)
3 is a normal subgroup of O(N) with

quotient S3. Let g be a permutation of the three E8-components of N of

order 3. Then g has cycle shape 38 and fixed-point sublattice Ng isomorphic

to
√
3E8. The orthogonal complement Ng⊥ is isomorphic to A2 ⊗E8. Here

the centralizer C(g) of g in O(N) induces the full orthogonal group of Ng so

that the natural isomorphism i :DNg →DNg⊥ maps the orbits of the corre-

sponding size into each other. If we construct F as above, we can describe

the components entirely in terms of the orbits of O(
√
3E8) on D√

3E8
. This

also leads to a simpler description of W . For example, the roots of norm

2/3 then correspond to the elements in 1S .

Cycle shape 212

Let g be an automorphism of Λ of cycle shape 212. Then Λg is a primitive

sublattice of Λ isomorphic to
√
2D+

12.

The lattice
√
2D+

12 has genus II 12,0(2
+12
4 ), and there are 3 classes in this

genus given by A12
1 ,

√
2E8⊕A4

1, and
√
2D+

12. The orthogonal group of
√
2D+

12

acts transitively on the vectors of norm 4, 6, and 10. The vectors of length 8
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Table 3: The orbits of O(
√
2D+

12) on the discriminant form of
√
2D+

12.

norm length order name

0 1 1 00
0 1 2 0S

990 2 0L
1/4 1024 2 1

1/2 132 2 2S
924 2 2L

3/4 1024 2 3

decompose into two orbits of length 24 and 7920, and the vectors of length

12 decompose into two orbits of length 5280 and 59136. This implies that

O(
√
2D+

12) has seven orbits on the discriminant form of
√
2D+

12. They are

described in Table 3.

The centralizer C(g) of g in O(Λ) does not induce the full orthogonal

group of Λg. It acts transitively on the vectors of norm 4, 6, and 10 in

Λg while the vectors of norm 8 decompose into two orbits of length 24 and

7920, and the vectors of norm 12 decompose into three orbits of length 5280,

8448, and 50688. Therefore, the orbit 2L in Table 3 splits into two orbits

under C(g), which we denote by 2LS
and 2LL

. They contain 132 and 792

elements, respectively.

The orthogonal complement Λg⊥ of Λg in Λ is Λ−g and is also isomorphic

to
√
2D+

12. The theta functions of the cosets are given by

θ00(τ) = 1+ 264q2 + 2048q3 + 7944q4 + 24576q5 + 64416q6 + · · · ,

θ0S (τ) = 24q+ 3808q3 + 50448q5 + 268224q7 + 947896q9 + · · · ,

θ0L(τ) = 8q+ 256q2 + 1952q3 + 8192q4 + 25008q5 + 62464q6 + · · · ,

θ1(τ) = 24q5/4 + 464q9/4 + 2904q13/4 + 11088q17/4 + 32032q21/4 + · · · ,

θ2S (τ) = 2q2/4 + 40q6/4 + 876q10/4 + 4048q14/4 + 14650q18/4 + · · · ,

θ2L(τ) = 64q6/4 + 768q10/4 + 4224q14/4 + 14848q18/4 + 40128q22/4 + · · · ,

θ3(τ) = 2q3/4 + 132q7/4 + 1254q11/4 + 5964q15/4 + 19338q19/4 + · · · .
The lattice Λg is a primitive sublattice of Λ so that we have a natural

isomorphism of groups

i :DΛg →DΛg⊥
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Table 4: The orbits of O(
√
2D12) on the discriminant form of

√
2D12.

norm length order

0 1 1

0 1 2

990 2

990 2

2 2

1/2 132 2

1848 2

132 2

norm length order

1/4 24 4

1584 4

4096 4

440 4

3/4 440 4

4096 4

1548 4

24 4

satisfying i(γ)2/2 =−γ2/2 for all γ ∈DΛg . Since Λ has no roots, i maps the

orbit 2LS
of DΛg into the orbit 2S of DΛg⊥ , and the orbit 2S into 2LS

.

Let K be a lattice isomorphic to
√
2D12. Then K has genus

II 12,0(2
−10
II 4−2

II ). There are 2 classes in this genus and the other class is

given by
√
2(E8 ⊕D4). The group O(K) has 16 orbits on DK . We describe

them in Table 4.

The lattice Λg contains a unique sublattice isomorphic to K. This is the

sublattice generated by the 264 vectors of norm 4 in Λg.

We consider K as a sublattice of Λg. Then H = Λg/K is a subgroup of

D2
K of order 2. Note that the elements in DK of norm 0 or 1/2 all have

order dividing 2 and therefore are in H⊥. The function θΛg⊥/2Δ induces a

modular form Fθ
Λg⊥/2Δ of weight −6 for the Weil representation of K. The

components are given by

Fθ
Λg⊥/2Δ,γ = θi(γ+H)+Λg⊥/2Δ

if γ ∈H⊥ and Fθ
Λg⊥/2Δ,γ = 0 otherwise.

The function ηg(τ) = η(2τ)12 is a modular form for Γ0(4) of weight 6 with

trivial character. We have the following relations:

(θ00 − θ0S )/Δ(τ) = 1/ηg(τ),

(θ2S − θ2L)/2Δ(τ) = 1/ηg(τ/2),

(θ1 + θ3)/2Δ(τ) = 1/ηg(τ/4).

We decompose 1/ηg(τ/4) as

1/ηg(τ/4) = g0(τ) + g1(τ) + g2(τ) + g3(τ)

https://doi.org/10.1215/00277630-3335405 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-3335405


32 N. R. SCHEITHAUER

with gj |T (τ) = e(j/4)gj(τ). Then the lifting of 1/ηg on the trivial subgroup

of DK is given by

FΓ0(4),1/ηg ,0 =
2

ηg
e0 − 1

2

∑
γ∈D2

K

1

ηg
eγ + 2

∑
γ∈DK

gjγe
γ ,

where jγ is defined by jγ/4 =−γ2/2 mod 1. The lift of 1/ηg on H is

FΓ0(4),1/ηg ,H = 2
∑
γ∈H

1

ηg
eγ −

∑
γ∈D2

K

1

ηg
eγ + 4

∑
γ∈H⊥

gjγe
γ .

Finally, we define

F = Fθ
Λg⊥/2Δ +

1

2
FΓ0(4),1/ηg ,0 −

1

4
FΓ0(4),1/ηg ,H .

Then the above relations imply the following.

Theorem 6.3. The function F is a modular form of weight −6 for ρDK
.

The components of F are given by

F0 =
1

ηg
+

1

2

(θ00
Δ

− 1

ηg

)
= q−1 + 12+ 300q+ 5792q2 + 84186q3 + 949920q4 + 8813768q5 + · · ·

and

Fγ =
1

2

(θ00
Δ

− 1

ηg

)
= 12+ 288q+ 5792q2 + 84096q3 + 949920q4 + 8813248q5 + · · ·

if γ ∈D2
K\{0},

Fγ =
θ0L
2Δ

= 4+ 224q+ 5344q2 + 81792q3 + 939232q4 + 8769856q5 + · · ·

if γ2/2 = 0 mod 1 and γ /∈D2
K ,

Fγ =
θ2S
2Δ

= q−1/2 + 44q1/2 + 1242q3/2 + 22216q5/2 + 287463q7/2 + · · ·

if γ2/2 = 1/2 mod 1 and γ +H ∈ 2LS
,

Fγ =
θ2L
2Δ

= 32q1/2 + 1152q3/2 + 21696q5/2 + 284928q7/2 + · · ·
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if γ2/2 = 1/2 mod 1 and γ +H ∈ 2S ∪ 2LL
,

Fγ =
θ3
2Δ

= q−1/4 + 90q3/4 + 2535q7/4 + 42614q11/4 + 521235q15/4 + · · ·

if γ2/2 = 1/4 mod 1, and

Fγ =
θ1
2Δ

= 12q1/4 + 520q5/4 + 10908q9/4 +153960q13/4 +1669720q17/4 + · · ·

if γ2/2 = 3/4 mod 1.

The Fourier coefficients of the Fγ are nonnegative rational integers.

Now let

L=K ⊕ II 1,1.

We can consider F as a modular form for ρDL
. Then the poles of F define a

reflection group W of L′ which has a Weyl vector. The roots of W are the

vectors

α ∈ L with α2 = 2,

α ∈ L′ with α2 = 1 and (αK +K) +H ∈ 2LS
,

α ∈ L′ with α2 = 1/2.

The reflection groupW has aWeyl vector ρ in R⊗L; that is, the simple roots

of W are the roots α satisfying ρα =−α2/2. The vector 2ρ is a primitive

norm 0 vector in L′ and 2ρ+L is in D2
L\{0}.

Let

M = L⊕ II 1,1.

Then F defines a modular form for ρDM
. Let Ψ be the theta lift of F . The

lattice M has one orbit of primitive norm 0 vectors of level 1 under O(M)

and has no primitive norm 0 vectors of level 4.

Theorem 6.4. The automorphic form Ψ is holomorphic and has singular

weight 6. The level 1 expansion is given by

e
(
(ρ,Z)

) ∏
α∈L′+

(
1− e

(
(α,Z)

))[Fα+L](−α2/2)
=

∑
w∈W

det(w)ηg
(
(wρ,Z)

)
.
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As in the previous case, this identity is also the denominator identity of a

generalized Kac–Moody algebra whose real simple roots are the simple roots

of W and whose imaginary simple roots are the positive integral multiples of

2ρ with multiplicity 12. The root lattice is L′, and the multiplicity of a root

α in L′ is given by [Fα+L](−α2/2). This Lie algebra can also be constructed

by orbifolding the fake monster algebra with a lift of g.

We show now that the Niemeier lattice N with root system D2
12 gives

a simpler construction of the above objects. The quotient D′
12/D12 can be

represented by the elements 0 = (012), s = ((1/2)12), c = ((1/2)11(−1/2)),

and v = (011 1). Adding the glue vectors (0,0), (s, s), (c, v), and (v, c) to

the orthogonal sum D12 ⊕D12, we obtain an even unimodular lattice N

with root system D2
12. The direct product O(D+

12)
2 is a normal subgroup

of O(N) with quotient S2. Define g ∈O(N) by g(x, y) = (y,x). Then g has

order 2, and Ng and Ng⊥ are both isomorphic to
√
2D+

12. The centralizer

C(g) of g in O(N) induces the full orthogonal group of Ng. Hence the orbits

of the corresponding size are mapped into each other under the natural

map i :DNg →DNg⊥ . We construct a modular form F as above. Then the

components of F depend only on the orbits of O(
√
2D12) on D√

2D12
. In

particular, the generators of the Weyl group of norm 1 correspond to the

elements in the two orbits of length 132 in DK .

Cycle shape 3.21

Let g be an automorphism of the Leech lattice of cycle shape 3.21. Then

the fixed-point lattice Λg has genus II 2,0(3
+27−1), and a Gram matrix is

given by
(
6 3
3 12

)
. The lattice Λg represents the unique class in this genus.

The centralizer of g induces the full orthogonal group of Λg (see also [8]).

The lattice Λg,3 =Λg3 ∩Λg⊥ has some very nice properties. It is isomor-

phic to
(
2 1
1 4

)
⊗A2, and a Gram matrix is given by

(
2 1

1 4

)
⊗
(
2 1

1 2

)
=

⎛
⎜⎜⎝
4 2 2 1

2 4 1 2

2 1 8 4

1 2 4 8

⎞
⎟⎟⎠ .

The lattice Λg,3 has genus II 4,0(3
+27−2). It is strongly modular, that is,

invariant up to isomorphism under the Atkin–Lehner involutions Wd, d | 21.
There are three classes in the genus of Λg,3 with minima 2, 2, and 4; that is,

Λg,3 represents the unique class without roots. The orthogonal group of Λg,3
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Table 5: The orbits of O(Λg,3) on DΛg,3,3

norm length order name

0 1 1 00
1/3 4 3 1

2/3 2 3 2S
2 3 2L

has forty orbits on the discriminant form DΛg,3 and four orbits on DΛg,3,3.

They are described in Table 5.

The corresponding theta functions are given by

θ00(τ) = 1+ 6q2 + 12q4 + 12q5 + 6q6 + 24q7 + 18q8 + 24q10 + · · · ,

θ1(τ) = 3q4/3 + 6q7/3 + 6q10/3 + 6q13/3 + 12q16/3 + 6q19/3 + · · · ,

θ2S (τ) = 3q2/3 + 3q8/3 + 6q11/3 + 18q14/3 + 12q17/3 + 12q20/3 + · · · ,

θ2L(τ) = 6q5/3 + 6q8/3 + 15q14/3 + 6q17/3 + 18q20/3 + 12q23/3 + · · · .

We have

(θ2S − θ2L)/3ηg3(τ) = 1/ηg(τ/3).

Since Λg,3 is a primitive sublattice of the Leech lattice, the theta function

of Λg,3 defines a modular form F for the Weil representation of the orthog-

onal complement Λg,3⊥ of Λg,3 in Λ. This lattice has genus II 20,0(3
+27−2).

In particular, there are no nontrivial isotropic elements in DΛg,3⊥,3. This

implies that the function F cannot be written as a linear combination of

liftings from Γ0(21) because such a function would be invariant under the

automorphisms of DΛg,3⊥,3. But as we have seen above, F does not have

this symmetry.

We remark that Λg,7 = Λg7 ∩ Λg⊥ is isomorphic to
√
3A6 and has genus

II 6,0(3
+67+1). There is exactly one class in this genus.

We write θΛg,3 for the scalar-valued theta function of Λg,3. Then θΛg,3 is

a modular form for Γ0(21) of weight 2 with trivial character. We describe

the expansions at the cusps. Let M =
(
a b
c d

)
∈ Γ such that c | 21, c > 0 and

d= 0 mod c′, where c′ =N/c. Then

θΛg,3 |M (τ) = ε
1

c′
θΛg,3(τ/c′)

with ε= ( c
′
2 ).

https://doi.org/10.1215/00277630-3335405 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-3335405


36 N. R. SCHEITHAUER

Let K = Λg ⊕
√
7II 1,1. Then K has genus II 3,1(3

+27+3). The quotient

θΛg,3/ηg3 , where ηg3(τ) = η(τ)3η(7τ)3, is a modular form for Γ0(21) of weight

−1 with character χ(M) = (d7) for M =
(
a b
c d

)
∈ Γ0(21). We have

θΛg,3(τ)/ηg3(τ) = q−1 + 3+ 15q+ 40q2 + 117q3 + 288q4 + 677q5 + · · · ,

θΛg,3(τ/3)/ηg3(τ) = q−1 + 6q−1/3 + 3+ 12q1/3 + 30q2/3 + 15q+ · · · .

The lift of θΛg,3/ηg3 on K with trivial support is given by

FΓ0(21),θΛg,3/ηg3 ,0

=
θΛg,3

ηg3
e0 +

1

3

∑
γ∈DK,3

g3,jγe
γ +

∑
γ∈DK,7

g7,jγe
γ +

1

3

∑
γ∈DK

g21,jγe
γ ,

where the gc,j are T -eigenfunctions with eigenvalue e(j/c) defined by the

following decompositions:

θΛg,3(τ/3)/ηg3(τ) = g3,0(τ) + g3,1(τ) + g3,2(τ),

θΛg,3(τ/7)/ηg3(τ/7) = g7,0(τ) + g7,1(τ) + · · ·+ g7,6(τ),

θΛg,3(τ/21)/ηg3(τ/7) = g21,0(τ) + g21,1(τ) + · · ·+ g21,20(τ).

Note that

θΛg,3/ηg3 = g3,0,

g7,j = g21,3j .

The functions with poles are θΛg,3/ηg3 = g3,0 and

g3,2 = 6q−1/3 + 30q2/3 + 108q5/3 + 306q8/3 + 834q11/3 + · · · ,

g21,20 = 6q−1/21 + 9792q20/21 + 835008q41/21 + 28697184q62/21 + · · · ,

g7,6 = g21,18 = q−1/7 + 1494q6/7 + 143829q13/7 + 5254648q20/7 + · · · .

For c | 63, we define the functions hc(τ) = 1/ηg(τ/c) and their T -

eigenfunctions hc,j with hc,j |T (τ) = e(j/c)hc,j(τ).

The group DK,3 is generated by two orthogonal elements γ1, γ2 of norm

γ21/2 = γ22/2 = 1/3 mod 1. The function h3 is a modular form of weight −1
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for Γ1(21) with character χ(M) = e(−b/3) for M =
(
a b
c d

)
∈ Γ1(21). The lift

of h3 on γ1 is given by (see Theorem 3.7)

1

12
FΓ1(21),h3,γ1 = h3(e

γ1 + e−γ1)− h3(e
γ2 + e−γ2)

−
∑

γ∈γ1+DK,7

h21,jγ (e
γ + e−γ) +

∑
γ∈γ2+DK,7

h21,jγ (e
γ + e−γ).

We have

1

4
FΓ0(21),θΛg,3/ηg3 ,0

+
1

24
FΓ1(21),h3,γ1

=
1

4

θΛg,3

ηg3
e0 +

1

12

∑
γ∈DK,3

γ2/2	=1/3 mod 1

g3,jγe
γ

+
1

12
(g3,2 + 6h3)(e

γ1 + e−γ1)

+
1

12
(g3,2 − 6h3)(e

γ2 + e−γ2)

+
1

4

∑
γ∈DK,7

g7,jγe
γ

+
1

12

∑
γ∈DK

γ2/2	=1/3+n/7 mod 1

g21,jγe
γ

+
1

12

∑
γ∈γ1+DK,7

(g21,jγ − 6h21,jγ )(e
γ + e−γ)

+
1

12

∑
γ∈γ2+DK,7

(g21,jγ + 6h21,jγ )(e
γ + e−γ).

The Fourier expansions of the functions g3,1/12, (g3,2 ± 6h3)/12, g21,3j/12,

g21,3j+1/12, and (g21,3j+2 ± 6h21,3j+2)/12 have nonnegative integral coeffi-

cients, for example,

1

12
g3,1 = q1/3 + 5q4/3 + 17q7/3 + 48q10/3 + 123q13/3 + · · ·

=
θ1
3ηg3

,
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1

12
(g3,2 + 6h3) = q−1/3 + 3q2/3 + 10q5/3 + 27q8/3 + 72q11/3 + · · ·

=
θ2S
3ηg3

,

1

12
(g3,2 − 6h3) = 2q2/3 + 8q5/3 + 24q8/3 + 67q11/3 + 163q14/3 + · · ·

=
θ2L
3ηg3

.

LetM =Λg⊕
√
7II 1,1⊕H , whereH is a lattice with Gram matrix

(−2 3
3 0

)
.

Then M has genus II 4,2(3
+29−17+3).

The modular form

1

4
FΓ0(21),θΛg,3/ηg3 ,0

+
1

24
FΓ1(21),h3,γ1

on K induces a modular form FθΛg,3/ηg3
on M .

We remark that FθΛg,3/ηg3
can also be obtained as

FθΛg,3/ηg3
=

1

12
FΓ0(63),θΛg,3/ηg3 ,D

21 +
1

216

∑
γ∈γ1+D21

FΓ1(63),h3,γ .

The function ηg(τ) = η(3τ)η(21τ) is a modular form for Γ0(63) of weight 1

with character χ(M) = (d7 ) for M =
(
a b
c d

)
∈ Γ0(63). For the lift of 1/ηg on

M with trivial support, we find

1

3
FΓ0(63),1/ηg ,0

=
1

ηg
e0 − 1

3

∑
γ∈D21

1

ηg
eγ +

∑
γ∈D7

h7,jγe
γ − 1

3

∑
γ∈D3

h7,jγe
γ

+
∑
γ∈D9

h9,jγe
γ +

∑
γ∈D

h63,jγe
γ .

Let

F = FθΛg,3/ηg3
+

1

3
FΓ0(63),1/ηg ,0.

Then F is a modular form of weight −1 on M . Using θΛg,3/ηg3 = g3,0 and

g7,j = g21,3j , we obtain the following result.
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Theorem 6.5. The function F is given by

F =
1

ηg
e0 +

1

3

∑
γ∈D21

(θΛg,3

ηg3
− 1

ηg

)
eγ

+
1

12

∑
γ∈D3

γ2/2=2/3 mod 1

g3,1e
γ

+
1

12

∑
γ∈γ1+D21

(g3,2 + 6h3)(e
γ + e−γ)

+
1

12

∑
γ∈γ2+D21

(g3,2 − 6h3)(e
γ + e−γ)

+
∑
γ∈D7

h7,jγe
γ +

1

3

∑
γ∈D3

(g7,jγ − h7,jγ )e
γ

+
1

12

∑
γ∈D21

γ2/2=2/3+n/7 mod 1

g21,jγe
γ

+
1

12

∑
γ∈γ1+D3

(g21,jγ − 6h21,jγ )(e
γ + e−γ)

+
1

12

∑
γ∈γ2+D3

(g21,jγ + 6h21,jγ )(e
γ + e−γ)

+
∑
γ∈D9

h9,jγe
γ

+
∑
γ∈D

h63,jγe
γ .

The coefficients of the components Fγ of F are nonnegative rational integers.

Note that without the contributions of the lifting of h3, the Fourier coef-

ficients of the principal part of F would be rational but not integral so that

we could not apply the singular theta correspondence to F .

We describe some components of F . They are important to understand

the properties of the Weyl group and the Weyl vector we define below.
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Let γ be an isotropic element in D. Then γ is in D3 =D21⊕D7. We have

Fγ =
1

ηg
+

1

3

(θΛg,3

ηg3
− 1

ηg

)
+ h7,0 +

1

3
(g7,0 − h7,0)

=
1

ηg
+

1

3

(θΛg,3

ηg3
− 1

ηg

)
+

1

7

(θΛg,7

ηg7
− 1

ηg

)

+
1

21

(θΛg⊥

Δ
− θΛg,7

ηg7
− θΛg,3

ηg3
+

1

ηg

)

= q−1 + 2+ 1060q+ 83728q2 + 2790636q3 + 57148320q4 + · · ·

if γ = 0

Fγ =
1

3

(θΛg,3

ηg3
− 1

ηg

)
+

1

3
(g7,0 − h7,0)

=
1

3

(θΛg,3

ηg3
− 1

ηg

)
+

1

21

(θΛg⊥

Δ
− θΛg,7

ηg7
− θΛg,3

ηg3
+

1

ηg

)

= 2+ 1060q+ 83720q2 + 2790636q3 + 57148320q4 + 846724518q5 + · · ·

if γ ∈D21\{0},

Fγ = h7,0 +
1

3
(g7,0 − h7,0)

=
1

7

(θΛg,7

ηg7
− 1

ηg

)
+

1

21

(θΛg⊥

Δ
− θΛg,7

ηg7
− θΛg,3

ηg3
+

1

ηg

)

= 1+ 1055q+ 83714q2 + 2790597q3 + 57148224q4 + 846724377q5 + · · ·

if γ ∈D7\{0}, and

Fγ =
1

3
(g7,0 − h7,0)

=
1

21

(θΛg⊥

Δ
− θΛg,7

ηg7
− θΛg,3

ηg3
+

1

ηg

)

= 1+ 1055q+ 83707q2 + 2790597q3 + 57148224q4 + 846724293q5 + · · ·

if γ ∈D3\{D21 ∪D7}.
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Next we describe the singular components of F . They are given by

F0 =
1

ηg
+

1

3

(θΛg,3

ηg3
− 1

ηg

)
+ h7,0 +

1

3
(g7,0 − h7,0)

= q−1 + 2+ 1060q+ 83728q2 + 2790636q3 + 57148320q4 + · · ·

and

Fγ =
1

12
(g3,2 + 6h3) +

1

12
(g21,14 − 6h21,14)

= q−1/3 + 166q2/3 + 22071q5/3 + 925654q8/3 + 21777668q11/3 + · · ·

if γ2/2 = 1/3 mod 1 and γ ∈±γ1 +D21,

Fγ = h7,6 +
1

3
(g7,6 − h7,6) + h63,54

= h7,6 +
1

3
(g7,6 − h7,6)

= q−1/7 + 498q6/7 + 47943q13/7 + 1751560q20/7 + 37970952q27/7 + · · ·

if γ2/2 = 1/7 mod 1 and γ ∈D7,

Fγ = h9,8 + h63,56

= q−1/9 + 584q8/9 + 54268q17/9 + 1943680q26/9 + 41603422q35/9 + · · ·

if γ2/2 = 1/9 mod 1 and γ ∈D9,

Fγ =
1

12
(g21,20 + 6h21,20) + h63,60

=
1

12
(g21,20 + 6h21,20)

= q−1/21 + 824q20/21 + 69660q41/21 + 2391912q62/21 + · · ·

if γ2/2 = 1/21 mod 1 and γ ∈±γ2 +D3, and

Fγ = h63,62

= q−1/63 + 960q62/63 + 78660q125/63 + 2650432q188/63 + · · ·

if γ2/2 = 1/63 mod 1.
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The lattices
√
7II 1,1 ⊕H and II 1,1 ⊕

√
7H are in the same genus and

therefore isomorphic. This implies that we can consider F as a modular

form on

L=Λg ⊕
√
7H.

The poles of F define a reflection group W of L′. The roots of W are the

vectors

α ∈ L with α2 = 2,

α ∈ L′ with α2 = 2/3 and α+L ∈±γ1 +D3
L,

α ∈ L′ with α2 = 2/7 and α+L ∈DL,7,

α ∈ L′ with α2 = 2/9 and α+L ∈DL,9,

α ∈ L′ with α2 = 2/21 and α+L ∈±γ2 +D3
L,

α ∈ L′ with α2 = 2/63.

The reflection groupW has aWeyl vector ρ in R⊗L; that is, the simple roots

of W are the roots α satisfying ρα = −α2/2. The vector 3ρ is a primitive

norm 0 vector in L′, and 3ρ+L is in D3
L\(D21

L ∪DL,7). There is one orbit of

primitive norm 0 vectors in (
√
7H)′ under the orthogonal group of (

√
7H)′,

and we can take any vector in this orbit for 3ρ.

The function F is a modular form for M = L⊕ II 1,1. Let Ψ be the theta

lift of F . The lattice M has one orbit of primitive norm 0 vectors of level 1

under O(M).

Theorem 6.6. The automorphic form Ψ is holomorphic and has singular

weight 1. The level 1 expansion is given by

e
(
(ρ,Z)

) ∏
α∈L′+

(
1− e

(
(α,Z)

))[Fα+L](−α2/2)
=

∑
w∈W

det(w)ηg
(
(wρ,Z)

)
.

As in the previous cases, this identity is also the denominator identity

of a generalized Kac–Moody algebra whose real simple roots are the sim-

ple roots of W and whose imaginary simple roots are the positive integral

multiples 3nρ of 3ρ with multiplicity 2 if 7 | n and multiplicity 1 otherwise.

The root lattice is L′, and the multiplicity of a root α in L′ is given by

[Fα+L](−α2/2). Again, this Lie algebra can also be constructed by orbifold-

ing the fake monster algebra with a lift of g.
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