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Abstract

The homomorphic image of a congruence is always a tolerance (relation) but, within a given variety,
a tolerance is not necessarily obtained this way. By a Maltsev-like condition, we characterise varieties
whose tolerances are homomorphic images of their congruences (TImC). As corollaries, we prove that
the variety of semilattices, all varieties of lattices, and all varieties of unary algebras have TImC. We
show that a congruence n-permutable variety has TImC if and only if it is congruence permutable, and
construct an idempotent variety with a majority term that fails TImC.
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1. Introduction

Let A = (A; F) be a (general) algebra. By a tolerance (relation) of A we mean
a reflexive, symmetric, and compatible relation τττ ⊆ A2. Transitive tolerances are
congruences. Tolerances, implicitly or explicitly, often played an important role in the
theory of Maltsev (also written ‘Mal’cev’) conditions, for example in Czédli et al. [9]
and Jónsson [15]. Tolerances are particularly useful in lattice theory; partly because
the algebraic functions on a finite lattice are just the monotone functions preserving
tolerances (see Kindermann [16]), and also because tolerances play a crucial role in
decompositions of modular lattices into maximal complemented intervals (see Day
and Herrmann [11] and Herrmann [14]).

There are two important ways to deal with tolerances. Following Chajda [1], Chajda
et al. [6], and Czédli and Klukovits [10], one can describe them by their blocks.
However, the present paper is devoted to a promising recent approach to tolerances:
they can often be characterised as homomorphic images of congruences.
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Clearly (see also Fried and Grätzer [12]), if ϕ : B→ A is a surjective
homomorphism and τττ is a tolerance of B, then ϕ(τττ) = {(ϕ(a), ϕ(b)) : (a, b) ∈ τττ} is a
tolerance of A. In particular, if ϑϑϑ is a congruence of B, then ϕ(ϑϑϑ) is a tolerance
(but not necessarily a congruence) of A. We are interested in varieties of algebras
whose tolerances are homomorphic images of their congruences, (TImC). The TImC
property holds in a varietyV if for every A ∈ V and each tolerance τττ of A, there exist
an algebra B ∈ V, a congruence ϑϑϑ of B, and a homomorphism ϕ : B→ A such that
τττ = ϕ(ϑϑϑ). Notice that ϕ is necessarily surjective since τττ is reflexive.

Using an old construction discovered by the first author in [7], Czédli and
Grätzer [8] proved that the variety of all lattices satisfies TImC. Some other varieties
satisfying TImC have recently been found by Chajda et al. [4, 5]. In particular, we
know from [5] that all varieties defined by so-called balanced identities satisfy TImC,
and each algebra belongs to some variety satisfying TImC.

Our goal is to give a Maltsev-like characterisation of the TImC property. This
characterisation enables us to find several new results stating that certain varieties,
including all lattice varieties, all unary varieties, and the variety of semilattices,
satisfy TImC. In the last section of the paper we initiate the investigation of the
relationship between known Maltsev conditions and TImC.

2. Characterising TImC

Let n ∈ N = {1, 2, . . .}. We say that a variety V satisfies the Maltsev-like condition
M(n) if for any pair ( f , g) of 2n-ary terms such that the identity

f (x0, x0, x1, x1, . . . , xn−1, xn−1) ≈ g(x0, x0, x1, x1, . . . , xn−1, xn−1)

holds inV, there exists a 4n-ary term h such that the identities

f (x0, y0, x1, y1, . . . , xn−1, yn−1)

≈ h(x0, y0, x1, y1, . . . , xn−1, yn−1, x0, y0, x1, y1, . . . , xn−1, yn−1),

g(x0, y0, x1, y1, . . . , xn−1, yn−1)

≈ h(y0, x0, y1, x1, . . . , yn−1, xn−1, x0, y0, x1, y1, . . . , xn−1, yn−1)

also hold inV. Our main goal is to prove the following two theorems.

T 2.1. For an arbitrary varietyV of algebras, the following two conditions are
equivalent.

(i) V satisfies TImC, that is, the tolerances of V are homomorphic images of its
congruences.

(ii) For all n ∈ N, condition M(n) holds inV.

For a variety V, let A(V) be the clone algebra of V introduced in Taylor [21,
Definition 2.9]. It is a heterogeneous algebra consisting of the equivalence classes
of all finitary terms of V, where two terms, t1 and t2, are equivalent if and
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only if the identity t1 ≈ t2 holds in V. This heterogeneous algebra is equipped
with (heterogeneous) substitution operations and with constant operations assigning
projections. In this terminology, M(n) becomes a first-order formula in the language
of A(V), and M(n) holds in V if and only if this first-order formula, also denoted by
M(n), holds in A(V). Therefore, Theorem 2.1 characterises TImC by the countably
infinite set {M(n) : n ∈ N} of first-order formulas in the language of clone algebras of
varieties. This raises the question whether we really need infinitely many formulas.
The answer and some additional information are given in the following statement.

T 2.2.

(i) For n ∈ N, M(n + 1) implies M(n).
(ii) For n ∈ N, M(n) does not imply M(n + 1).
(iii) Assume that Σ is a finite set of first-order formulas in the language of clone

algebras of varieties. Then Σ, that is, the conjunction of all members of Σ, is not
equivalent to TImC.

3. Proving our theorems

For n ∈ N, the list z0, . . . , zn−1 of the elements (or lists) zi will often be denoted by
zi: i < n, and similar notation applies when n is an ordinal. Lists are concatenated by
semicolons. This convention allows us to write terms in a concise form. For example,
M(n) in this notation is the following condition: if

f (xi, xi: i < n) ≈ g(xi, xi: i < n), (3.1)

then there exists a 4n-ary term h such that

f (xi, yi: i < n) ≈ h(xi, yi: i < n ; xi, yi: i < n), (3.2)

g(xi, yi: i < n) ≈ h(yi, xi: i < n ; xi, yi: i < n). (3.3)

The algebra freely generated by X in a variety V will be denoted by FV(X).
We consider only well-ordered free generating sets. Therefore, if κ and µ denote
cardinal numbers and we write, say, X = {xi, yi: i < κ ; z j: j < µ}, which is the same
as X = {xi : i < κ} ∪ {yi : i < κ} ∪ {z j : j < µ}, then we always assume that {xi : i < κ},
{yi : i < κ}, and {z j : j < µ} are pairwise disjoint and each of the equations xi = x j,
yi = y j, and zi = z j implies that i = j. However, if ai and a j are not necessarily free
generators of a free algebra, then ai = a j does not imply that i = j. Sometimes we
allow ‘formally infinitary’ terms like f (xi, yi: i < κ ; z j: j < µ); they, of course, depend
only on finitely many of their variables. The smallest congruence collapsing a and b is
denoted by con(a, b). The idea of the following statement goes back to Maltsev [17]
and Jónsson [15]; for the reader’s convenience and also to demonstrate how our
notation works, we give a short proof.

L 3.1. Let X = {xi, yi: i < κ ; z j: j < µ} be a nonempty set, let V be a variety,
and denote by ϑϑϑ the congruence

∨
{con(xi, yi) : i < κ} of FV(X). Let f and g be
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terms over X. Then ϑϑϑ collapses the elements f (xi, yi: i < κ ; z j: j < µ) and g(xi, yi: i <
κ ; z j: j < µ) of FV(X) if and only if V satisfies the identity f (xi, xi: i < κ ; z j: j < µ) ≈
g(xi, xi: i < κ ; z j: j < µ).

P. If the identity holds, then

f (xi, yi: i < κ ; z j: j < µ) ϑϑϑ f (xi, xi: i < κ ; z j: j < µ)

= g(xi, xi: i < κ ; z j: j < µ) ϑϑϑ g(xi, yi: i < κ ; z j: j < µ),

and the transitivity of ϑϑϑ applies. Conversely, if ϑϑϑ collapses the two elements of FV(X)
in question, then let Y = {xi: i < κ ; z j: j < µ}, and consider the unique homomorphism
ϕ : FV(X)→ FV(Y) such that ϕ(xi) = ϕ(yi) = xi for i < κ and ϕ(z j) = z j for j < µ. Then
ϑϑϑ ⊆ Ker(ϕ) since ϕ collapses the pairs that generate ϑϑϑ. Hence

f (xi, xi: i < κ ; z j: j < µ) = ϕ( f (xi, yi: i < κ ; z j: j < µ))

= ϕ(g(xi, yi: i < κ ; z j: j < µ))

= g(xi, xi: i < κ ; z j: j < µ),

which implies that the required identity holds inV. �

The following auxiliary statement follows from Chajda [2, Lemma 1.7]; it also
follows easily from the observation that the tolerances of A are just the symmetric
subalgebras of A2 containing the diagonal {(a, a) : a ∈ A}.

L 3.2. Assume that τττ is the smallest tolerance of A = (A; F) that contains the
pairs (ai, bi) for i < κ. Let (d, e) ∈ A2, and assume that C = {c j : j < µ} ⊆ A generates A.
Then (d, e) ∈ τττ if and only if there is a term h such that

d = h(ai, bi: i < κ ; c j: j < µ) and e = h(bi, ai: i < κ ; c j: j < µ).

P  T 2.1. In order to prove that part (i) implies part (ii), assume that
n ∈ N, that V satisfies TImC, and that f and g are 2n-ary terms such that the identity
f (xi, xi: i < n) ≈ g(xi, xi: i < n) holds in V. Let X = {xi, yi: i < n} and F = FV(X).
Define τττ as the tolerance generated by {(xi, yi) : i < n}. By assumption, there exists
a B ∈ V, a congruence ϑϑϑ of B, and a surjective homomorphism B→ F such that
τττ = ϕ(ϑϑϑ). We can pick elements ai, bi ∈ B such that, for i < n, (ai, bi) ∈ ϑϑϑ, ϕ(ai) = xi,
and ϕ(bi) = yi. Since

f (ai, bi: i < n) ϑϑϑ f (ai, ai: i < n) = g(ai, ai: i < n) ϑϑϑ g(ai, bi: i < n),

by applying ϕ we conclude that ( f (xi, yi: i < n), g(xi, yi: i < n)) ∈ τττ. Therefore,
applying Lemma 3.2 with C = X and using the fact that an equation of two terms
on the free generators is an identity that holds in V, we obtain a 2n-ary term h such
that identities (3.2) and (3.3) hold inV. Hence part (i) implies part (ii).

To prove the converse implication, assume that M(n) holds in V for all n ∈ N,
A = (A; F) ∈ V, and τττ = {(ai, bi) : i < κ} is a tolerance of A. Here κ is an ordinal.
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By reflexivity, A = {ai : i < κ}, but usually this is a redundant enumeration of A. We will
find a congruence preimage ϑϑϑ of τττ in two steps: we construct first a ‘free’ tolerance
preimage %%% of τττ, and then a congruence preimage ϑϑϑ of %%%.

Let Y = {ui, vi: i < κ}, G = FV(Y), and let %%% be the tolerance generated by {(ui, vi) :
i < κ}. Consider the surjective homomorphism ϕ : G→ A such that ϕ(ui) = ai and
ϕ(vi) = bi for i < κ. Since ϕ(%%%) is a tolerance of A and contains the pairs (ai, bi) =

(ϕ(ui), ϕ(vi)), we have that τττ ⊆ ϕ(%%%). To show the converse inclusion, take a pair
in ϕ(%%%). It is of the form (t1(ai, bi: i < κ), t2(ai, bi: i < κ)) where t1 and t2 are terms
and

(
t1(ui, vi: i < κ), t2(ui, vi: i < κ)

)
∈ %%%. Applying Lemma 3.2 with C = Y , we obtain a

term t3 such that

t1(ui, vi: i < κ) = t3(ui, vi: i < κ ; ui, vi: i < κ),

t2(ui, vi: i < κ) = t3(vi, ui: i < κ ; ui, vi: i < κ).

Since ϕ transfers these two equations to

t1(ai, bi: i < κ) = t3(ai, bi: i < κ ; ai, bi: i < κ),

t2(ai, bi: i < κ) = t3(bi, ai: i < κ ; ai, bi: i < κ),

it follows (directly or from Lemma 3.2) that (t1(ai, bi: i < κ), t2(ai, bi: i < κ)) ∈ τττ.
Therefore, τττ = ϕ(%%%). In this first step we did not use condition M(n).

Next, let {(c j, d j) : j < µ} = %%%, X = {x j, y j: j < µ}, and F = FV(X). Consider the
congruence ϑϑϑ =

∨
{con(x j, y j) : j < µ} of F, and let ψ : F→G be the surjective

homomorphism defined by ψ(x j) = c j and ψ(y j) = d j for j < µ. Clearly, %%% ⊆ ψ(ϑϑϑ).
To prove the converse inclusion, take a pair in ϑϑϑ. It is of the form

(
p(x j, y j:

j < µ), q(x j, y j: j < µ)
)
∈ ϑϑϑ, where p and q are terms. We have to prove that the pair

(p(c j, d j: j < µ), q(c j, d j: j < µ)) = (ψ(p(x j, y j: j < µ)), ψ(q(x j, y j: j < µ)))

belongs to %%%. We obtain from Lemma 3.1 that

the identity p(x j, x j: j < µ) ≈ q(x j, x j: j < µ) holds inV. (3.4)

Since the terms p and q depend on finitely many variables and the original ordering
of variables is irrelevant, we can assume that p(x j, y j: j < µ) ≈ f (xi, yi: i < n) and
q(x j, y j: j < µ) ≈ g(xi, yi: i < n) hold in V for some n ∈ N and some 2n-ary terms f
and g. Hence (3.4) turns into

f (xi, xi: i < n) ≈ g(xi, xi: i < n) holds inV,

and all we have to prove is that

( f (ci, di: i < n), g(ci, di: i < n)) ∈ %%%. (3.5)

Let h be a 4n-ary term provided by M(n). Since

f (ci, di: i < n) = h(ci, di: i < n ; ci, di: i < n),

g(ci, di: i < n) = h(di, ci: i < n ; ci, di: i < n),

and h preserves %%%, (3.5) follows. This shows that %%% = ψ(ϑϑϑ).
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Finally, the composite map ϕ ◦ ψ : F→ A, z 7→ ϕ(ψ(z)) is a surjective
homomorphism, and (ϕ ◦ ψ)(ϑϑϑ) = ϕ(ψ(ϑϑϑ)) = ϕ(%%%) = τττ. That is,V satisfies TImC. �

P  T 2.2. To prove part (i), assume that M(n + 1) holds in a variety V,
and f and g are 2n-ary terms such that the identity f (xi, xi: i < n) ≈ g(xi, xi: i < n)
holds in V. By adding two fictitious variables, we define two 2(n + 1)-ary terms
as follows: f ∗(xi, yi: i ≤ n) = f (xi, yi: i < n) and g∗(xi, yi: i ≤ n) = g(xi, yi: i < n). Since
f ∗(xi, xi: i ≤ n) ≈ g∗(xi, xi: i ≤ n) clearly holds inV, M(n + 1) gives a 4(n + 1)-ary term
h∗ such that the identities

f (xi, yi: i < n) ≈ f ∗(xi, yi: i ≤ n) ≈ h∗(xi, yi: i ≤ n ; xi, yi: i ≤ n),

g(xi, yi: i < n) ≈ g∗(xi, yi: i ≤ n) ≈ h∗(yi, xi: i ≤ n ; xi, yi: i ≤ n)
(3.6)

hold in V. Define a 4n-ary term h by letting h(ui, vi: i < n ; xi, yi: i < n) be h∗(ui, vi:
i < n ; un−1, vn−1 ; xi, yi: i < n ; xn−1, yn−1). It follows from (3.6) that, with this h, (3.2)
and (3.3) hold inV. Hence M(n) holds inV, proving part (i) of Theorem 2.2.

To prove part (ii), we construct a variety V generated by an algebra A = (A; f , g)
such that M(n) holds but M(n + 1) fails in V. Let A = {0, 1, . . . , 2n + 2}, and denote
A \ {0} by A+. We define a 2(n + 1)-ary operation f on A by the following rule:

f (ai, bi: i ≤ n) =

1 if {ai, bi: i ≤ n} = A+,

0 otherwise.

Similarly, we also define a 2(n + 1)-ary operation g on A as follows:

g(ai, bi: i ≤ n) =

2 if {ai, bi: i ≤ n} = A+,

0 otherwise.

This way we have defined A = (A; f , g) andV.
The identity f (xi, xi: i ≤ n) ≈ g(xi, xi: i ≤ n) clearly holds in V since both sides

induce the constant An+1→ {0} map in A. Suppose for a contradiction that M(n + 1)
holds in V. Then there exists a 4(n + 1)-ary term h such that (3.2) and (3.3) hold in
V with the above-defined f and g. Then h is not a projection since neither f nor g is
projection. Therefore the term h has an outermost operation, which is either f or g.
If the outermost operation is f , then the term function hA, induced by h on A, cannot
take the value 2, whence (3.3) fails in A. Similarly, if the outermost operation is g,
then (3.2) fails by the 1-2 symmetry. Therefore, M(n + 1) fails inV.

To show that M(n) holds in V, observe that any two 2n-ary terms that are not
projections are equivalent in V since they induce the same constant map A2n→ {0}
in A. Therefore, for any two 2n-ary terms f � and g�, either none of them is a projection
and we can let h�(ui, vi: i < n ; xi, yi: i < n) = f �(xi, yi: i < n), or both are projections
and we can trivially find an appropriate h�. This proves that M(n) holds inV.

Next, to prove part (iii), suppose for a contradiction that TImC is equivalent to a
finite Σ. We can assume that Σ = {σ} is a singleton since otherwise we can form the
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conjunction of all members of Σ. Taking Theorem 2.1 into account, we obtain that σ
is equivalent to {M(k) : k ∈ N}. Notice that, by introducing unary relations instead of
components and replacing heterogeneous operations by usual relations, heterogeneous
algebras can easily be described by usual relational systems. Thus the compactness
theorem is valid for heterogeneous algebras, and we conclude that there is a finite
set S ⊆ N such that {M(k) : k ∈ S } implies σ. Let n be the largest element of S . By
part (i), M(n) in itself implies σ and, therefore, TImC. Hence, again by Theorem 2.1,
M(n) implies M(n + 1), which contradicts part (ii). �

4. Applications

Next, we give some consequences of Theorem 2.1. In Czédli and Grätzer [8] it
is proved that the variety of all lattices satisfies TImC. Theorem 2.1 yields the much
stronger statement that every variety of lattices satisfies this property.

C 4.1. Assume thatV is a variety with the following properties.

(i) V has two binary terms, ∨ and ∧, that satisfy the lattice axioms.
(ii) For each operation symbol f , say n-ary,V satisfies the identity

f (xi ∧ yi: i < n) ∧ f (xi: i < n) ≈ f (xi ∧ yi: i < n).

(In other words, all operations are monotone with respect to the lattice reduct.)

ThenV satisfies TImC.

In virtue of this corollary, every variety of lattices satisfies TImC. So does every
variety of lattices with involution; see, for example, Chajda and Czédli [3] for the
definition.

P  C 4.1. Assume that f and g are 2n-ary terms such that identity (3.1)
holds inV. Define a 4n-ary term h as follows:

h(ui, vi: i < n ; xi, yi: i < n) = f (xi ∧ ui, yi ∧ vi: i < n) ∨ g(xi ∧ vi, yi ∧ ui: i < n).

Using (3.1) and the assumption that the terms of V are monotone with respect to the
lattice order ≤ induced by ∧ and ∨, we conclude that

h(xi, yi: i < n ; xi, yi: i < n) ≈ f (xi ∧ xi, yi ∧ yi: i < n) ∨ g(xi ∧ yi, yi ∧ xi: i < n)

≈ f (xi, yi: i < n) ∨ f (xi ∧ yi, xi ∧ yi: i < n)

≈ f (xi, yi: i < n)

holds inV. Similarly,

h(yi, xi: i < n ; xi, yi: i < n) ≈ f (xi ∧ yi, yi ∧ xi: i < n) ∨ g(xi ∧ xi, yi ∧ yi: i < n)

≈ g(xi ∧ yi, xi ∧ yi: i < n) ∨ g(xi, yi: i < n)

≈ g(xi, yi: i < n).

Therefore, M(n) holds inV, and Theorem 2.1 applies. �
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T 1. Defining h in the proof of Corollary 4.2.

Occurs in f Occurs in g Occurs in h
xi yi xi yi ui vi xi yi

− − − − − − − −

+ − + − − − + −

− + − + − − − +

+ − − + + − − −

− + + − − + − −

+ + + + − − + +

+ + + − − + + −

+ + − + + − − +

+ − + + + − + −

− + + + − + − +

The next three corollaries exemplify how to apply Theorem 2.1 for varieties in
which the terms and identities are easy to handle. While the proof above allowed us to
enrich the lattice structure with further monotone operations, the next proof seems not
to allow a similar enrichment.

C 4.2. The variety of semilattices satisfies TImC.

P. Up to equivalence, each semilattice term is characterised by the variables
occurring in it. Assume that f and g are 2n-ary terms such that (3.1) holds in
the variety V of semilattices. We define an appropriate 4n-ary semilattice term
h(ui, vi: i < n ; xi, yi: i < n) by specifying which variables occur in it. This is done for
each i separately by Table 1; notice that, by (3.1), f contains at least one of xi and yi

if and only if so does g. Thus we obtain an h witnessing that M(n) holds in V, and
Theorem 2.1 applies. �

The next statement is a particular case of the result in [5] on balanced varieties. The
proof we give here is entirely different from that in [5].

C 4.3. For each tolerance τττ of an algebra A, there exist an algebra B,
a congruence ϑϑϑ of B, and a homomorphism ϕ : B→ A such that ϕ(ϑϑϑ) = τττ.

P. Let V be the class of all algebras similar to (of the same type as) A. The
corollary asserts that V satisfies TImC. Let f and g be 2n-ary terms such that (3.1)
holds in V. Let f ∗ = f ∗(z j: j < s) be the term we obtain from f by distinguishing its
variables. For example, if f (x0, y0) =

(
(y0x0)(x0y0)

)
x0 (in the language of one binary

operation), then f ∗(zi: i < 5) =
(
(z0z1)(z2z3)

)
z4. Define g∗ analogously. Since only

trivial identities hold in V, the terms f (xi, xi: i < n) and g(xi, xi: i < n) are the same
(equal sequences of symbols) and, moreover, f ∗ = g∗. Let h∗ = f ∗.
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T 2. Defining h in the proof of Corollary 4.3.

z j in f z j in g z j in h

xi xi xi

yi yi yi

xi yi ui

yi xi vi

T 3. Defining h in the proof of Corollary 4.4.

f depends on g depends on h(ui, vi: i < n ; xi, yi: i < n)

x j x j f •(x j)
x j y j f •(u j)
y j x j f •(v j)
y j y j f •(y j)

By substituting one of the elements of {ui, vi, xi, yi: i < n} for z j in h∗ according to
Table 2, we clearly obtain a term h(ui, vi: i < n ; xi, yi: i < n) witnessing that M(n) holds
inV. �

A variety is unary if all of its basic operations are at most unary.

C 4.4. Every unary variety satisfies TImC.

P. We modify the proof of Corollary 4.3 as follows. Assume that (3.1) holds
in V. Since every term of V depends on at most one variable, there exist a j and a
unary term f • such that f (xi, yi: i < n) ≈ f •(x j) or f (xi, yi: i < n) ≈ f •(y j) holds in V.
Similarly, there exist a k and a unary term g• such that g(xi, yi: i < n) ≈ g•(xk) or
g(xi, yi: i < n) ≈ g•(yk) holds inV.

Assume first that j , k. Then (3.1) yields that f •(x j) ≈ g•(xk) holds in V, and so
f (xi, yi: i < n) and g(xi, yi: i < n) induce the same constant function on each A ∈ V.
Hence we can define h by h(ui, vi: i < n ; xi, yi: i < n) = f (xi, yi: i < n).

Secondly, assume that j = k. Then (3.1) yields that f •(x j) ≈ g•(x j) holds in V.
Clearly, we can define h according to Table 3. �

A systematic survey of known varieties with TImC is not pursued in this paper. We
note that, as opposed to the previous corollaries, Theorem 2.1 is not always the most
convenient tool to prove the TImC property. For example, every variety defined by a
set of balanced identities satisfies TImC by Chajda, et al. [5]. In particular, so do the
variety of all semigroups and that of all commutative semigroups. We wonder what
the situation is with other important varieties of semigroups.
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5. Natural Maltsev conditions and TImC

We have shown in Corollary 4.1 that every variety of lattices with additional
monotone operations satisfies TImC. A natural generalisation would be to consider
varieties with a majority term (a ternary term m such that the identities m(x, x, y) ≈ x,
m(x, y, x) ≈ x, and m(y, x, x) ≈ x hold in V). Lattices have such a term. Also, they
constitute an idempotent variety. (A variety V is idempotent if t(x, . . . , x) ≈ x is an
identity of V for every basic operation t.) The following example shows that these
conditions together are still not sufficient to establish TImC.

P 5.1. There exists an idempotent varietyV with a majority term such that
TImC fails inV andV is generated by a three-element algebra.

P. Let A = {0, 1, 2}, and define an algebra A = (A; f , g, m), where f and g are
idempotent quaternary operations and m is a ternary majority operation defined as
follows:

f (xi: i < 4) =


1 if (xi: i < 4) ∈ {(1, 1, 1, 1), (1, 0, 0, 2)},

2 if (xi: i < 4) = (2, 2, 2, 2),

0 otherwise;

g(xi: i < 4) =


2 if (xi: i < 4) ∈ {(2, 2, 2, 2), (1, 0, 0, 2)},

1 if (xi: i < 4) = (1, 1, 1, 1),

0 otherwise;

m(x0, x1, x2) =

0 if |{x0, x1, x2}| = 3,

j if |{i : xi = j}| ≥ 2.

Then V, the variety generated by A, is an idempotent variety with a majority term.
Consider the relation τττ = A2 \ {(1, 2), (2, 1)}. We show that τττ is a tolerance of A.

Suppose for a contradiction that f does not preserve τττ. Then there are (ai, bi) ∈ τττ
such that

(
f (ai: i < 4), f (bi: i < 4)

)
< τττ. By symmetry, we can assume that

(
f (ai: i < 4),

f (bi: i < 4)
)

= (1, 2). However, then (a0, b0) = (1, 2) < τττ is a contradiction. Hence
f preserves τττ. So does g(xi: i < 4) since it is the ‘1-2 dual’ of f (x3−i: i < 4).
Next, suppose for a contradiction that (ai, bi) ∈ τττ for i < 3 but, say,

(
m(ai: i < 3),

m(bi: i < 3)
)

= (1, 2). Then at least two of the ai equal 1 and at least two of the
bi equal 2. Thus there is an i ∈ {0, 1, 2} such that (ai, bi) = (1, 2) < τττ, which is a
contradiction. Therefore, τττ is indeed a tolerance of A.

Finally we show that TImC fails inV. Suppose for a contradiction that B ∈ V, ϑϑϑ is
a congruence of B, ϕ : B→ A is a homomorphism, and ϕ(ϑϑϑ) = τττ. Pick (a, b), (c, d) ∈ ϑϑϑ
such that

(
(ϕ(a), ϕ(b)) = (1, 0) ∈ τττ and

(
(ϕ(c), ϕ(d)

)
= (0, 2) ∈ τττ. Observe that the

identity f (x, x, y, y) ≈ g(x, x, y, y) holds inV since it holds in A. Therefore

f (a, b, c, d) ϑϑϑ f (a, a, d, d) = g(a, a, d, d) ϑϑϑ g(a, b, c, d),
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and we obtain the following contradiction:

(1, 2) =
(
f (1, 0, 0, 2), g(1, 0, 0, 2)

)
=

(
f (ϕ(a), ϕ(b), ϕ(c), ϕ(d)), g(ϕ(a), ϕ(b), ϕ(c), ϕ(d))

)
=

(
ϕ( f (a, b, c, d)), ϕ(g(a, b, c, d))

)
∈ ϕ(ϑϑϑ) = τττ. �

Another frequently considered Maltsev condition is congruence permutability.
Each congruence permutable variety V satisfies TImC since every tolerance of an
algebra in V is known to be a congruence; see Smith [20] (explicitly) or Werner [22]
(implicitly). As an illustration, we give a new proof, based on Theorem 2.1.

C 5.2. Every congruence permutable variety satisfies TImC.

P. Assume that V is a congruence permutable variety. By a classical result of
Mal’cev [17], V has a Maltsev term p, that is, a ternary term p such that p(x, x, y) ≈
y ≈ p(y, x, x) holds inV. Assume that f and g satisfy (3.1) inV. Let

h(ui, vi: i < n ; xi, yi: i < n) = p( f (xi, yi: i < n), f (xi, ui: i < n), g(xi, ui: i < n)).

Obviously, this h witnesses that M(n) holds inV, and Theorem 2.1 applies. �

The strength of the property TImC is very well shown by the following theorem,
which refutes a possible generalisation.

T 5.3. A congruence n-permutable variety has TImC if and only if it is
congruence permutable.

P. The previous corollary shows one direction, so suppose that a variety V is n-
permutable and satisfies TImC. By the results of Hagemann and Mitschke [13], there
exist ternary terms p1, . . . , pn such that the following are identities ofV:

x ≈ p1(x, y, y),

pi(x, x, y) ≈ pi+1(x, y, y) for 1 ≤ i ≤ n − 1,

pn(x, x, y) ≈ y.

We shall construct a term p such that V satisfies the identities x ≈ p(x, y, y) and
p(x, x, y) ≈ p3(x, y, y). This replaces p1 and p2 above, implying that the variety V
is actually (n − 1)-permutable. Then we shall be done by induction on n.

Define

f (x, u, v, y) = p1(x, u, y) and g(x, u, v, y) = p2(x, v, y).

Then f (x, x, y, y) ≈ g(x, x, y, y) is an identity of V, since this reduces to the identity
p1(x, x, y) ≈ p2(x, y, y). Thus M(2) implies the existence of an 8-ary term h satisfying
the following identities:

h(x, u, v, y, x, u, v, y) ≈ f (x, u, v, y) ≈ p1(x, u, y),

h(u, x, y, v, x, u, v, y) ≈ g(x, u, v, y) ≈ p2(x, v, y).
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Since p1 does not depend on v, we can substitute v→ y in the first identity, and
similarly, u→ x in the second identity, so

h(x, u, y, y, x, u, y, y) ≈ p1(x, u, y) , (5.1)

h(x, x, y, v, x, x, v, y) ≈ p2(x, v, y) (5.2)

still hold inV. Finally, let

p(a, b, c) = h(a, b, c, b, a, b, b, c).

Then the substitution u→ y in (5.1) gives

p(x, y, y) = h(x, y, y, y, x, y, y, y) ≈ p1(x, y, y) ≈ x,

and the substitution v→ x in (5.2) yields

p(x, x, y) = h(x, x, y, x, x, x, x, y) ≈ p2(x, x, y) ≈ p3(x, y, y),

proving the theorem. �

Theorem 5.3 leads to further examples of varieties without TImC. For example, the
variety of implication algebras is 3-permutable (see Mitschke [18]), while that of n-
Boolean algebras (see Schmidt [19] and [13]) is (n + 1)-permutable. Hence it follows
from Theorem 5.3 that these (nonidempotent) varieties do not satisfy TImC since they
are not congruence permutable.

In view of Theorem 5.3, it would be interesting to see if there is a connection
between TImC and other famous Maltsev conditions.
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