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NON-SIMPLICITY OF LOCALLY FINITE BARELY
TRANSITIVE GROUPS

by B. HARTLEY* and M. KUZUCUOGLU
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We answer the following questions negatively: Does there exist a simple locally finite barely transitive group
(LFBT-group)? More precisely we have: There exists no simple LFBT -group. We also deal with the question,
whether there exists a LFBT-group G acting on an infinite set O so that G is a group of finitary permutations
on Q. Along this direction we prove: If there exists a finitary LFBT-group G, then G is a minimal non-FC
p-group. Moreover we prove that: If a stabilizer of a point in a LFBT-group G is abelian, then G is
metabelian. Furthermore G is a p-group for some prime p, G/G' = Cpoo, and G is an abelian group of finite
exponent.

1991 Mathematics subject classification: 20F50, 20B07, 20E22, 20E32.

Let Q be an infinite set. Then a transitive subgroup G of Sym(ft) is said to be barely
transitive if every orbit of every proper subgroup of G is finite. More generally, we
say that a group G is barely transitive if it can be represented as a barely transitive
subgroup of Sym(Q) for some infinite set Q. This is easily seen to be equivalent to the
condition that G has a subgroup H of infinite index such that C\geG Hg = {1} and such
that \K : K n H\ is finite for every proper subgroup K of G. Throughout this article, if
G is a barely transitive group, then H will denote a fixed subgroup of G with the above
properties.

In this article, we shall study locally finite barely transitive groups, which we shall call
LFBT-groups. Metabelian LFBT-groups were constructed by B. Hartley in [4] and [5].
It is unknown whether perfect LFBT-groups exists. We shall prove that there are no
simple LFBT-groups; and, as a consequence, improve on some of the results in [8].

Theorem 1. There exists no simple LFBT-group.

It is also natural to ask whether there exists a LFBT-group G acting on an infinite
set Q so that G is a group of finitary permutations on Q.

Theorem 2. If there exists a finitary LFBT-group G, then G is a minimal non-FC,
p-group.

* The Society is saddened by the death of Professor Brian Hartley.
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Theorem 3. If G is a finitary permutation group on A and G = {gt\(fi = 1,
i = 1,2, 3 . . . ) , then G is not a LFBT-group on A.

In [7], it was asked how restrictions on H affect the structure of a LFBT-group.
We shall prove the following result.

Proposition 1. Let G be a LFBT-group. If H is abelian, then G is metabelian.
Furthermore

(i) G is a p-group, p prime.

(ii) G/G' is isomorphic to Cpoo.

(iii) G' is an abelian group of finite exponent.

It should be pointed out that in each of the LFBT-groups constructed in [4] and
[5], the subgroup H is abelian.

The second author would like to thank Prof. S. Thomas for some valuable
discussions. He would also like to thank Prof. J. Roseblade for his major
improvements in the exposition of this paper.

Proofs of the results

We will begin by collecting together some of the basic properties of LFBT-groups.
Complete proofs of these results can be found in [8].

G has no proper subgroup of finite index. (1)

Suppose

H = H0<Ht<H2< ... <Hn... (2)

is a chain of subgroups of G above H. Since \Hn : H\ is finite, there is a finite subgroup
Ln of Hn with Hn = HLn. Let Fn = (L, Ln).

We have

F, < F2 < ... < Fn < ... (3)

and

Hn = HFn (4)

Evidently G = ( j H n (5)
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follows from the fact that K < G and \K : K D H\ — oo implies K = G. Again by the
same reason we have

n (6)

Further if X < G, then X < Hn for some n (7)

Now suppose that there is no simple LFBT-group. Since it is clear that any simple
homomorphic image of G would have to be a LFBT-group, it follows that G has no
maximal normal subgroup. Hence G is a union of proper normal subgroups. In
particular

FG
n < G (8)

Proposition 2. Let G be a LFBT-group. Then either G is a p-group for some prime p
or there are infinitely many primes dividing the order of the elements ofG.

Proof. By (3) and (6) we have F, < F2 < ... a sequence of finite subgroups of G
such that G = U^F,. Assume that G is not a p-group and there are only finitely many
primes, say pu...,pk, dividing the order of the elements of G. Let Sa be a Sylow
p,-subgroup of F, and let Sn be a Sylow p,-subgroup of F2 containing Sn, etc. Then
S, = U£,S,7 is a maximal p,-subgroup of G. We shall show that G — (St,...,Sk). The
group FjD (Slt. ..,Sk) contains the groups S1;-, ...,Skj, hence equals to FJt for all j .
This implies that G is generated by a finite number of proper maximal ^-subgroups
which is impossible by [8, Lemma 2.10]. Thus infinitely many primes must divide the
order of the elements of G.

Proof of Theorem 1. Assume that there exists a simple LFBT-group G. By (6) G is
countable and by [8, Lemma 2.10], G cannot be generated by two proper subgroups.
Then by [1, Corollary 1.9] such a group can be embedded in a finitary linear group
FGL{V) on a vector space V over a field of characteristic p.

By [2, Theorem B], for an infinite simple periodic group G of finitary trans-
formations on a space over a field of characteristic p the following are valid:

(1) If p = 0, then for each finite subgroup K of G, there exists a finite quasisimple
subgroup H that contains K and is such that K D Z(H) = {1}.

(2) If p > 0, then for each finite subgroup K of G, there exists a finite subgroup H
that contains K and is such that H = H', H/OP(H) is a quasisimple group and
K n S(H) = {1} where S(H) is the maximal soluble normal subgroup of H.

In the first case, G has a sequence of finite subgroups G, < G2 < ... where
G = U~,G, and G, n Z(Gi+l) = {1} (i.e. A Kegel sequence (G,, Z(fi)) i = 1, 2, 3,...). By
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[8, Lemma 4.2], G cannot be a barely transitive group. (For details about Kegel
sequences and reductions on Kegel sequences, see [6].)

For the second case, let G = U£iG,, where Gj/Op(Gj) are finite quasisimple groups.
We shall show that there exists an element x in G such that Cc(x) involves an infinite
non-linear locally finite simple group; then we shall get a contradiction. Let
G, = GJOP(G).

By using the classification of finite simple groups and reduction on Kegel sequences
we may assume that

(i) each GJZ(G) is an alternating group or

(ii) each Gt/Z{G) is a classical group of fixed Lie type over a field of characteristic
Pi-

For (i), the centralizer CG(x) of any element x of order prime to p involves an infinite
non-linear locally finite simple group. See [6, Lemma 2.5].

For (ii), let {pf : i e N] be the set of primes that appear as characteristic of the fields.
If one of the primes, say p;, in this set appears infinitely often, then we choose an
element of prime order relatively prime to p and pt. Existence of this element is
guaranteed by Proposition 2.

If none of the primes appears as a characteristic of the fields infinitely many times,
then we may assume that each prime appears as a characteristic only once. Here we
may need to pass, if necessary, to a subsequence and delete some of the terms in the
Kegel sequence. Again passing to a subsequence, if necessary, we may assume that
there exists a prime, say n, which does not appear as a characteristic in the list and is
different from p. Let x be an element of order n so that x becomes a semisimple
element in all the classical simple groups GJZ(G,). Then by [6, Theorem C (iv)] we get
CG((x) e Tn+[iy Here Tn denotes the class of locally finite groups having a series of finite
length in which there are at most n non-abelian simple factors and the rest are locally
soluble. (For details see [6, Section 2].) But by coprime action CGj(x) equals
Q , ( X ) ° P ( G . ) / ° P ( G ' ) -

 T h i s implies by [6, Lemma 2.1] that CG((x) is in Tn+[i,. Then by [6,
Lemma 2.3] it follows that Cc(x) is in Tn+^ and involves an infinite non-linear finite
locally simple group.

In any case the centralizer of one of the elements x involves an infinite non-linear
locally finite simple group and this is impossible by [8, Lemma 4.1]. Therefore there
exists no simple LFBT-group.

Proposition 3. Let G be a LFBT-group. If H is almost locally p-soluble, then G is
almost locally p-soluble. In particular G is a p-group and every proper normal subgroup is
nilpotent of finite exponent.

Proof. Let p be a prime. If K is any locally finite group, let Kp be the product of
all normal locally p-soluble subgroups of K. Then Kp is locally p-soluble and K/Kp has
no non-trivial locally p-soluble normal subgroup.

Suppose H is almost locally p-soluble. If £ is a proper normal subgroup of G, then
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\K : Hp D K\ must be finite, so that K/Kp is finite. By (1) [K, G] < Kp, and so K must
equal Kp. By (3) and (8), G must equal Gp. i.e. G is locally p-soluble. Now the rest of
the theorem follows from [8, Theorem 1.1].

Therefore the restriction of local p-solubility on G of [8, Theorem 1.1] is reduced to
the restriction of almost local p-solubility of H.

Corollary 1. Let G be a LFBT-group. If H is nilpotent, then G is a p-group and each
proper subgroup of G is nilpotent.

Proof. By Proposition 3 and (8) G is a p-group and a union of nilpotent proper
normal subgroups. Let X be any proper subgroup of G. Then \X: X n H\ < oo. Let Y
be a normal subgroup of X of finite index and contained in XC\H. Then X = FXY
for some finite subgroup F of X. Hence X is nilpotent.

Proof of Proposition 1. Assume that H is abelian. By Theorem 1, G is not
simple. By (8) G is a union of proper normal subgroups. Let N be a proper normal
subgroup of G. Let A be a normal subgroup of N of finite index and contained in
H. Let B be the FC-radical of N. Then B/Z(B) is finite, so N/Z(B) is as well.
(G/Z(B))/C(G/Z(B))(N/Z(B)) < Aut(N/Z(B)) which is finite. By (1) again we have
[N, G] abelian. So G' is a proper subgroup. Now (i) and (ii) follows from the
theorem in [4].

It remains to show that G' is abelian. Let M = FC{G'). We have \G': M\ is finite.
Then the commutator group G'/M is finite. This implies that G/M is an FC-group. It
follows from (1) that G/M is abelian. Thus M — G'. But then, G' is an abelian by finite
FC-group. Therefore G' is central by finite. However G' does not have a subgroup N
of finite index. Then we get G' is abelian. Now (iii) follows from the theorem in [4].

Lemma 1. If there exists afinitary LFBT-group on a set Q, then G = G'.

Proof. Assume if possible that G is a finitary LFBT-group on the set Q, and
G ^ G'. Let A be an orbit of G' containing a e SI. Then A is a finite G-block. Let
S = {Ag : g e G} be the set of distinct orbits of G' on fi. Then G acts on 3 transitively
and there exists a homomorphism p, from G to finitary symmetric group on 3. By (1)
K = Ker p j^ G. Then G/K is an infinite abelian group acting on 3 faithfully and
transitively. Now let gK e G/K and Ag,.gK ^ Ag,. Then Agig1.gK ^ Agxg2 for all g2.
Since G/K acts transitively on 3, gK moves every element of 3. Hence
| Supp g \>\ Supp p(g) | which is infinite. But this is impossible as G is a finitary
permutation group on fi. Hence G = G'.

Proof of Theorem 2. By definition the orbits of each proper subgroup of G are
finite. As G acts transitively on fi by (1), Q is a countable set. Let K be a proper
subgroup of G and let {Q,- : i = 1, 2, 3...} be the set of distinct orbits of K. Then each
Q, is a finite K set and K acts on n, transitively. Hence K can be embedded into
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restricted direct product of finite groups. It follows that K is an FC-group. This implies
that G is a minimal non-FC-group. But by [9] a perfect locally finite minimal non-
FC-group is a p-group.

Lemma 2. If there exists a fmitary LFBT-group on a set A, then G does not have a
maximal G-block. Moreover A = U~,A,, where A, are finite G-blocks.

Proof. By [8, Lemma 2.8] G is not a primitive permutation group. Hence we have
non-trivial G-blocks

A, < A2 < . . . and let 5eA, .

Assume if possible that An is a maximal G-block. Then we have an equivalence relation
corresponding to An. Let p be the set of equivalence classes corresponding to the
equivalence relation of An. Then G acts on p transitively and An is a maximal G-block
of the permutational pair (G, A) so (G, p) is a primitive permutation group and the
stabilizer of a point in p is a maximal subgroup of G but this is impossible by [8,
Lemma 2.10]. Hence the existence of maximal G-block An is impossible. Therefore we
have an infinite tower of G-blocks A, < A2 < A3 < . . . and U~, A, = A.

The following lemma might have an independent interest in fmitary permutation
groups.

We use [3] as a reference for the properties of the wreath product.

Lemma 3. Let G = {gi, : g\ — 1, i = 1, 2, 3,...) be a transitive fmitary permutation
group on a set A and A = U", A, where A, < A2... and A, are finite G-blocks. Then G has
a subgroup isomorphic to Wr NCp.

Proof. Let g be an element of G of order p. Then there exists a G-block A,, such that
Supp g c A,,. Since G is transitive not all g,, i = 1, 2, 3 ..., can stabilize A,,. So there
exists gh such that g*h = 1 and A,,gh / Afl. Now consider G,, = {g, g,t). The elements g and
g^>, 1 < n < p - 1 c o m m u t e . S i n c e (g^i) a n d {g^>), 1 < n , m < p — 1 , n ^ m m o v e s
distinct points of A, the intersection (g^) n {g^>) = 1 for all n ̂  m and

(g, gm< ,g< / • " ' > = {g) x {g»>) x (g< > x . . . x (/•"')

and

(g,gti) = (g) x {g)B* x {g)< x . . . x {g)<\(gi{).

Hence (g, gix) ^ {g)i < (git ) = Cpi Cp. As Supp xy c Supp x U Supp y, again by (9) there
exists A,2 such that Supp G(| c A,2 and |A,21 < oo so there exists gh e G such that
g*2 = 1 and A,2 n A,2 ,̂2 = 0. Then the elements of G,, and (gh) do not commute but, for
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any x e G,,, the element x and X''J , 1 < n < p — 1 commute. Then

(G,,, gh) = G,. x G^' x . . . x G ^ '

We can continue this process since Gf/ is a finite group and we have a tower of finite
G-blocks. Then we have

GXj =* Go_, i (gj and G,, < G,2 < . . . .

In order to simplify the notation let us suppress the i in the subscripts i.e. we have
G, = W, where Wt = Cp t Cp i... i Ct (i times). Suppose we have an isomorphism
ij/j : Gj -»• Wj. We need to extend this isomorphism ^ to an isomorphism \pi+l between
GJ+l and Wj+l. Let

: f l x'9j+l) '̂ ^ f l ^(X.)WJ+1 w;+> • x' e G i ' (0 < s < p -

Clearly i/^+l is a well defined map from Gj+I to WJ+l. It follows that ij/j+i is an
isomorphism.

Then {G;, ^ : j = 1, 2, 3 , . . . } is a direct system and iA/+I 1^= ^ . Let »P : (K=: UG,)-> W.
If g e K there exists i such that # e G,, then \(/(gi) = ^,(g). *F is an isomorphism and

Let fi, = {A,, A,0j, . . . , A,g? '} . Then (gj acts on Q, transitively. Let

Q = DrieNQi

Now as in [3]; choose (A,)teAf as the reference point. Then every g", i = 1, 2, 3,
1 < « < P gives a permutation of Q so

acts on Q as in the definition and hence

{gfi, :g? = \,ieN) = WrNCp

where 0,: (g,) -*• Sym(Ci). Hence K is the required subgroup of G.

Proof of Theorem 3. Assume to the contrary that G is a LFBT-group. By Lemma 2
we have
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00

A, < A2 < A3 < . . . and ( J A, = A. (9)
i=l

By Lemma 3 G has a subgroup K isomorphic to WrNCp. If K is a proper subgroup
of G, then bare transitivity of G implies that K is a residually finite group and hence
K' is residually finite. But by [3, p. 173] K' is a perfect p-group hence this is impossible.
If K = G, then G has proper subgroups isomorphic to K but this is impossible by the
above paragraph. Hence the assumption that G is a LFBT-group lead us a
contradiction.
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