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Abstract

The Asteraceae with up to 30,000 species occurs on all continents except Antarctica and in all
major vegetation zones on earth. Our primary aim was to consider cypselae dormancy-break
and germination of Asteraceae in relation to ecology, vegetation zones and evolution. Cypselae
are desiccation-tolerant and in various tribes, genera, species and life forms of Asteraceae are
either non-dormant (ND) or have non-deep physiological dormancy (PD) at maturity. All six
types of non-deep PD are found among the Asteraceae, and dormancy is broken by cold or
warm stratification or by afterripening. Soil cypselae banks may be formed but mostly are
short-lived. Much within-species variation in dormancy-break and germination has been
found. Using data compiled for 1192 species in 373 genera and 35 tribes of Asteraceae, we
considered ND and PD in relation to life form, vegetation zone and tribe. Senecioneae and
Astereae had the best representation across the vegetation zones on earth. In evergreen and
semi-evergreen rainforests, more species have ND than PD, but in all other vegetation
zones, except alpine/high-latitude tundra (where ND and PD are equal), more species have
PD than ND. Tribes in the basal and central grades and those in the Heliantheae Alliance
have both ND and PD. The high diversity and lability of non-deep PD may have enhanced
the rate of species diversification by promoting the survival of new species and/or species
in new habitats that became available following globally disruptive events since the origin
of the Asteraceae in the Late Cretaceous.

Introduction

The Asteraceae is a monophyletic family (Mandel et al., 2019) that has been estimated to have
1100 genera and 20,000 species (Gleason and Cronquist, 1991), 1600–1700 genera and 24,000–
30,000 species (Funk et al., 2005), 1600 genera and 23,000 species (Anderberg et al., 2007),
1568 genera and 25,000 species (Mabberley, 2017) and 1700 genera and 25,000–30,000 species
(Mandel et al., 2019). Furthermore, the number of subfamilies and tribes varies, with
Mabberley (2017) listing 3 subfamilies and 43 tribes. A remarkable feature of the Asteraceae
is that it has a global distribution, with species occurring ‘everywhere but Antarctica’ (Funk
et al., 2005). However, two species of Asteraceae (four plants of Nassauvia gellanica and
one plant of Gamochaeta nivalis) were observed on Deception Island (West Antarctica) in
2009 (Lewis Smith and Richardson, 2011). Three plants of N. gellancia and the plant of
G. nivalis disappeared due to natural events. The plant of N. gellanica was deemed to be an
alien and was removed before the species became invasive.

Molecular studies suggest that the family originated in South America (Jansen and Palmer,
1987, 1988; Panero and Funk, 2008) in the Late Cretaceous about 83 Ma (Mandel et al., 2019).
Fossil pollen of Asteraceae has been found in the Late Cretaceous (ca. 76–66 Ma) deposits of
Antarctica (Barreda et al., 2012, 2015), and fossil flowers of the family have been found in
Eocene (47.5 Ma) deposits in Patagonia (Barreda et al., 2010). Some tribes such as the
Barnadesieae, which is the basal tribe of the family based on the absence of a 22 kb
cpDNA inversion (Bremer and Jansen, 1992), Eupatorieae, Heliantheae, Liabeae and
Mutisieae originated in the montane zone of the Andes Mountains in South America
(Funk et al., 1995; Mandel et al., 2019). Following its origin in South America, Mandel
et al. (2019) proposed that the Asteraceae dispersed to North America and then to Asia
and Africa, with rapid radiation of tribes and species occurring in the Eocene and Oligocene.

According to Funk et al. (2005), the Asteraceae ‘is the most diverse of all plant families,’ and
Palazzesi et al. (2022) considered it to be ‘a model system for evolutionary studies’. Species of
Asteraceae grow in a range of habitats from tropical evergreen rainforest to tundra, and some
grow in wetlands, saline habitats and on sand dunes (see tables in chapters 9, 10 and 11 of
Baskin and Baskin, 2014). Asteraceae includes trees, shrubs, vines and herbs, and they may
be aquatics, succulents or epiphytes (Anderberg et al., 2007; Moreira-Muñoz, 2011). Kress
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(1986) reported 20 species of Asteraceae in 8 genera that are epi-
phytes. Large caulescent rosettes of some Asteraceae grow at high
elevations in the Andes (Fagua and Gonzalez, 2007), the moun-
tains of East and Central Africa (Smith and Young, 1982, 1987;
Beck, 1986; Pérez, 1992, 1995) and on the summit of Haleakala
(a mountain) on the island of Maui in Hawaii (USA) (Pérez,
2001). On the other hand, cushion plants of at least 50 genera
of Asteraceae grow in arctic/subantarctic/alpine regions (Aubert
et al., 2014). In the subantarctic islands of New Zealand, mega-
herbs of Asteraceae (e.g. Pleurophyllum spp.) have a somewhat
flat rosette of giant (15–45 × 10–25 cm) corrugated (ribbed) leaves
and deeply pigmented flowers (Fraser, 1986). On Campbell
Island, leaf and flower temperatures of P. speciosum were 8 and
11°C higher than the temperature of the surrounding air, respect-
ively (Little et al., 2016). Among the Asteraceae, there are species
that behave as winter annuals, summer annuals, biennials, long-
lived monocarpic perennials and polycarpic perennials (e.g.
Zedler et al., 1983; de Jong et al., 2000; Law and Salick, 2005;
Anderberg et al., 2007; Denisiuk et al., 2009; Baskin and Baskin,
2014; Baskin et al., 2022).

Various kinds of studies have been conducted in an attempt to
help explain the diversity of species, habitats, life forms and life
cycles of the Asteraceae. The ideas/studies about the reasons for
the high diversification rates of Asteraceae include whole-genome
duplication (polyploidization) (WGD; Zhang et al., 2021a), gen-
etic diversity (Pascual-Díaz et al., 2021), interaction with insects
that serve as pollinators (Panero et al., 2014) and production of
secondary metabolites that deter predators especially insects
(Seaman, 1982; Vanderplanck et al., 2020). An inflorescence com-
pressed into a head or capitulum is viewed as a pseudanthia or false
flower (Zhang and Elomaa, 2021). The capitulum, rather than the
flower, is highly variable throughout the family, and it is also con-
sidered to be an important characteristic related to the evolutionary
success of the Asteraceae (Burtt, 1977; Panero and Funk, 2008). It
seems that pollen presentation via the capitulum has evolved in
response to herbivory, insect-flower interactions and/or seed/fruit
dispersal (Leppik, 1977; Panero and Funk, 2008).

Although numerous studies have been conducted on cypsela
(diaspore) dormancy-breaking and germination requirements of
Asteraceae (see references in Baskin and Baskin, 2014), no
attempt has been made to review cypsela dormancy in this
huge family in relation to ecology, biogeography and evolution.
In this review, we address several general questions. (1) What
kind of dormancy is found in cypselae of Asteraceae? (2) What
is the distribution of cypsela non-dormancy and dormancy
among life forms of Asteraceae and in the various vegetation
zones on earth? (3) What is the distribution of cypsela non-
dormancy and dormancy in tribes of Asteraceae in relation to
life form and vegetation zone?

The dispersal/germination unit

The dispersal unit of Asteraceae is a single-seeded cypsela
(Gleason and Cronquist, 1991), except it is reported to be a
drupe in Chrysanthemoides monilifera subsp. monilifera from
South America (Reynolds et al., 2013). However, the dispersal
unit of Asteraceae is often referred to as an achene, which is
not botanically correct. A cypsela is a dry indehiscent fruit origin-
ating from an inferior ovary with two carpels and one locule that
produces only one seed. In contrast, an achene is a single-seeded
dry indehiscent fruit that originates from a superior ovary
(Marzinek et al., 2008). In this paper, we use only ‘cypsela’. The

pericarp of Asteraceae cypselae is not adnate to the seed
(Frangiote-Pallone and Souza, 2014), and it is water permeable
(e.g. Kagaya et al., 2005; Genna and Pérez, 2016; Yuan and
Wen, 2018; Sarmento et al., 2019; Zhang et al., 2019).
Furthermore, the large well-developed embryo is spatulate in
shape, and endosperm is not present in mature cypselae
(Martin, 1946; Lubbock, 1892[1978]). In the Baskin and Baskin
(2014) classification scheme for variation in position, size, mass
and morphology of plant diaspores on individual plants, most
Asteraceae fit under Division I. Monomorphic (but see below).
Furthermore, diaspores fit under Group A (diaspores are pro-
duced only from chasmogamous flowers) of Supergroup 1
(Monomorphic aerial). However, Asteriscus pygmaeus and
Arctotheca populifolia fit under Supergroup 2 (Monomorphic
basal or subterranean). More specifically A. pygmaeus fits under
Group A (Basicarpy) and A. populifolia under Group B
(Geocarpy. Subgroup e. Passive geocarpy).

Cypselae of Asteraceae are desiccation-tolerant and thus have
orthodox storage behaviour (Dickie and Pritchard, 2002). Hong
et al. (1998) list 434 species of Asteraceae: 377 with orthodox cyp-
selae, 55 probable orthodox? and 2 undecided. In their global list
of species whose seeds are recalcitrant (desiccation-sensitive),
Subbiah et al. (2019) do not list any species of Asteraceae.
According to Pence et al. (2022) ‘exceptional species’ in terms
of ex-situ seed storage for conservation may have seeds that are
desiccation-sensitive, short-lived under conventional seed bank-
ing conditions or deeply dormant. However, these authors listed
187 species of Asteraceae as ‘non-exceptional’ and 151 species
of this family as ‘probably non-exceptional’. Cypselae of 18 spe-
cies in 10 genera of Asteraceae stored dry at −18°C for 24–26
years were predicted to have a P50 (number of years before 50%
of the cypselae lose viability) of 13 (Guizotia abyssinica) to 124
(Zinnia sp.) years (Walters et al., 2005).

Venable and Levin (1983) surveyed published floras from Asia,
Australia, Africa, North America, Pacific Islands and South
America for information on dispersal-related structures on cypse-
lae of Asteraceae. They recorded information for 5893 species,
including annuals, biennials, perennials, shrubs and trees, and
71.0, 87.6, 81.2, 86.2 and 83.0%, respectively, had structures on
the cypselae that would facilitate dispersal. In all life forms, the
rank order of dispersal-facilitating structures was plumes > barb-
like > scales, except for annuals in which it was plumes > scales
> barb-like structures.

Capitula and breeding systems

A capitulum may consist of both disc and ray flowers, only disc
flowers or only ray flowers. A disc flower has three to five corolla
lobes, depending on the species, and is actinomorphic, while the
corolla lobes of a ray flower are fused into a single strap-shaped
(ligulate) structure that is zygomorphic (Jeffrey, 1977; Leppik,
1977; Bremer, 1994). Various types of capitula (and breeding sys-
tems) can be distinguished in Asteraceae (Jeffrey, 2009; Elomaa
et al., 2018): (1) both disc and ray flowers are perfect (monocliny),
for example, Cotula spp. (Lloyd, 1972a); (2) disc perfect and ray
pistillate (gynomonoecy), for example, Aster s.l. (Bertin and
Kerwin, 1998) and Solidago (Bertin and Gwisc, 2002); (3) disc
staminate and ray pistillate (monoecy), for example, Lecocarpus
pinnatifidus (Philipp et al., 2004); (4) disc perfect and ray sterile,
for example, Helianthus annuus (Elomaa et al., 2018) and (5)
rarely androdioecy with some perfect flowers and some that are
functionally staminate.
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Some species of Asteraceae produce two kinds of capitula
(Jeffrey, 2009): (1) pistillate and staminate capitula on different
plants (dioecy); (2) pistillate and perfect capitula on different plants
(gynodioecy), for example, Bidens sandvicensis (Schultz and
Ganders, 1996) and Cirsium arvense (Lloyd and Myall, 1976;
Kay, 1985); (3) perfect and staminate capitula on different plants
(androdioecy); and (4) pistillate and staminate capitula on the
same plant (monoecy). It should be noted that in some sexually
dimorphic plant species, the strictness of malenesss and/or female-
ness in individuals in a population may be constant [invariable
(strictly unisexual) sexual expression] or inconstant (continuously
variable) sex expression, with inconstant males being more com-
mon than inconstant females (Lloyd, 1976; Webb, 1999).
Examples of inconstant males and females in sex expression in
the Asteraceae include dioecious species of Cotula (Lloyd, 1972b,
1975). Also, see Yampolsky and Yampolsky (1922) and Renner
(2014) for information on kinds of sexual systems in Asteraceae.

Species of Asteraceae may be self-incompatible (SI) (Hiscock,
2000; Stephens, 2008; Allen et al., 2011), self-compatible (SC)
(Carr et al., 1986; Grombone-Guaratini et al., 2004; Picó et al.,
2004; Soto-Trejo et al., 2013) or partially self-incompatible (PSI)
(Ortiz et al., 2006; Nielsen et al., 2007). Furthermore, populations
of some Asteraceae have a mixture of breeding systems (Sun and
Ganders, 1988; Arista et al., 2017). In a survey of the breeding sys-
tem in 571 taxa of Asteraceae, Ferrer and Good-Avila (2007)
found that 65, 10 and 25% of the taxa had SI, PSI and SC, respect-
ively. These authors were not able to resolve the ancestral kind of
breeding system in Asteraceae, but they did find that SI can be
gained and lost. Thus, neither SC nor PSI is a ‘terminal state’.
Not surprisingly, a relatively higher percentage of SC than of SI
has been found for invasive species of Asteraceae, for example,
in China (Hao et al., 2011) and for species on islands
(Grossenbacher et al., 2017). The latter authors found that 143
of 519 (28.0%) of mainland Asteraceae species had SC, while
162 of 273 (59.3%) of island species had SC.

Some species of Asteraceae produce a low number of cypselae
due to a lack of compatible pollen being deposited on the stigma
(i.e. pollen limitation); this is especially important for some SI
species (Larson and Barrett, 2000). Pollen limitation has been
documented in various Asteraceae species (Totland, 1997;
Colling et al., 2004; Muñoz and Arroyo, 2006; Campbell and
Husband, 2007; Muñoz and Cavieres, 2008; Ferrer et al., 2009;
Law et al., 2010; Shabir et al., 2015). In general, pollen limitation
decreases cypsela production, and in Scorzonera humilis, it
reduces the germination percentage of the cypselae that were pro-
duced. In the SI species Achillea ptarmica, there was a significant
relationship between pollen viability and the seed/ovule ratio, but
ovule abortion did not result in offspring with increased vigour,
suggesting that genetic load results in female sterility
(Andersson, 1993). The fruit set ratio (number of cypselae/num-
ber of female flowers), a measure of female reproductive success,
ranged from 0.242 to 0.630 for monoecious and dioecious species
of Cotula, respectively (Sutherland, 1986).

It is well documented that the maternal parent has more influ-
ence on seed dormancy/germination than the paternal parent,
and this is especially true in the F1 (seed) progeny. However,
the father sometimes has an effect on variation in these traits
(Baskin and Baskin, 2019). The paternal parent had a positive
influence on germination percentage and/or rate for Aster kan-
toensis (Kagaya et al., 2011), Crepis tectorum subsp. pumila
(Andersson, 1990), Lactuca sativa (Rideau et al., 1976) and
Solidago altissima (Schmid and Dolt, 1994).

Breeding between closely related organisms may result in the
expression of recessive deleterious genes (if purging has not
occurred) that have negative effects on the offspring, that is,
inbreeding depression (ID). The negative effects of ID on plants
may include seed germination (Baskin and Baskin, 2015). In
the Asteraceae, ID for cypsela germination has been found in sev-
eral species including Acourtia runcinata (Cabrera and Dieringer,
1992), Cotula minor (Lloyd, 1972b) Crepis sancta (Cheptou et al.,
2001), Fluorensia cernua (Ferrer et al., 2009), Hypochaeris radi-
cata (Becker et al., 2006), Leontodon autumnalis (Picó and
Koubek, 2003), Olearia adenocarpa (Heenan et al., 2005),
Scorzonera humilis (Colling et al., 2004), Scalesia affinis
(Nielsen et al., 2007), Senecio integrifolius (Widén, 1993) and S.
pterophorus (Caño et al., 2008). However, inbreeding and out-
breeding did not result in significant differences in germination
of Arnica montana (Luijten et al., 1996), Aster amellus
(Raabová et al., 2009), Carduus pycnocephalus, C. defloratus
subsp. glaucus (Olivieri et al., 1983), Crepis sancta (Cheptou
et al., 2000), Eupatorium resinosum (Byers, 1998), Gaillardia pul-
chella (Heywood, 1993), Senecio squalidus (Brennan et al., 2005),
Tetraneuris herbacea (Moran-Palma and Snow, 1997) or
Tragopogon pratensis (Picó et al., 2003). In Cotula pectinata
(Lloyd, 1972b) and Eupatorium perfoliatum (Byers, 1998), out-
breeding led to a decrease in germination. Although Helianthus
verticillatus is a rare diploid SI perennial known from only four
locations in southeastern USA, Ellis and McCauley (2009) did
not find any evidence for outbreeding depression for germination
percentages of F1 or F2 cypselae from interpopulation crosses.

As an extension of the concern about effects of ID on germin-
ation of cypselae, attention has been given to germination of cyp-
selae produced by Asteraceae species growing in small versus large
populations. That is, do small populations have ID that could
decrease germination? Germination percentages were significantly
lower for cypselae produced in small than in large populations of
Arnica montana in Germany (Kahmen and Poschlod, 2000),
Cheirolophus uliginosus (Vitales et al., 2013), Centaurea jacea,
Cirsium dissectum, Hypochaeris radicata (Soons and Heil,
2002), Lamyropsis microcephala (Mattana et al., 2012), Senecio
paludosus (Winter et al., 2008) and Solidago albopilosa
(Albrecht et al., 2020). On the other hand, the size of population
was not significantly related to germination percentages for cyp-
selae of Arnica montana in The Netherlands (Luijten et al.,
2000), Carduus defloratus (Vaupel and Matthies, 2012), Cirsium
dissectum (de Vere et al., 2009), Leucochrysum albicans var. tri-
color (Costin et al., 2001), Rutidosis leptorrhynchoides (Morgan,
1999) and Tragopogon pratensis (Mölken et al., 2005). However,
in a later paper, Morgan et al. (2013) concluded that there was
a significant positive relationship between population size and
mean percentage of cypsela germination for R. leptorrhynchoides.

Kinds of dormancy in Asteraceae

Non-dormancy

We found that when freshly matured cypselae of Amphiachyris
dracunculoides, Arctium minus, Coreopsis tinctoria, Erigeron phi-
ladelphicus, Helenium amarum, Pseudognaphalium obtusifolium
and Senecio sylvaticus were tested over a range of temperatures,
95–100% of them germinated in light with relatively low germin-
ation percentages in darkness. Treatments such as cold stratifica-
tion, however, did not increase germination in darkness in H.
amarum (e.g. Baskin and Baskin, 1973). Thus, we concluded
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that cypselae of these Asteraceae are not dormant. As discussed
below, non-dormancy has been found in the cypselae of many
species of Asteraceae.

Two suggestions have been made as to how timing of germin-
ation is controlled in species whose freshly matured cypselae are
non-dormant (ND) (Baskin and Baskin, 1998). (1)
Environmental conditions are not favourable for germination
(e.g. too cold) when cypselae mature, which delays germination
until temperatures increase. (2) Cypselae mature at the time
when conditions are favourable for germination and seedling
establishment. In Asteraceae, we find species with ND cypselae
that fit both suggestions, for example, Helenium amarum. This
temperate zone species has a long season of cypsela maturation
and dispersal, and in Tennessee (USA) cypselae are dispersed
from July to late November. Cypselae dispersed from July to
early November germinate immediately (if the soil is moist),
and the resulting plants behave as winter annuals. However, cyp-
selae dispersed in late November do not germinate because the
temperatures in the habitat are below those required for germin-
ation. The cypselae overwinter on/in the soil and germinate in
spring, with the resulting plants behaving as summer annuals
(Baskin and Baskin, 1973). In some Asteraceae with ND cypselae,
for example, Ageratina havanensis (Baskin et al., 1998), Brickellia
dentata (Baskin et al., 1998), Erigeron strigosus (Baskin and
Baskin, 1988), Gymnosperma glutinosum (Baskin et al., 1998)
and Heterotheca villosa (Baskin and Baskin, 1998), cypselae
mature when temperature and soil moisture conditions are
favourable for germination and seedling establishment.

Pre-dispersal germination of non-dormant cypselae

One consequence of cypselae being ND at maturity is that they
might germinate on the mother plant prior to dispersal, if mois-
ture levels in the capitulum are high. Pre-dispersal germination of
cypselae has been reported in Abrotanella linearis var. apiculata
(Simpson, 1979), Ageratina adenophora (Karmakar and Hazra,
2016), Bidens pilosa (Karmakar et al., 2019), Grindelia squarrosa
(Pliszko and Górecki, 2021), Pachystegias insignis var. minor
(Simpson, 1979), Saussurea lappa (Chauhan et al., 2018) and
Tagetes erecta (Anand and Mathur, 2012). Germination of cypse-
lae of A. linearis var. apiculata and P. insignis var. minor while
still in the capitulum on the mother plant was attributed to
‘lack of dormancy’ by Simpson (1979). Interestingly, other
authors (e.g. Farnsworth, 2000; Leck and Outred, 2008) cite
Simpson’s paper as an example of viviparous germination in the
Asteraceae (but see below). For the other five species listed
above, except A. adenophora, which was reported to have pseudo-
viviparous germination, the authors said that the species had viv-
iparous germination. Pseudo-vivipary means asexually produced
propagules such as bulbils, which replace sexual reproduction in
whole or in part, are formed on the shoot of the plant (e.g. Lee
and Harmer, 1980; Lo Medico et al., 2018). However, Karmakar
and Hazra (2016) stated that cypselae germinated while still
attached to the mother plant, indicating that they are not talking
about asexual propagules.

However, these seven Asteraceae taxa reported to have pre-
dispersal germination do not have sexually based true vivipary
or cryptovivpary as shown by mangroves, which are the model
for these kinds of germination. Seeds of mangroves are
desiccation-intolerant (recalcitrant), and the embryo grows con-
tinuously after fertilization of the egg, with no rest period prior
to germination and seedling establishment (Goebel, 1905;

Guppy, 1906, 1912; Tomlinson, 1986; Elmqvist and Cox, 1996).
In contrast to mangroves, cypselae of Asteraceae are desiccation-
tolerant (orthodox), thus ND cypselae could dry to a low mois-
ture content and survive. For example, both fresh and dried ND
cypselae of Saussurea lappa germinated to 65–70% (Chauhan
et al., 2018). If ND cypselae are exposed to high moisture condi-
tions before they are dispersed, it is expected that they would ger-
minate on the mother plant, somewhat similar to pre-harvest
sprouting (PHS) in cereal crops (e.g. Singh et al., 2021; Sohn
et al., 2021). Tuttle et al. (2015) define PHS as ‘ … as the germin-
ation of mature seeds on the mother plant when rain occurs prior
to harvest’. For the seven species of Asteraceae listed above with
pre-dispersal germination, the authors mention a prolonged per-
iod of rainfall, heavy monsoon or high humidity when discussing
their observations of seedlings with a radicle and cotyledons
attached to the mother plants. On the other hand, if ND cypselae
are dispersed before onset of the wet season, they would germin-
ate on the soil when the rains begin, that is, germination is regu-
lated by timing of dispersal and beginning of the rainy season and
not by dormancy.

Physiological dormancy

Freshly matured cypselae of many species of Asteraceae exhibit
little or no germination at any test condition, or they germinate
to relatively high or high percentages only over a limited range
of conditions, for example, either high (25/15, 30/15, 35/20°C)
or low (15/6, 20/10°C) temperature regimes, but not at both.
Since cypselae of Asteraceae are water-permeable, the lack of ger-
mination is not due to physical or combinational dormancy.
Furthermore, since cypselae have a fully developed spatulate
embryo lack of germination is not due to morphological or mor-
phophysiological dormancy, in which a small, underdeveloped
embryo needs to grow inside the seed prior to radicle emergence.
Failure of Asteraceae cypselae to germinate means the embryo has
a germination-inhibiting mechanism, that is, physiological dor-
mancy (PD) (Nikolaeva, 1969). The embryo does not have
enough growth potential to overcome the mechanical restriction
of the pericarp, which in some species of Asteraceae can be strong
and thick (e.g. Sun et al., 2009; Lu et al., 2020). Consequently,
mechanical or acid scarification, which removes the mechanical
restraint of the pericarp on the Asteraceae embryo, may promote
germination (e.g. Rout et al., 2009; Aguado et al., 2011; Gandy
et al., 2015). Also, treatment with GA3 may promote germination
by increasing the growth potential of the embryo (Afolayan et al.,
1997; Dissanayake et al., 2010; Duarte et al., 2012; Aiello et al.,
2017; Guo et al., 2021). Scarifiction followed by treatment with
GA3 of the perennials Helianthus angustifolia, H. glaucophyllus
and H. pumilus promoted cypsela germination (Castillo-Lorenzo
et al., 2019).

Cypselae of Asteraceae have regular PD as opposed to epicotyl
PD. In regular PD, the shoot emerges within a few days after the
radicle emerges, but in epicotyl PD emergence of the shoot is
delayed 1–3 mo or longer after radicle emergence (Baskin and
Baskin, 2021). The three levels of regular PD (hereafter PD) are
non-deep, intermediate and deep, and they are distinguished
based on temperature requirements for dormancy break, response
to the plant growth regulators gibberellins and ability (or not) of
excised embryos to develop into normal plants (Nikolaeva, 1969).

Dormancy in seeds with non-deep PD is broken by moist-warm
(≥15°C) or moist-cold (ca. 0–10°C) stratification, depending on the
species (Baskin and Baskin, 2022a). Also, dormancy-break can
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occur during dry storage, especially at room temperatures, that is,
afterripening (Baskin and Baskin, 2020), and germination is pro-
moted by gibberellins. Furthermore, embryos excised from seeds
give rise to normal plants (Nikolaeva, 1969). PD is the most com-
mon kind of seed dormancy on earth, and most seeds with PD
have non-deep PD (Baskin and Baskin, 2014). The characteristics
of seeds with non-deep PD fit those of dormant cypselae of
Asteraceae very well (see breaking dormancy in cypselae of
Asteraceae, below).

Seeds with intermediate PD require an extended period of cold
stratification (12–16 weeks) for dormancy break to occur; how-
ever, a period of warm stratification prior to cold stratification
will decrease the length of the cold stratification period required
to break dormancy. Gibberellins may, or may not, promote ger-
mination, depending on the species, and excised embryos grow
into normal plants. Only about 20 species in 13 angiosperm fam-
ilies are known to have intermediate PD, but none of them
belongs to the Asteraceae (Nikolaeva, 1969; Baskin and Baskin,
2014). However, see trimorphic cypselae of Asteraceae below.

Seeds with deep PD in the temperate zone require 12–24 weeks
of cold stratification for dormancy break. About 20 species in the
Balsaminaceae, Celastraceae, Rosaceae and Sapindaceae have this
level of PD. Seeds with deep PD do not germinate when treated
with gibberellins, and excised embryos either do not germinate
or give rise to abnormal plants (Nikolaeva, 1969; Baskin and
Baskin, 2014, 2021). It should be noted that seeds of the tropical
montane shrub Leptecophylla tameiamiae (Ericaceae) have deep
PD. Seeds of this species required 4–16 (or more) months of
warm stratification for dormancy-break and germination and
did not respond to gibberellins, and excised embryos did not
grow (Baskin et al., 2005). We are not aware of any species of
Asteraceae whose cypselae have deep PD.

Breaking dormancy in cypselae of Asteraceae

Cold stratification

A cold stratification requirement for dormancy-break occurs only
in species of Asteraceae growing in habitats with a cold winter.
However, in many temperate/arctic-zone plant communities, spe-
cies of Asteraceae whose cypselae require cold stratification grow
next to those whose dormant cypselae require exposure to warm
temperatures (afterripening) during summer for dormancy break.
The length of the cold stratification period required to break PD
varies with the species and ranges from 30 d in Coreopsis tripteris
(Diboll, 2004) to 120 d in Rudbeckia subtomentosa (Greene and
Curtis, 1950). Species whose cypselae become ND via cold strati-
fication can germinate as soon as temperatures increase in spring
(Mattana et al., 2012), and this includes Asteraceae species that
behave as summer annuals as well as many short-lived monocar-
pic perennials and polycarpic perennials (Baskin and Baskin,
1979a,b, 2022b; Baskin et al., 2022).

After PD has been broken by cold stratification, germination
may not occur at the beginning of the growing season if light-
requiring cypselae are buried and thus in darkness. For example,
if buried cypselae of the summer annual Asteraceae Ambrosia
artemisiifolia are exposed to natural temperate-zone seasonal
temperature changes, most of them fail to germinate in spring
(Baskin and Baskin, 1980). The increase in habitat temperatures
in late spring induces the buried cypselae into secondary dor-
mancy, and PD is broken again by cold stratification the following
winter. Dormancy-break in winter and dormancy induction in

late spring result in an annual dormancy/non-dormancy cycle
of temperate-zone Asteraceae such as A. artemisiifolia (Baskin
and Baskin, 1980), Bidens cernua (Brändel, 2004b) and Bidens
polylepis (Baskin et al., 1995a). In the case of A. artemisiifolia,
buried cypselae have the potential to persist in the soil for at
least 40 years (see Baskin and Baskin, 1977). Cypselae of
Senecio aquaticus, S. jacobaea and S. erucifolius germinated to
ca. 75, 95 and 45%, respectively after 3 months of cold stratifica-
tion at 4°C, but dry storage for 5 months after cold stratification
decreased germination to ca. 35, 30 and 25%, respectively (Otzen
and Doornbos, 1980).

Freshly matured cypselae of Erechtites hieraciifolius germi-
nated to 51% in light at 35/20°C in autumn (September) but to
0–15% in light at 15/6, 20/10, 25/15 and 30/15°C; only 1% of
the cypselae germinated in darkness (at 35/20°C) (Baskin and
Baskin, 1996). When cypselae were buried in soil and exposed
to natural seasonal temperatures in Kentucky (USA), they became
ND. In spring (April), they germinated to 98–100% in light and
in darkness at the five temperature regimes. These increases in
germination in spring indicate that the freshly matured cypselae
were conditionally dormancy (i.e. germinated at some of the
test conditions but not at all conditions possible after dormancy
was broken). However, during summer cypselae lost their ability
to germinate to high percentages in light at 15/6, 20/10 and
25/15°C but not at 30/15 and 35/20°C, and by October they ger-
minated to 0, 23, 91, 100 and 100%, respectively, in light and to 0,
0, 6, 27 and 26%, respectively in the dark. Thus, the cypselae had
entered conditional PD, that is, they could germinate at some
temperatures but not at all of them. When tested in October of
eight consecutive years, cypselae were in conditional dormancy.
It is assumed that during winter of each year cypselae became
ND and that in summer they entered conditional dormancy,
that is, cypselae of this species have an annual conditional dor-
mancy/non-dormancy cycle (Baskin and Baskin, 1996). An
annual conditional dormancy/non-dormancy cycle has been
reported in cypselae of the summer annuals Bidens tripartita
(Brändel, 2004b) and Coreopsis tinctoria (Baskin and Baskin,
2014) and the polycarpic perennials Eupatorium cannabinum
(Brändel and Jensen, 2005), Solidago altissima, S. nemoralis and
S. shortii (Walck et al., 1997b).

Warm stratification and/or afterripening

In tropical and subtropical regions on earth and for various spe-
cies in temperate regions, the breaking of PD occurs during
exposure to high summer temperatures. The high-temperature
dormancy-breaking treatment may be warm (moist) stratification
or dry afterripening, and in various habitats that receive intermit-
tent rainfall during the dormancy-breaking period both warm
stratification and afterripening occur. Warm stratification is a
more effective dormancy-breaking treatment than dry afterripen-
ing for some species of Asteraceae, while dry afterripening is more
effective than warm stratification for other species of Asteraceae
(Karlsson et al., 2008). The cypselae of Senecio morisii collected
in 2007 and stored for 10 years −25°C germinated to higher per-
centages over a range of temperatures than fresh cypselae col-
lected and tested in 2017 (Cuena-Lombraña et al., 2020). Thus,
it appears that cypselae underwent considerable afterripening at
−25°C, assuming that fresh cypselae collected in 2007 would
have germinated to similar percentages as those collected in 2017.

In tropical rainforests of Malaysia, seeds of forest trees (no
Asteraceae included) incubated on moist soil at natural

Seed Science Research 139

https://doi.org/10.1017/S0960258523000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0960258523000107


temperatures required from about 12 to 22–36 weeks to begin ger-
minating, showing that dormancy-break via warm stratification
may require 12 or more weeks (Kiew, 1982; Ng, 1991, 1992).
On the other hand, the cypselae of the winter annual
Asteraceae Gaillardia pulchella, Krigia cespitosa, Pyrrhopappus
pauciflorus and Tetraneuris linearifolia from Texas (USA)
exposed to simulated Texas summer temperatures and a wet
(1 d)/dry (14 d) cycle for 0–4 months were ND after 4 months
(i.e. in October). ND cypselae of the four species germinated to
86–99% at the Texas simulated October temperature (28/15°C)
(Baskin et al., 1992b). Thus, the time required for dormancy
break via mostly dry afterripening may be about the same as
that required for dormancy break via warm stratification.

Afterripening in dry storage is an effective dormancy-breaking
treatment for various species of Asteraceae, for example Ambrosia
trifida (Ruziev et al., 2020), Anthemis cotula (Rashid et al., 2007),
Artemisia spp. (Ali and Hamed, 2012; Lombardi et al., 2019),
Coreopsis lanceolata (Banovetz and Scheiner, 1994), Hyoseris sca-
bra (Gresta et al., 2010), Lychnophora ericoides (Melo et al., 2007),
Scorzoneroides spp. (Cruz-Mazo et al., 2010) and Silybum maria-
num (Monemizadeh et al., 2021).

In Kentucky (USA), buried cypselae of the winter annual
Krigia cespitosa exposed to natural summer temperatures and
simulated rainfall regimes from May to October were ND in
October (Baskin et al., 1991). Dormancy-break during the hot
dry weather of summer means that cypselae can germinate
when soil moisture becomes non-limiting in autumn, at which
time temperatures are decreasing. In the Chihuahuan Desert of
North America, germination of annual species occurs only after
an about 10-mm rainfall event (Freas and Kemp, 1983). In the
case of K. cespitosa, light is required for germination in autumn,
and if cypselae are buried they cannot germinate. During winter,
the buried cypselae of K. cespitosa were induced into secondary
dormancy, which was broken the following summer. Dormancy-
break in summer and dormancy induction in winter result in an
annual dormancy/non-dormancy cycle of the buried cypselae
(Baskin et al., 1991). Based on results from only one test tempera-
ture, cypselae of Carthamus lanatus (Grace et al., 2002) appear to
have an annual dormancy/non-dormancy cycle and those of
Centaurea solstitialis (Joley et al., 2003) an annual conditional
dormancy/non-dormancy cycle. Cypselae of Coreopsis lanceolata
stored dry at room temperature were ND after 6–8 months
(Banovetz and Scheiner, 1994). When ND cypselae of this species
were incubated on a moist substrate at 5°C, they entered secondary
dormancy. It is not known if cypselae of C. lanceolata undergo an
annual dormancy cycle.

Types of non-deep physiological dormancy in Asteraceae

Six types of non-deep PD have been distinguished based on tem-
perature requirements for seed germination as dormancy-break
occurs (Baskin and Baskin, 2014, 2021; Nur et al., 2014; see
Figure 3 in Soltani et al., 2017). In Types 1, 2 and 3, the tempera-
ture range over which seeds will germinate widens during
dormancy-break. In Type 1, the maximum temperature at
which seeds can germinate increases, and in Type 2, the min-
imum temperature at which seeds can germinate decreases. In
Type 3, the maximum temperature for germination increases
and the minimum temperate decreases. In Types 4, 5 and 6, the
temperature range for germination does not widen during
dormancy-break. Seeds with Type 4 gain the ability to germinate
only at high temperatures, and those with Type 5 gain the ability

to germinate only at low temperatures. Seeds with Type 6 germin-
ate to low percentages over a range of low to high temperatures in
the early stages of dormancy-break, and the germination percent-
age increases at all temperatures as dormancy-break progresses. In
addition to changes in the temperature range for germination
during dormancy-break of seeds, particularly those with Types
1 and 2 non-deep PD, there is a gradual increase in germination
rate (speed) and synchrony and in sensitivity to germination-
promoting factors such as GA and light. Furthermore, like tem-
peratures, sensitivity to these factors decreases as ND seeds are
induced into secondary dormancy [see Table 4.3 in Baskin and
Baskin (2014) and Maleki et al. (2022)].

Information about the type of non-deep PD in cypselae of
Asteraceae is available for 103 species in 75 genera and 18 tribes
(Table 1). Types 1, 2, 3, 4, 5 and 6 occur in 10, 13, 7, 3, 3 and 7
tribes of Asteraceae, respectively. The Heliantheae has the most
types (1, 2, 3, 4 and 6). Five genera (one genus in each of five
tribes) have species with two or three types, and Silybum mar-
iarum has two types (1 and 6) (Monemizadeh et al., 2021). The
information for types of non-deep PD in tribes of Asteraceae
was plotted on the tribe-level phylogeny of Mandel et al. (2019)
(supplementary Fig. S1). No clear pattern about relationships
between types and tribes was revealed, except that the occurrence
of Types 1 and 2 or of Types 1, 2 and 3 in a tribe is fairly com-
mon. When plotted on the figure showing the proposed evolu-
tionary history of Asteraceae by Huang et al. (2016), types of
non-deep PD occurred from the Mutisieae to the Heliantheae
Alliance (supplementary Fig. S2). Although information about
the types of non-deep PD in Asteraceae is rather limited in
terms of the number of species studied in detail, the results pro-
vide some insight into the great flexibility of cypsela dormancy
and germination in the Asteraceae in relation to plant life cycle
and environmental conditions in the habitat.

In temperate regions with generally hot and relatively dry sum-
mers and cold moist winters, Type 1 is found in cypselae of winter
annual (Baskin et al., 1995b; Schütz et al., 2002) and some peren-
nial (Baskin et al., 1994) species of Asteraceae. High temperatures
during summer promote dormancy-break, and by the time the
soil is moist in autumn the maximum temperature at which cyp-
selae can germinate overlaps with temperatures in the habitat.
Type 2 occurs in summer annual and many perennial species of
Asteraceae (Baskin and Baskin, 1988; Baskin et al., 1993, 1995a,
1998). Low temperatures and moist soil during winter promote
dormancy-break, that is, lowering the minimum temperature at
which cypselae can germinate, and germination usually occurs
in early to mid-spring. Type 3 occurs in species of Asteraceae
that behave as winter annuals (Baskin et al., 1991, 1992b) and
as perennials (Baskin and Baskin, 1988; Baskin et al., 1993,
1994, 1998) with dormancy being broken in summer and winter,
respectively.

Little is known about Type 4 non-deep PD, except that both
dormancy-break and germination occur at relatively high tem-
peratures. The four species of Asteraceae known to have Type 4
(Table 1) occur in hot deserts (two species of Pectis) or in rela-
tively mesic tropical/subtropical areas (Tridax procumbens and
Synedrella nodifolia). In a habitat that is warm all year, it is
assumed that timing of onset of the wet season is a major factor
in determining the timing of germination. However, much add-
itional research is needed on the environmental conditions
required for dormancy-break and germination of species of
Asteraceae (and other families) growing in tropical/subtropical
regions.
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Table 1. Types (1–6) of non-deep physiological dormancy in Asteraceae species

Species Tribe Type(s) References

Actinobole uliginosum Gnaphalieae 1 Hoyle et al. (2008a,b)

Ageratina altissima Eupatorieae 2 Baskin and Baskin (1988)

Ageratina luciae-brauniae Eupatorieae 2 Walck et al. (1997a)

Ambrosia artemissiifolia Heliantheae 2 Baskin and Baskin (1980)

Ambrosia trifida Heliantheae 2 Davis (1930)

Arctotheca calendula Arctotideae 2 Chaharsoghi and Jacobs (1998)

Arnoglossum plantagineum Senecioneae 1 Baskin and Baskin (unpubl.)

Bidens cernua Coreopsideae 2 Baskin and Baskin (unpubl.)

Bidens laevis Coreopsideae 2 Leck et al. (1994)

Bidens pilosa Coreopsideae 2 Karlsson et al. (2008)

Bidens polylepis Coreopsideae 2 Baskin et al. (1995a)

Boltonia decurrens Astereae 6 Baskin and Baskin (1988, 2002)

Boltonia diffusa Astereae 6 Baskin and Baskin (unpubl.)

Brickellia eupatorioides Eupatorieae 2 Baskin et al. (1993) and Baskin and Baskin (1998)

Centaurea solstitialis Cynareae 1 Joley et al. (2003)

Centaurea stoebe Cynareae 2 Eddleman and Romo (1988)

Chaptalia nutans Mutisieae 3 Baskin et al. (1994)

Coespeletia timotensis Millerieae 5? Guariguata and Azocar (1988)

Coreopsis nuecensis Coreopsideae 2 Baskin and Baskin (unpubl.)

Cirsium dissectum Cynareae 2 de Vere (2007)

Cirsium vulgare Cynareae 2 Michaux (1989)

Coreopsis leavenworthii Coreopsideae 6 Kabat et al. (2007)

Craspedia sp. Gnaphalieae 1? Plummer and Bell (1995)

Dimorphotheca pluvialis Calenduleae 3? de Villiers et al. (2002a,b)

Echinacea angustifolia Heliantheae 3 Baskin et al. (1992a)

Echinacea pallida Heliantheae 3 Baskin and Baskin (unpubl.)

Echinacea simulata Heliantheae 3 Baskin et al. (1993)

Echinacea tennesseensis Heliantheae 3 Baskin et al. (1993)

Echinops gmelinii Cynareae 6 Nur et al. (2014)

Eclipta prostrata Heliantheae 2 Baskin and Baskin (unpubl.)

Elephantopus sp. Vernonieae 2 Baskin and Baskin (unpubl.)

Epilasia acrolasia Cichorieae 6 Nur et al. (2014)

Erechtites hieracifolia Senecioneae 2 Baskin and Baskin (1996)

Ericameria nauseosa Astereae 2 Meyer et al. (1989)

Erigeron modestus Astereae 1 Baskin et al. (1994)

Eupatorium cannabinum Eupatorieae 2 Schütz (1999)

Eurybia divaricata Astereae 3 Baskin et al. (1993)

Eutrochium fistulosum Eupatorieae 2 Baskin et al. (1993)

Gaillardia pulchella Helenieae 1 Baskin et al. (1994)

Gaillardia suavis Helenieae 1 Baskin et al. (1992b)

Galinsoga ciliata Millerieae 2 Baskin and Baskin (1981)

Galinsoga parviflora Millerieae 2 Baskin and Baskin (1981)

Garhadiolus papposus Cichorieae 1 Sun et al. (2009)

(Continued )
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Table 1. (Continued.)

Species Tribe Type(s) References

Gazania leiopoda Arctotideae 1? de Villiers et al. (2002a,b)

Glebionis coronaria Anthemideae 6 Puglia et al. (2015)

Grindelia lanceolata Astereae 2 Baskin and Baskin (1979a, 1988)

Guizotia scabra Millerieae 2 Karlsson et al. (2008)

Helenium autumnale Helenieae 2 Baskin et al. (1993)

Helianthus annuus Heliantheae 2 Baskin and Baskin (1988)

Helianthus atrorubens Heliantheae 2 Baskin and Baskin (unpubl.)

Helianthus maximilliani Heliantheae 2 Baskin et al. (1998)

Heterotheca subaxillaris Astereae 2 Baskin and Baskin (1976, 1988)

Hieracium caespitosum Cichorieae 2 Panebianco and Willemsen (1976)

Hymenopappus scabiosaeus Bahieae 1 Baskin et al. (1992b)

Hymenoxys scaposa Helenieae 1 Baskin et al. (1992b)

Hyoseris scabra Cichorieae 3? Gresta et al. (2010)

Iva annua Heliantheae 3 Baskin and Baskin (unpubl.)

Jacobaea erucifolia Senecioneae 2 Otzen and Doornbos (1980)

Jamesianthus alabamensis Tageteae 2 Baskin and Baskin (unpubl.)

Koelpinia linearis Cichorieae 6 Nur et al. (2014)

Krigia cespitosa var. gracilis Cichorieae 1 Baskin et al. (1994)

Krigia oppositifolia Cichorieae 2 Baskin et al. (1991)

Lactuca canadensis Cichorieae 2 Baskin and Baskin (unpubl.)

Lactuca floridana Cichorieae 2 Baskin and Baskin (1988)

Liatris squarrosa Eupatorieae 2 Baskin and Baskin (1988, 1989)

Logfia filaginoides Inuleae 5? Juhren et al. (1956)

Marshallia mohrii Helenieae 6? Dell et al. (2019)

Mikania scandens Eupatorieae 2 Baskin et al. (1993)

Millotia myosotidifolia Gnaphalieae 1 Schütz et al. (2002)

Palafoxia callosa Bahieae 2 Baskin et al. (1999)

Pectis angustifolia Tageteae 4? Freas and Kemp (1983)

Pectis papposa Tageteae 4? Juhren et al. (1956)

Pinaropappus roseus Cichorieae 1 Baskin et al. (1992b)

Podotheca chrysantha Gnaphalieae 1 Schütz et al.(2002)

Podotheca gnaphalioides Gnaphalieae 1 Schütz et al. (2002)

Polymnia canadensis Heliantheae 6 Bender et al. (2003)

Pseudognaphalium obtusifolium Gnaphalieae 1 Baskin and Baskin (unpubl.)

Pyrrhopappus pauciflorus Cichorieae 1 Baskin et al. (1994)

Ratibida pinnata Heliantheae 2 Baskin et al. (1993)

Reichardia tingitana Cichorieae 1 Schütz (1999)

Schoenia cassiniana Gnaphalieae 5? Plummer and Bell (1995)

Senecio aquaticus Senecioneae 2 Otzen and Doornbos (1980)

Senecio arenarius Senecioneae 1? de Villiers et al. (2002a,b)

Senecio jacobaea Senecioneae 3 Otzen and Doornbos (1980)

Senecio vulgaris Senecioneae 3 Popay and Roberts (1970a,b)

Silybum mariarum Cynareae 1, 2 Monemizadeh et al. (2021)

(Continued )

142 C.C. Baskin and J.M. Baskin

https://doi.org/10.1017/S0960258523000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0960258523000107


Type 5 non-deep PD has been reported in cypselae of
Coespeletia timothensis, Filago california and Schoenia cassiniana
(Table 1). The thing that these species have in common is that
their cypselae germinate only at low temperatures. At high eleva-
tions in the Andes Mountains, it is reasonable that cypselae of C.
timothensis would gain the ability to germinate only at low tem-
peratures. However, for F. california and S. cassiniana that grow
in habitats with a Mediterranean-type climate, a low temperature
requirement for germination would delay germination until late
in autumn when the soil is likely to be moist. That is, a delay of
germination until temperatures are low helps ensure that there is
enough soil moisture for seedling establishment and growth.

Nine species of Asteraceae are listed in Table 1 as having Type
6 non-deep PD, and they can be divided into two general categor-
ies depending on their habitat: (1) cold desert and (2) relatively
moist temperate. In the cold desert, timing of rainfall is highly
unpredictable. Thus, ability of cypselae to germinate over a wide
range of temperatures as dormancy-break is occurring would
allow at least some cypselae of the cold desert winter annuals
Echinops gmelinii, Epilasia acrolasia and Koelipia linearis to ger-
minate at any time during the growing season in response to a
rainfall event or snowmelt in late winter/early spring (Nur
et al., 2014). In the case of Glebionis coronata in the
Mediterranean region, Type 6 would allow cypselae to germinate
regardless of whether the onset of the wet season began early or
late in the autumn. The other five species with Type 6 grow in
the regions of the deciduous forest in eastern North America,
where there is no definite dry season. Presumably Type 6 would
allow cypselae to germinate at any time during the growing sea-
son, but this has not been tested. However, cypselae of Boltonia
decurrens (Baskin and Baskin, 1988) and Polymnia canadensis

(Bender et al., 2003) exposed to natural temperature regimes
germinate in both spring and autumn.

Intraspecific variation in dormancy

Not only is there species-to-species variation in dormancy in the
Asteraceae due to different types of non-deep PD, but there may
be variation in dormancy between the cypselae produced by the
same species. For example, cypselae of various species of
Asteraceae differed in their germination characteristic when col-
lected in different populations (Schütz and Urbanska, 1984;
Meyer et al., 1989, 1990; Ren and Abbott, 1991; Maluf, 1993;
Martin et al., 1995; Keller and Kollmann, 1999; Qaderi and
Cavers, 2000a; Giménez-Benavides et al., 2005; Bischoff et al.,
2006; Jorritsma-Wienk et al., 2007; Li and Feng, 2009; Bischoff
and Muller-Schärer, 2010; Bartle et al., 2013; Torres-Martínez
et al., 2017; de Pedro et al., 2021). However, the reason (genetic
and/or maternal environmental effects) for population differences
in dormancy was not determined in these studies.

Cypselae of the invasive Senecio madagascariensis from popu-
lations at the edge of its range in eastern Australia germinated to
significantly higher percentages that those from populations in
the established part of its range in eastern Australia (Bartle
et al., 2013). Simulation studies of cypselae germination and seed-
ling survival of Artemisia tridentata under climate change condi-
tions across its western North American range suggest that
regeneration from cypselae will be higher at the leading (relatively
moist) than at the trailing (relatively dry) edge of the range of
distribution shift (Schlaepfer et al., 2015).

Cypsela dormancy in Asteraceae has a genetic component, for
example, Helianthus bolanderi (Olivieri and Jain, 1978), Lactuca

Table 1. (Continued.)

Species Tribe Type(s) References

Solidago albopilosa Astereae 2a Albrecht et al. (2020)

Solidago altissima Astereae 2 Baskin et al. (1993) and Walck et al. (1997b)

Solidago nemoralis Astereae 2 Walck et al. (1997b)

Solidago ptarmicoides Astereae 3 Baskin and Baskin (1988)

Solidago shortii Astereae 2 Buchele et al. (1991) and Walck et al. (1997b)

Symphyotrichum pilosa Astereae 2 Baskin and Baskin (1979b, 1988)

Synedrella nodiflora Heliantheae 4 Chauhan and Johnson (2009)

Tetraneuris linearifolia Helenieae 3 Baskin et al. (1994)

Tithonia rotundifolia Heliantheae 2 Upfold and Van Staden (1990)

Tragopogon pratensis Cichorieae 2 Qi and Upadhyaya (1993)

Tridax procumbens Millerieae 4 Chauhan and Johnson (2008)

Ursinia anthemoides Anthemideae 1 Schütz et al. (2002)

Verbesina alternifolia Heliantheae 2 Baskin et al. (1993)

Verbesina encelioides Heliantheae 1 Karlsson et al. (2008)

Verbesina helianthoides Heliantheae 2 Baskin and Baskin (1988)

Verbesina virginica Heliantheae 2 Baskin et al. (1998)

Viguiera dentata Heliantheae 2 Baskin et al. (1998)

Xanthium strumarium Heliantheae 2 Norsworthy and Oliveira (2007)

aArguably, this could be Type 6 because fresh cypselae germinated over the entire range of test temperatures, although to a very low percentage at 15/5°C (the lowest test temperature
regime).
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sativa (Eenink, 1981) and Senecio vulgaris (Kadereit, 1984). In
particular, the genetics of cypsela dormancy have been investi-
gated in detail for Helianthus annuus (Snow et al., 1998; Weiss
et al., 2013; Layat et al., 2014; Lachabrouilli et al., 2021;
Hernández et al., 2022) and L. sativa (Argyris et al., 2011; Huo
et al., 2016). Inbred dormant and non-dormant lines of
H. annuus exhibit differences in pericarp anatomy and hormone
profiles (Andrade et al., 2015). Also, the dormancy/germination
characteristics of the mature cypselae can vary depending on
the environmental conditions under which the maternal plant
was growing during cypsela development, including day length
(Gutterman et al., 1975), mineral nutrition (Thompson, 1937;
Allison, 2002), soil moisture (Qaderi and Cavers, 2000b) and tem-
perature (Nosova, 1981; Zhang et al., 2012; Bodrone et al., 2017).
Furthermore, the maternal environment and genetics of the
embryo can interact to influence cypsela dormancy (Weiss
et al., 2013), and there could be epigenetic (i.e. non-genetic trans-
generational inheritance, e.g. Robertson and Richards, 2015;
Skinner and Nilsson, 2021) control of dormancy via maternal
inheritance, as in Arabidopsis thaliana (Iwasaki et al., 2019).

In the case of Silybum marianum, populations vary with
regard to the type of non-deep PD in the mature cypselae
(Monemizadeh et al., 2021). Cypselae from plants of S. marianum
growing at three population sites in northern Iran were allowed to
afterripen in dry storage. Cypselae from two populations first
gained the ability to germinate over a range of temperatures, indi-
cating Type 6 non-deep PD. However, cypselae from the third
population first germinated only at low temperatures but as after-
ripening continued the maximum temperature at which they ger-
minated increased, indicating Type 1 non-deep PD. The cypselae
with Type 6 developed under relatively dry, warm conditions and
those with Type 1 developed during relatively wet, cool condi-
tions. These results suggest that the maternal environment
affected the type of non-deep PD that developed in the cypselae,
but the effects of genetics and environment × genetics on the type
of non-deep PD that developed in the cypselae in different popu-
lations have not been investigated.

Heteromorphic cypselae

According to Scholl et al. (2020), heteromorphic diaspores differ
in morphology and ecology, and the variation can be discrete or
continuous, and if continuous the extreme diaspores differ greatly.
In the classification scheme for variation in diaspore size/mass
and morphology of Baskin and Baskin (2014, p. 341),
Asteraceae species mentioned in this section fit into Subgroup a
(Heterocarpy) of Group A (Heterodiaspory) of Division II
(Heteromorphic). Diaspore heteromorphism occurs primarily in
annual plants, and it is viewed as an adaptation (via a bet-hedging
strategy) to unpredictable or disturbed environments (Mandák,
1997; Imbert, 2002; Cruz-Mazo et al., 2009, 2010). The majority
(ca. 80%) of heterodiasporous species occurs in three eudicot fam-
ilies: Asteraceae > Amaranthaceae > Brassicaceae (Mandák, 1997).
The number of diaspore heteromorphic species of Asteraceae
worldwide has not been determined, but in southwestern North
America it is the family with the most diaspore heteromorphic
species, that is, 64 species in 38 genera. The Boraginaceae is the
second most important family with heteromorphic diaspores in
this region with 23 species in 5 genera (Scholl et al., 2020).

Cypselae produced in the same capitulum of many species of
Asteraceae vary in size, mass, colour, shape, ornamentation, pres-
ence/absence of pappus, thickness of pericarp, dispersal ability,

presence/absence of dormancy and degree of non-deep PD
(Baskin et al., 2013; Baskin and Baskin, 2014). Various dimorphic,
and a few trimorphic, species of Asteraceae have been studied in
detail. In general, peripheral cypselae are more dormant (higher
degree of non-deep PD) than central cypselae, which are ND in
some species; however, central cypselae can be more dormant
than peripheral cypselae (Table 2). Cypselae that differ in degree
of dormancy also can be produced by species with only ligulate
(El-Keblawy, 2003) or only ray (Olivieri et al., 1983) flowers.
Both the peripheral and central cypselae of Crepis sancta
(Imbert et al., 1996) and Synedrella nodiflora (Souza Filho and
Takaki, 2011) have been reported to be ND.

Germination of trimorphic cypselae of Asteraceae has been
studied in some detail for Calendula arvensis (Ruiz de Clavijo,
2005), Garhadiolus papposus (Sun et al., 2009), Heteracia szovitsii
(Cheng and Tan, 2009; Lu et al., 2020) and Heterosperma pinnatum
(Venable et al., 1987). Trimorphic cypselae have been reported for
Xanthocephalum spp. (Lane, 1983) and Chaptalia hieracioides (Xu
et al., 2018), but their dormancy has not been studied. We note that
some species of Chaptalia in Brazil (Pasini et al., 2014) and Mexico
(Redonda-Martínez, 2018) have trimorphic florets and presumably
trimorphic cypselae. In G. papposus (Sun et al., 2009), H. szovitsii
(Lu et al., 2020) and H. pinnatum (Venable et al., 1987), the central
cypselae are the least dormant and the peripheral cypselae the most
dormant. Central, intermediate and peripheral cypselae of the cold
desert annual H. szovitsii allowed to afterripen for 48 months ger-
minated to 85% (30/15°C), 30.5% (5/2°C) and 10.5% (15/2°C),
respectively. However, when the pericarp was removed from inter-
mediate and peripheral cypselae they germinated to 100 and 69.3%,
respectively (Lu et al., 2020). Since seedlings derived from excised
embryos of intermediate and peripheral cypselae produced normal
plants and since afterripening, scarification/pericarp removal and
GA3 promoted germination of both kinds of cypselae (but more
germination of intermediate than peripheral cypselae), it was con-
cluded that intermediate and peripheral cypselae have intermediate
PD. When central, intermediate and peripheral cypselae were sown
outdoors in spring 2016, germination of central cypselae occurred
in autumn 2016 and spring 2017; intermediate in spring and
autumn 2017, 2018 and 2019; and peripheral in spring and autumn
2017, 2018, 2019 and spring 2020, showing that intermediate and
peripheral cypselae can form a persistent soil cypsela bank.

Cypsela heteromorphism translates into differences not only in
degree of dormancy but also differences in dispersal and timing of
germination (Baskin and Baskin, 2014). Generally, in Asteraceae,
the central cypselae have low dormancy and high dispersal, and
peripheral cypselae have high dormancy and low dispersal
(Venable and Lawlor, 1980; see Baskin et al., 2013). This combin-
ation of traits for cypselae from the same plant allows seedlings to
escape an unfavourable environment for establishment and growth
in both time and space. Variability in degree of dormancy spreads
the risk over time, and variability in dispersal ability spreads the
risk over space. Cypselae with low dormancy and high dispersal
may be dispersed to a new site where they may germinate immedi-
ately. Most cypselae with high dormancy and low dispersal remain
near the mother plant and germinate after some period of time
during which the mother plant may have died, creating a favourable
site for establishment of a seedling of the same species.

In studies on dormancy and dispersal of the trimorphic cypselae
of Heterosperma pinnatum, Venable et al. (1987) concluded that
the low dormancy-high dispersal of the central cypselae was a high-
risk strategy, and the high dormancy-low dispersal of the peripheral
cypselae was a low-risk strategy, with the intermediate cypselae
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having a strategy between the two extremes. The proportion of het-
eromorphic cypselae (morphs) in H. pinnatum varied genetically
between populations and between individuals (Venable and
Búrquez, 1989). Furthermore, the percentage of central cypselae
with awns increased from dry open to mesic closed habitats and
with an increase in annual precipitation (Venable et al., 1995).

Fenesi et al. (2019) found evidence that cypsela heteromorph-
ism is related to naturalization success of Asteraceae, but a short
life cycle (annual or biennial) and relatively tall height of mature
plants also contribute to the naturalization success of the hetero-
morphic species. Thus, the authors concluded that cypsela hetero-
morphism may be a part of the combination of traits that leads to
naturalization success.

Amphicarpy

In the Baskin and Baskin (2014, p. 341) classification scheme, the
two Asteraceae species mentioned in this section belong to
Subgroup b sensu lato of Group B (Amphicarpy) of Division II
(Heteromorphic). In the two known amphicarpic species of

Asteraceae, Gymnarrhena micrantha and Catananche lutea,
plants produce subterranean and aerial cypselae (Zhang et al.,
2020). The subterranean and aerial cypselae of the winter annual
G. micrantha are ND and germinate to higher percentages in light
than in dark with the optimum temperature for germination
being 15°C (Koller and Roth, 1964). The aerial cypselae are smal-
ler than the subterranean cypselae and may not be formed in
years with low soil moisture; however, the plants always produce
subterranean cypselae. The aerial cypselae potentially distribute
the species to new suitable habitats, while the subterranean cypse-
lae maintain the species in a habitat that has already proven to be
suitable for production of offspring.

Individual plants of the annual C. lutea can produce five
morphs: two kinds of subterranean cypselae (amphi-I that are
non-dormant and amphi-II that have non-deep PD) and three
kinds of aerial cypselae (central intermediate and peripheral)
that are mostly ND but require light and relatively low (12, 19°
C) temperatures for high germination percentages (Ruiz de
Clavijo, 1995). The aerial central cypselae have a more highly
developed pappus than the intermediate cypselae, which in turn

Table 2. Comparison of dormancy in examples of Asteraceae species with heteromorphic (dimorphic) cypselae

Species Comparison of dormancy References

Anacyclus radiatus PA (ND) = CA (ND) Bastida and Menéndez (2004) and Bastida et al. (2010)

Anthemis chrysantha PA > CA Aguado et al. (2011)

Bidens bipinnata PA > CA Dakshini and Aggarwal (1974)

Bidens frondosa CA > PA Brändel (2004a)

Bidens pilosa PA > CA Forsyth and Brown (1982), Rocha (1996) and Zhang et al. (2019)

Blepharizonia plumosa CA > PA Gregory et al. (2001)

Carduus pycnocephalus PA > CA (ND) Olivieri et al. (1983)

Carduus tenuiflorus PA > CA (ND) Olivieri et al. (1983)

Centaurea solstitialis PA = CA Young et al. (2005)

Crepis aspera PA > CA El-Keblawy (2003)

Crepis sancta PA (ND) = CA (ND) Imbert et al. (1996)

Deinandra increscens PA > CA Tanowitz et al. (1987)

Dimorphotheca sinuata PA > CA Beneke et al. (1993)

Galinsoga quadriradiata PA > CA Kucewicz et al. (2011)

Glebionis coronaria PA > CA (ND) Bastida and Menéndez (2004) and Bastida et al. (2010)

Grindelia lanceolata PA > CA Baskin and Baskin (1979a)

Grindelia squarrosa PA > CA McDonough (1975)

Hedypnois rhagadioloides PA > CA Kigel (1992)

Heterotheca grandiflora PA > CA Flint and Palmblad (1978)

Heterotheca subaxillaris PA > CA (ND) Awang and Monaco (1978)

Heterotheca subaxillaris subsp. latifolia PA > CA Venable and Levin (1985a)

Jacobaea vulgaris PA > CA McEvoy (1984)

Leontodon saxatilis PA > CA Brändel (2007)

Leontodon saxatilis subsp. rothii PA > CA Ruiz de Clavijo (2001)

Oedera genistaefolia CA > PA Levyns (1935)

Packera tomentosa PA > CA Leverett and Jolls (2014)

Synedrella nodiflora PA (ND) = CA (ND) Souza Filho and Takaki (2011)

CA, central cypselae; ND, non-dormant; PA, peripheral cypselae.
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have more pappus than the peripheral cypselae. Thus, central,
intermediate and peripheral acenes have high, intermediate and
low dispersal, respectively. Overall, the subterranean cypselae
ensure that the species is distributed in time, and the aerial cyp-
selae ensure dispersal in both time and space. That is, the aerial
peripheral and the aerial central cypselae of C. lutea ensure dis-
persal in time and space, respectively. We are not aware of any
species of Asteraceae with amphi-basicarpy (Zhang et al., 2020).

Bet-hedging

When viewed from an evolutionary perspective, the production of
cypselae with different strategies by the same plant is an adaptive
bet-hedging strategy. That is, the production of two or more kinds
of cypselae with different dormancy, dispersal and germination
characteristics can increase the geometric mean and reduce vari-
ance in fitness. A commonly held idea is that, on average (i.e.
arithmetic mean) the most-fit individuals leave the most off-
spring. However, this is not true in an environment that fluctuates
stochastically, thus causing the number of offspring (fitness, e.g.
Ro) to vary among the years. In this case, geometric mean is the
best measure of fitness, and it is maximized across generations
(years) by bet-hedging.

Geometric mean is the product of the number of values being
considered raised to the 1/n power, for example, (4 × 12 × 20)1/3 =
(960)1/3 = 9.86, which is lower than the arithmetic mean (i.e. 12).
Thus, with a decrease in variance (σ2) or an increase in arithmetic
mean (μA), geometric mean (μG) increases, and this relationship is
expressed as μG= μA–(σ

2/2) when fitness is >0 (Gillespie, 1977;
Crean and Marshall, 2009; Simons, 2011). According to Seger
and Brockmann (1987), ‘The geometric mean is the natural meas-
ure of long-term fitness under temporal variation because, like
population growth itself, it is inherently multiplicative rather
than additive’. Thus, the production of heterodiaspores is a way
to decrease variance in the number of offspring produced per
year and thus increase the geometric mean of the number of off-
spring across generations, that is, by bet-hedging.

A bet-hedging strategy is adaptive in temporally varying envir-
onments that result in both good and poor years for seedling
establishment and survival (Venable 1985a,b; Venable and
Levin, 1985a,b; Philippi and Seger, 1989; Philippi, 1993; Simons,
2011; Gremer et al., 2012; Starrfelt and Kokko, 2012; Gianella
et al., 2021). The production of two kinds of offspring as in dia-
spore heteromorphic Asteraceae is a diversified bet-hedging strat-
egy (Rajon et al., 2009; Crowley et al., 2016; Haaland et al., 2018).
The cypselae with a low-risk strategy germinate immediately, but
those with a high-risk strategy delay germinating, thereby provid-
ing a reserve of cypselae for the future regardless of whether a
good or poor year follows the year of cypsela production. Based
on a demographic–life-history study of disc versus ray cypselae,
Venable (1985a,b) and Venable and Levin (1985a,b) present a
strong case for bet-hedging in the heterocarpic (dimorphic) spe-
cies Heterotheca subaxillaris var. latifolia. This is an annual spe-
cies that grows in disturbed and open sites in which the disc
and ray cypselae and the plants that originate from them have a
high-risk–low-risk strategy, that is, high risk for disc cypselae and
low risk for ray cypselae. The disc cypselae increase the μG by
increasing μA, and the ray cypselae increase μG by decreasing σ2.

In addition to cypselae differences in dispersal ability and
degree of dormancy, bet-hedging has been attributed to other dif-
ferences between disc and ray cypselae, including pre-dispersal
insect predation, persistence in the seed bank and thickness of

the pericarp (Evans et al., 2007; Kistenmacher and Gibson,
2016). Also, genetic diversity between ray and disc cypselae has
been considered. The observed heterozygosity across all popula-
tions of Grindelia ciliata was significantly higher in the disc
pool than the ray cypsela pool, but the mean outcrossing percent-
age did not differ between ray and disc cypselae (Gibson, 2001).
In Heterotheca subaxillaris, the level of genetic diversity did not
differ significantly between ray and disc cypselae, and there was
a mixed mating system with some inbreeding in most popula-
tions, which may result in founder effects (Gibson and
Tomlinson, 2002). However, the authors concluded that differ-
ences in size and dispersal ability between ray and disc cypselae
helped reduce the effects of inbreeding depression on the
populations.

Local adaptation

Ecotypes/local adaptations not involving cypsela dormancy/ger-
mination have been documented in various species of Asteraceae
(Wacquant and Picard, 1992; Andersson and Shaw, 1994; Imbert
et al., 1999; Scherber et al., 2003; Becker et al., 2006; Sambatti
and Rice, 2006; Ramsey et al., 2008; Raabová et al., 2011; Wang
et al., 2012; Imani et al., 2014; Moore et al., 2014; Pánková et al.,
2014; Müller et al., 2017; Molina-Montenegro et al., 2018;
Sakaguchi et al., 2018; van Boheemen et al., 2019; Ollivier et al.,
2020; Challagundla and Wallace, 2021; de Pedro et al., 2021; Lin
et al., 2021). However, Carlina vulgaris (Jakobsson and Dinnetz,
2005) and Centaurea hyssopifolia (Sánchez et al., 2017) did not
exhibit local adaptation, except the survival of juveniles of C. hysso-
pifolia was higher in native than in non-native sites. Thus, there is
evidence that some, but not all, species of Asteraceae can adapt to
the local habitat conditions.

Some invasive species of Asteraceae, for example, Ambrosia
artemisiifolia (van Boheemen et al., 2019), Arctotheca populifolia
(Brandenburger et al., 2019), Helianthus annuus (Hernández
et al., 2019), Sonchus oleraceus (Ollivier et al., 2020) and
Taraxacum campylodes (Molina-Montenegro et al., 2018) not
only have developed local adaptations in new (invaded) sites
but have done so rapidly. These results lend support to the con-
clusion of Oduor et al. (2016) that invasive species develop
local adaptations as frequently as native species. Rapid local adap-
tation of Asteraceae to new habitats, no doubt, has contributed
not only to the great diversification of species in this family but
also to its occurrence in all major vegetation zones on earth.

Species diversification

According to Tank et al. (2015), ‘ …we still do not have a clear
idea of the drivers of differential diversification among plant spe-
cies’. Zhang et al. (2021b) proposed that phylogenomic, morpho-
logical, ecological and model-based approaches need to be
integrated into studies of diversification. Magallón et al. (2019)
identified a species diversification rate shift in Asteraceae at a
mean time of 76.79 Ma, as one of 30 exceptional changes in spe-
cies diversification rates of angiosperms.

An outstanding example of species diversification in Asteraceae
is the 28 species of Argroxiphium, Dubautia and Wilkesia that
evolved in the Hawaiian Islands (USA) from a single dispersal
event of a tarweed (Madia/Raillardiopsis group) from California
to Hawaii. Among the three genera, the diversity of life forms in
the Hawaiian Islands includes trees, shrubs, cushion plants, vines
and long-lived monocarpic and polycarpic rosette plants that
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grow in a range of habitats from dry woodland/scrublands to bogs
(Robichaux et al., 1990; Baldwin and Sanderson, 1998). Other
examples of species diversification in the Asteraceae include: (1)
Bidens, Hawaiian Islands, 19 species (Knope et al., 2012), (2)
Brachyglottis, New Zealand, 30 species (Wagstaff and Breitwieser,
2004), (3) Cheirolophus, Macaronesia, 20 species (Vitales et al.,
2014), (4) Dendroseris, Juan Fernández Islands, Chile, 11 species
(Cho et al., 2020), (5) Encelia, deserts of the Americas, 15 species
and 5 subspecies (Singhal et al., 2021), (6) Espeletia complex, trop-
ical Andes, 140 species (Pouchon et al., 2018), (7) Hypochaeris
apargioides complex, central-south Chile and adjacent Argentina,
4 species (López-Sepúlveda et al., 2013), (8) Ligularia-
Chremanthodium-Parasenecio complex, Qinghai-Tibetan Plateau,
11 species (Liu et al., 2006), (9) Psiadia, Madagascar and surround-
ing islands in western Indian Ocean, about 60 species (Strijk et al.,
2012), (10) Saussurea, high mountains of temperate Asia including
the Qinghai-Tibetan Plateau, about 100 species (Zhang et al.,
2021b), (11) woody Sonchus alliance, Canary Islands, 19 species
(Kim et al., 1999) and (12) Senecio, high equatorial Andes, 29 spe-
cies (Dušková et al., 2017).

Hybridization

Hybridization in plants, and Asteraceae in particular, can be
between biotypes or subspecies of the same species or between
species. Cypselae from crosses between wild and domesticated
plants of Helianthus annus had increased germination (Snow
et al., 1998; Mercer et al., 2006; Presotto et al., 2014). Cypselae
from hybrids between Artemisia tridentata subsp. tridentata and
A. tridentata subsp. vaseyana germinated to higher percentages
than those from A. t. subsp. tridentata but to lower percentages
than those from A. t. subsp. vaseyana (Graham et al., 1995; Wang
et al., 1997). Cypselae from crosses between Solidago canadensis
and S. virgaurea germinated to higher percentages than those
from S. canadensis but to lower percentages than those from S.
virgaurea (Pliszko and Kostrakiewicz-Gierałt, 2017). However,
cypselae from the hybrid germinated faster than those from either
parent (Pliszko and Kostrakiewicz-Gierałt, 2018).

Hybridization can lead to offspring having more than two sets
of chromosomes, and in some cases, a new polyploid species is
formed (e.g. Abbott and Lowe, 2004). In general, there are two
main kinds of polyploids: autopolyploids and allopolyploids.
Autopolyploidy results from crosses within the same species or
from WGD, while allopolyploidy results from crosses between
species (see Parisod et al., 2010). Both kinds of polyploids are
found in the Asteraceae.

Polyploidization and its consequences

WGD occurred in the early evolution of angiosperms (Masterson,
1994; Simillion et al., 2002; Otto, 2007; Soltis and Burleigh, 2009;
Van de Peer et al., 2009; Schranz et al., 2012; Ren et al., 2018).
Tank et al. (2015) noted that increases in rates of angiosperm diver-
sification tend to occur after WGD (palaeopolyploidization).
Barker et al. (2008) concluded that three WGDs occurred in the
early history of the Asteraceae, prior to rapid radiation of its tribes
in the Oligocene. Barker et al. (2016) concluded that the Asteraceae
share a paleotetraploid ancestor with the Calyceraceae (sister to
Asteraceae) and that most Asteraceae ‘are descendants of a paleo-
hexaploid’. Huang et al. (2016) suggested that WGDs have been
an important driving force in the evolution of Asteraceae and
that they may have occurred during times of global catastrophe

and dramatic changes in the environment, leading to stressful con-
ditions for plant growth. These authors found WGDs in the core
Asteraceae and at the separation of Asteraceae and Calyceraceae,
crown node of Heliantheae alliance and clades Tussilaginae and
Tragopogon-Scorzonerina. In addition, a WGD was found within
Gnaphalieae. It should be noted that Zenil-Ferguson et al. (2019)
concluded that lineage diversification in the Solanaceae was better
explained by breeding system than by polyploidy.

In a consideration of polyploids in angiosperms, Barker et al.
(2015) found diploids, autopolyploids and allopolyploids in various
genera of Asteraceae including Artemisia, Carthamus, Centaurea,
Helianthus, Melampodium and Senecio but only diploids and allo-
polyploids in Stephanomeria. Although studies comparing seed ger-
mination of diploids and polyploids have been conducted for
species in various plant families including Amaryllidaceae (Fialová
et al., 2014), Asteraceae (Thomas et al., 1994), Brassicaceae
(Neuffer and Eschner, 1995), Cactaceae (Cohen et al., 2013),
Cyperaceae (Escudero et al., 2016), Fabaceae (Eliásová et al.,
2014), Onagraceae (Smith-Huerta, 1984), Plantaginaceae (Puech
et al., 1998) and Poaceae (Hacker, 1988), relatively few species
have been investigated in most families including the Asteraceae.

Among the Asteraceae that have been studied, diploid and
tetraploid cypselae of Centaurea stoeba had similar germination
percentages and rates when sown in a greenhouse (Hahn et al.,
2013). Diploid and tetraploid cypselae of Matricaria perforata
had similar responses to temperature with the optimum for ger-
mination being 30/10°C. However, at suboptimal temperatures
(5–15°C), tetraploid cypselae ofM. perforata germinated to higher
percentages than diploid cypselae. Cypselae of the polyploids
Taraxacum venustum and T. albium had higher germination per-
centages at the optimum temperature (19°C) than those of the
diploid T. platycarpum. However, at a low temperature (4°C),
T. playcarpum cypselae germinated to a higher percentage than
those of T. venustum but about the same as T. albium (Hoya
et al., 2007). Furthermore, cypselae mass of polyploids may be
greater than that of diploids (Hoya et al., 2007; Hahn et al.,
2013), which could have effects on germination, establishment
and growth of the seedlings. The more or less lack of differences
in germination of diploids and polyploids at least seems to suggest
that ancient polyploidization had little, or no, effect on germin-
ation of cypselae in the Asteraceae.

In general, polyploidization may lead to changes/increases in
breeding systems (Soltis et al., 2003; Hojsgaard and Hörandl,
2019), adaptability to new ecological niches (Levin, 1983;
Fawcett and Van de Peer, 2010; Ramsey, 2011), invasiveness
(te Beest et al., 2012; Hahn et al., 2013), plant morphology
(Zhang et al., 2021a), seed size (Thompson, 1990), speciation/
diversification (Comai, 2005; Tank et al., 2015; Parisod and
Broennimann, 2016; Stuessy and Weiss-Schneeweiss, 2019), tol-
erance to stress (Godfree et al., 2017; Van de Peer et al., 2017)
and mediators of gene flow (Peskoller et al., 2021). That is, poly-
ploidy is not an ‘evolutionary dead-end’ (Soltis et al., 2014a,b).
Many of these changes in polyploids could have helped amelior-
ate the risk of extinction during times of catastrophic environ-
mental (mass extinction) events (McElwain and Punyasena,
2007; Fawcett et al., 2009; Soltis and Burleigh, 2009; Vanneste
et al., 2014).

Apomixis

Another consequence of polyploidization could be the loss of sex-
ual reproduction due to the failure of gamete production (Tucker
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and Koltunow, 2009; te Beest et al., 2012; Hojsgaard and Hörandl,
2019), which is a first step in the development of non-sexual for-
mation of seeds (i.e. apomixis). The Asteraceae is an important
family in terms of the number of species that can produce seeds
asexually. The non-sexual formation of embryos and seeds is
called agamospermy, but it usually is referred to as apomixis.
However, apomixis s.l. includes agamospermy and reproduction
only by vegetative means (de Meeus et al., 2007; Noyes, 2007,
2022; Hojsgaard et al., 2014; Majeský et al., 2017). In gameto-
phytic apomixis, the embryo sac is diploid, and the egg develops
parthenogenetically and includes apospory and diplospory
(Richards, 2003). In apospory, the embryo sac forms from a dip-
loid somatic cell, and in diplospory an embryo sac forms from a
megaspore mother cell that fails to undergo meiosis. In sporo-
phytic or adventitious embryony, the embryo forms from somatic
tissue, that is, usually from the nucellus or the integument, and is
related to the production of multiple embryos in a seed (poly-
embryony) (Whitten et al., 2008; Hand and Koltunow, 2014;
Cardoso et al., 2018). Carman (1997) listed 10 genera of
Asteraceae in which polyembryony has been reported. It should
be noted that Carman (1997) did not include sporophytic embry-
ony in his definition of apomixis. In diplospory, the endosperm
must be fertilized or seeds will not form (Hojsgaard and
Hörandl, 2019). However, in autonomous diplosory, which occurs
predominantly in Asteraceae, both the embryo and endosperm
develop without fertilization (Vinkenoog and Scott, 2001).

Although asexual progeny of apomictic plants are genetically
identical to the mother plant (Koltunow, 1993; Koltunow and
Grossniklaus, 2003), they may vary epigenetically. Thus, for com-
mon dandelion (Taraxacum officinale, Asteraceae) genetically
identical apomicitic plants exposed to various stress treatments
exhibited epigenetic variation that was heritable (Verhoeven
et al., 2010). That is, the stress-induced DNA methylation changes
in the F0 generation (maternal stress exposure) were faithfully
transmitted to the F1 (progeny) generation.

Sexuality and apomixis could/can occur in the same species
(i.e. facultative apomixis), and a seed lot collected from a popula-
tion site of a species might be a mixture of sexually and asexually
produced seeds (Koltunow, 1993; Hand et al., 2015). Hojsgaard
et al. (2014) found apomictic seed production in 32 orders, 78
families and 293 genera of plants, and Asteraceae, Poaceae and
Rosaceae had the majority of apomictic genera. In general, apo-
mictic species are polyploids (Thompson and Ritland, 2006;
Mráz and Zdvořák, 2019), and they occur mostly in tropical
and temperate regions, with few species occurring in boreal and
Arctic zones (Hojsgaard et al., 2014). In the Asteraceae, apomictic
species occur in 47 genera (e.g. Antennaria, Crepis, Erigeron,
Hieracium, Taraxacum) in four subfamilies (Asteroideae, 34;
Cichorioideae, 9; Carduoideae, 2 and Mutisiodeae, 2), accounting
for 13.9% of the genera in these subfamilies (Hojsgaard et al.,
2014).

It is not clear how apomixis develops in a natural population of
a plant species (Hojsgaard and Hörandl, 2019). Hybridization
long has been regarded as an important reason for the origin of
apomictic taxa (Carman, 1997; Bicknell and Koltunow, 2004).
Although some apomictic species are diploid hybrids (Beck,
1986), many apomictic species are polyploids (Carman, 1997).
Thus, hybridization, but not polyploidy per se, seems to be a
requirement for development of apomictic reproduction
(Koltunow and Grossniklaus, 2003). Genetic studies have revealed
that apomixis is an inherited trait, for example, Erigeron (Noyes,
2000, 2022; Noyes and Rieseberg, 2000), Hieracium (Bicknell

et al., 2001) and Taraxacum (Van Dijk et al., 1999), which
helps explain why apomixis may appear in hybrids.

Five-month-old dry stored (i.e. probably afterripened) cypselae
from autonomously apomicic biotypes of Taraxacum officinale
differed in mass and germination percentages (Tweney and
Mogie, 1999). Cypselae that weighed >0.8 mg germinated to
87.3% in moist soil (compost) in a greenhouse. On the other
hand, cypselae that weighed 0.7–0.79 mg germinated to 52.4%
but those weighing <0.3 mg germinated to only 0.28%. In another
study of the germination of apomictic cypselae, Sailer et al. (2021)
used a common garden experiment to determine if plants from
asexual cypselae of the faculative apomictic species Pilosella offici-
narum competed better than plants from sexual cypselae. They
found that germination proportion of offspring (cypselae) of sex-
ual plants was higher than that of apomictic plants.

Soil cypsela banks

Cypselae of Asteraceae have been found in soil samples collected
in a wide diversity of habitats. In the results from 185 soil seed
bank studies (see Tables 7.2, 7.4 and 7.5 in Baskin and Baskin,
2014 for references) that were conducted in such a way that it
is highly probable that persistent seeds were present (i.e. samples
collected after germination but before input of new seeds), we
found species belonging to 155 families, including Asteraceae.
In the Asteraceae, there were 131 species in 73 genera.
However, the presence of cypselae in the soil tells us very little
about how long they can live after burial. Studies of individual
species of Asteraceae that involved collecting soil samples at
population sites and counting the number of viable cypselae in
the sample or the number of seedlings that emerged from them
have been conducted for various species, for example, Ageratina
adenophora (Shen et al., 2006), Artemisia quettensis (Ahmad et al.,
2007), Brachyscome muelleri (Jusaitis et al., 2003), Centaurea sol-
stitialis (Joley et al., 2003), Chromolaena odorata (Epp, 1987;
Witkowski and Wilson, 2001), Pilosella aurantiaca, P. piloselloides
subsp. praealta (Bear et al., 2012), Polymnia canadensis (Bender
et al., 2003) and Symphyotrichum laurentianum (Kemp and
Lacroix, 2004). Unfortunately, even with these individualized
studies, the longevity of cypselae in the soil is not known.

To determine their longevity, cypselae of various species of
Asteraceae have been placed in mesh bags/containers and buried
in the soil (Table 3). The period of burial ranged from a few
months to 40 years, and viability at the end of burial varied
from 0 to 97%, with a mean (±SE) survival of 25.6±3.7%. These
burial studies included 39 species in 10 tribes, which is a very
low representation of the species and tribes in Asteraceae.
Furthermore, only in the study of Galinsoga parviflora was the
survival of ray and disk cypselae (which are dimorphic) compared
with 21.3 and 0% of the cypselae, respectively, viable after 2.1
years (Espinosa-Garcia et al., 2003). Overall, it does not appear
that long-lived persistent cypselae banks are very common for
species of Asteraceae.

Also, if cypselae are dispersed/sown onto the soil surface, they
generally germinate in the first year, but some may delay germin-
ation until the second or a later year. We sowed freshly matured
cypselae of 52 species of Asteraceae (78 datasets because cypselae
of some species were collected and sown in more than one year)
on soil and exposed them to natural seasonal temperature cycles
(see temperature data in Baskin et al., 2019) and semi-natural
watering regimes in a non-heated glasshouse in Lexington,
Kentucky (USA). Germination was monitored weekly for 1 year
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Table 3. Survival of cypselae of Asteraceae species placed in bags or other containers and buried in soil in the field for 0.25 to 40 years, depending on species

Species Tribe
Years of
burial

% viable cypselae at
the end of burial References

Achillea erba-rotta subsp. moschata Anthemideae 5 0.7 Schwienbacher et al. (2010)

Ambrosia artemisiifolia Heliantheae 40a 4 Telewski and Zeevaart (2002)

Ambrosia trifida Heliantheae 4 19 Harrison et al. (2007)

Anthemis cotula Anthemideae 15 10 Telewski and Zeevaart (2002)

Artemisia genipi Anthemideae 5 0.2 Schwienbacher et al. (2010)

Artemisia tridentata Anthemideae 2 30–40 Wijayratne and Pyke (2012)

Aster amellus Astereae 3 21.7 Mašková and Poschlod (2022)

Bidens gardneri Coreopsideae 1 0 Sassaki et al. (1999)

Bidens pilosa Coreopsideae 1 20–36 Sahoo and Jha (1997)

Brachyscome lineariloba Astereae 2 72 Facelli et al. (2005)

Brachyscome muelleri Astereae 2 8 Jusaitis et al. (2003)

Carlina acaulis Cynareae 3 28.3 Mašková and Poschlod (2022)

Carlina vulgaris Cynareae 3 36.7 Mašková and Poschlod (2022)

Carthamus lanata Cynareae 2 20–75 Grace et al. (2002)

Centaurea stoebe Cynareae 5b 54 Davis et al. (1993)

Centaurea stoebe Cynareae 8b 29 Davis et al. (1993)

Chaetanthera
12 annual species

Mutisieae 1.3–1.75 0.7–30 Arroyo et al. (2006)

Chaetanthera
5 perennial species

Mutisieae 1.3–1.75 0–13.3 Arroyo et al. (2006)

Chrysocephalum apiculatum Gnaphalieae 1 61 Lunt (1995)

Chrysolaena herbacea Vernonieae 0.25 0 Sassaki et al. (1999)

Cirsium acuale Cynareae 3 11.6 Mašková and Poschlod (2022)

Cirsium vulgare Cynareae 2.5 ca. 10 at 3 cm; 73 at 15 cm Doucet and Cavers (1996)

Craspedia variabilis Gnaphalieae 1 8 Lunt (1995)

Crepis paludosa Gnaphalieae 2 <1 Bekker et al. (1998)

Edmondia sesamoides Gnaphalieae 3 80 Holmes and Newton (2004)

Eremanthus elaeagnus Vernonieae 0.25 0 Velten and Garcia (2007)

Eremanthus glomerulatus Vernonieae 0.25 0 Velten and Garcia (2007)

Eremanthus incanus Vernonieae 1.5 30 Velten and Garcia (2007)

Espeletia timotensis Millerieae 1 55 Guariguata and Azocar (1988)

Galinsoga parviflora ray Millerieae 2.1 21 Espinosa-Garcia et al. (2003)

Galinsoga parviflora disk Millerieae 2.1 0 Espinosa-Garcia et al. (2003)

Gymnocoronis spilanthoides Eupatorieae 3 6.8–61 Panetta (2009)

Helianthus annuus Heliantheae 4 47 Alexander and Schrag (2003)

Jacobaea aquatica Senecioneae 2 30 Bekker et al. (1998)

Latuca serriola Cichorieae 3 96.7 Mašková and Poschlod (2022)

Leontodon hispidus Cichorieae 3 33.3 Mašková and Poschlod (2022)

Leptorhynchos squamatus Gnaphalieae 1 36 Lunt (1995)

Metalasia muricata Gnaphalieae 3 19 Holmes and Newton (2004)

Onopordum acanthium Cynareae 3 1–36 Qaderi et al. (2002)

Parthenium hysterophorus Heliantheae 2 74 Navie et al. (1998)

Parthenium hysterophorus Heliantheae 2.2 50 Tamado et al. (2002)

(Continued )
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after the last cypselae of a species/sowing germinated (Baskin
et al., 2022). For one group of species, including Echinacea tennes-
seensis, Helianthus atrorubens, Liatris squarrosa, Solidago altis-
sima and Symphotrichum pilosum, cypselae sown in autumn
germinated only the following (first) spring. In another group
of species, including Boltonia decurrens, Echinacea simulata,
Eupatorium altissimum, Helenium amarum and Rudbeckia tri-
loba, many cypselae sown in autumn germinated in the first
spring, but in the second, and sometimes the third, spring a few
additional cypselae germinated (Baskin et al., 2022). For short-
lived monocarpic perennial (MP), polycarpic perennial (PP) sum-
mer annuas (SA) and winter annual (WA) Asteraceae, the mean
(±SE) number of years for germination was 1.70 ± 0.20, 1.69 ±
0.25, 1.56 ± 0.22 and 1.81 ± 0.28, respectively (Table 4). Species
whose cypselae germinated in 3 or more years include Polymnia
canadensis (MP, 3 years), Achillea millefolium (PP, 7), Ambrosia
artemisiifolia (SA, 4), A. trifida (SA, 3), Crepis pulchra (WA, 3)
Helenium amarum (WA, 5) Krigia virginica (WA, 3) and
Lactuca serriola (WA, 3).

The germination responses of Lactuca floridana cypselae that
we buried in soil in the non-heated glasshouse help explain
why a species has only one germination season. At maturity in
autumn, cypselae of this species germinated to 9, 9, 66, 99 and
93% when incubated in light at 15/6, 20/10, 25/15, 30/15 and
35/20°C, respectively, with no germination at any temperature
regime in darkness. During exposure to low temperatures during
burial in winter, cypselae gained the ability to germinate to 98–
100% in both light and dark at the five temperature regimes.
When bags of buried cypselae were exhumed in spring (1
March), 50% of the cypselae had already germinated, and when
bags were exhumed on 1 April, 1 May and 1 June, only 29, 21
and 0%, respectively, of the cypselae remained non-germinated.
That is, during cold stratification, cypselae gained the ability to
germinate in darkness and thus germinated as soon as tempera-
tures increased in spring (Baskin and Baskin, unpublished).

Life form, vegetation zone and phylogeny (tribes) of
cypsela dormancy in Asteraceae

Information on cypsela dormancy and life form of Asteraceae
species previously was compiled for 755 species growing in the
various vegetation zones on earth (Baskin and Baskin, 2014).
Since 2014, we have continued to collect information on cypselae
dormancy in Asteraceae. In addition to regularly checking new
issues of plant-related journals for dormancy/germination infor-
mation, we conducted many web searches using a variety of

search terms in various combinations: Asteraceae, Compositae,
names of tribes and genera of Asteraceae, names of countries in
South America, Asia and Africa, achene, cypsela, germinação,
germinación, semillas and sementes.

In the papers found in the literature, if fresh cypselae germi-
nated to a relatively high percentage over a range of temperatures
and dormancy-breaking treatments such as afterripening, cold
stratification, warm stratification, scarification and gibberellin
did not increase germination, the species was listed as having
ND cypselae. However, if any dormancy-breaking treatment
increased the percentage and/or rate of germination, the species
was listed as having PD. In the case of heteromorphic species, if
one cypsela morph was ND and another had PD, the species
was listed as PD. If a species was listed in Baskin and Baskin
(2014) as ND/PD or PD/ND, it was counted as PD in this review.
In comparing ND and PD of tropical and temperate regions, the
data for Asteraceae species from special habitats were included
under the temperate region.

We found information for 450 additional species, bringing the
total to 1205 species entries in supplementary Table S1. All spe-
cies of Asteraceae were recorded according to life form and vege-
tation zone/special habitats (supplementary Table S1). However,
12 species of weeds (Ageratum conyzoides, Bidens pilosa,
Chromolaena odorata, Cirsium arvense, Emilia sonchifolia,
Galinsoga parviflora, Synedrella nodiflora, Tithonia diversifolia,
T. rotundifolia, Tridax procumbens, Senecio vulgaris and
Tanacetum vulgare) are common in more than one vegetation
zone in supplementary Table S1, which reduces the total number
of species to 1182. The 1182 species occur in 373 genera and 35
tribes of Asteraceae. In working with the results of our compil-
ation, the multiple listings of the 12 weeds were counted as sep-
arate species based on research done in different vegetation zones.

Life forms and dormancy

Among the 1205 entries in the database, there were 14 (1.2%), 180
(14.9%), 8 (0.7%) and 1003 (83.2%) trees, shrubs, vines (including
woody and herbaceous climbers) and herbs, respectively
(Table 5). Overall, 22.2% of the species had ND cypselae, and
50.0, 20.6, 25.0 and 22.0% of the tree, shrub, vine and herb spe-
cies, respectively, had ND cypselae; thus, 50.0, 79.4, 75.0 and
78.0%, respectively, had PD. We found germination data for 14
species of Asteraceae that are trees, and 13 of them occur in trop-
ical vegetation zones and one in the warm moist temperature
woodlands (i.e. the broad-leaved evergreen forest). Trees occur
in various tribes of Asteraceae, including Astereae, Bahieae,

Table 3. (Continued.)

Species Tribe Years of
burial

% viable cypselae at
the end of burial

References

Rutidosis leptorrhynchoides Gnaphalieae 0.31 0 Morgan (1995)

Senecio magellanicus Senecioneae 0.92 54 Arroyo et al. (2004)

Syncarpha speciosissima Gnaphalieae 3 44 Holmes and Newton (2004)

Syncarpha vestita Gnaphalieae 3 39 Holmes and Newton (2004)

Tephroseris longifolia Senecioneae 5 12 Janišová and Ŝkodová (2016)

Vittadinia cuneata Astereae 2 72 Facelli et al. (2005)

aCypselae placed in a soil-filled bottle that was inverted and buried in the soil.
bCypselae placed in short cylinders (7.6 wide × 2.5 cm deep) cut from polyvinylchloride pipe with nylon mesh on each end.
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Table 4. Number of years cypselae of Asteraceae germinated in the non-heated glasshouse in Lexington, Kentucky (USA)

Species Date sown
Year(s) cypselae

geminated

Monocarpic Perennials

Carduus nutans 6/19/1970 1

Cirsium discolor 11/1/1970 1

Grindelia lanceolata (ray) 11/1/1970 2

Grindelia lanceolata (disc) 11/1/1970 2

Lactuca floridana 9/25/1985 2

Lactuca floridana 10/25/1994 2

Polymnia canadensis 8/30/1982 1

Polymnia canadensis 10/24/1982 2

Polymnia canadensis 11/16/1985 3

Tragopogon pratensis 5/30/1970 1

Polycarpic perennials

Achillea millefolium 9/15/1972 7

Arnoglossum plantegineum 6/28/1971 1

Boltonia decurrens 10/2/1985 2

Brickellia eupatorioides 10/18/1969 1

Leucanthemum vulgare 6/19/1070 1

Echinacea pallida 8/10/1972 3

Echinacea pallida 11/8/1988 1

Echinacea simulata 9/22/1991 2

Echinacea tennesseensis 10/15/1969 1

Echinacea tennesseensis 10/5/1987 2

Eupatorium altissimum 10/18/1969 2

Eupatorium altissimum 11/1/1970 1

Eupatorium fistulosum 10/6/1987 1

Eurybia divaricata 12/2/1988 1

Helenium autumnale 10/18/1969 1

Helenium autumnale 11/8/1987 2

Helianthus atrorubens 10/22/1990 1

Helianthus divaricatus 10/11/1969 2

Heterotheca villosa 10/18/1969 1

Liatris squarrosa 10/5/1979 1

Pilosella caespitosa 6/26/1988 1

Prenanthes barbata 10/28/1990 1

Ratibida pinnata 9/30/1970 2

Rudbeckia hirta 11/1/1970 1

Rudbeckia triloba 9/27/1969 3

Packera anonyma 6/11/1970 1

Smallanthus uvedalia 9/17/1987 8a

Solidago altissima 11/1/1970 1

Solidago altissima 11/15/1988 1

Solidago nemoralis 11/15/1988 1

(Continued )
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Table 4. (Continued.)

Species Date sown Year(s) cypselae
geminated

Solidago ptarmicoides 10/29/1979 1

Symphyotrichum patens 11/12/1970 1

Symphyotrichum pilosum 10/27/1981 1

Symphyotrichum pilosum 11/19/1975 1

Symphyotrichum pilosum 11/1/1970 1

Vernonia gigantea 11/1/1970 2

Summer annuals

Ambrosia artemisiifolia 10/18/1969 1

Ambrosia artemisiifolia 11/10/1975 4

Ambrosia artemisiifolia 10/22/1977 1

Ambrosia artemisiifolia 10/18/1981 1

Ambrosia artemisiifolia 11/23/1981 1

Ambrosia trifida 10/23/1978 3

Ambrosia trifida 10/19/1984 2

Artemisia annua 11/19/1971 1

Bidens bipinnata 10/10/1970 2

Coreopsis tinctoria 11/1/1988 1

Coreopsis tinctoria 9/14/1990 1

Erechtites hieracifolia 9/25/1987 2

Galinsoga quadriradiata 10/10/1978 1

Galinsoga parviflora 10/4/1978 1

Helianthus annuus 10/19/1984 1

Xanthium strumarium 10/20/2000 2

Winter annuals

Amphiachyris dracunculoides 10/18/1969 1

Amphiachyris dracunculoides 11/23/1971 2

Amphiachyris dracunculoides 11/1/1978 1

Crepis pulchra 6/11/1970 3

Crepis pulchra 6/14/1971 2

Erigeron strigosus 7/16/1970 1

Helenium amarum 10/19/1969 1

Helenium amarum 8/6/1970 1

Helenium amarum 11/9/1971 5

Heterotheca subaxilaris (disk) 9/18/1971 1

Heterotheca subaxilaris (ray) 9/18/1971 1

Krigia virginica 5/30/1970 3

Krigia virginica 5/31/1971 2

Krigia virginica 9/12/1988 1

Lactuca serriola 7/16/1970 3

Lactuca serriola 8/8/1971 1

aCypselae may have intermediate physiological dormancy, but this has not been confirmed by laboratory experiments.
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Coreopsideae, Eupatorieae, Gochnatieae, Heliantheae, Inuleae,
Liabeae, Millerieae Neurolaeneae, Senecioneae and Vernonieae
(Ricker et al., 2013; Beech et al., 2017; Redonda-Martínez et al.,
2021). Thus, clearly cypsela dormancy has been studied in only
a small fraction of the tree species of Asteraceae.

The lack of research is even more apparent for Asteraceae vines
than for trees. Only eight species of vines were recorded – two
with ND and six with PD. Gentry (1991) says there are 470 spe-
cies and 23 genera of climbing Asteraceae in the New World, but
he does not show Asteraceae in bar diagrams depicting the most
important plant families of vines in the Amazon rainforest of
Brazil or in Africa or Borneo. However, he does show vines of
Asteraceae for upper Andean sites in Bolivia, Ecuador and
Columbia and for a lowland dry forest in Ecuador. Gentry
(1991) gives the number of vine species of Asteraceae in temperate
North America and Europe as one to three but does not provide
their names. Vines occur in tribes Astereae, Barnadesieae,
Coreopsideae, Eupatorieae, Gnaphalieae, Heliantheae, Mutisieae,
Senecioneae and Vernonieae of Asteraceae (Morellato and
Leitão-Filho, 1996; Cai et al., 2009; Schnitzer et al., 2012; Seger
and Hartz, 2014; Sánchez-Chávez et al., 2019).

Of the 180 species of shrubs, germination of 90 each has been
studied in the tropical and temperate regions; four of the

temperate region shrubs are psammophytes (i.e. in a special habi-
tat). However, for the 1003 herbs, 199, 772 and 32 species are
from the tropics, temperate region and special habitats,

Table 5. Number of species of trees, shrubs, vines and herbs of Asteraceae in different vegetation zones/special habitats with non-dormant (ND) and physiologically
dormant (PD) cypselae

Vegetation zones/special habitats

Trees Shrubs Vines Herbs

TotalND PD ND PD ND PD ND PD

Tropical

Evergreen rainforest 1 1 8 5 15

Montane 2 2 12 1 8 12 37

Alpine 3 13 1 4 21

Semi-evergreen rainforest 3 3 3 1 1 1 12 7 31

Tropical deciduous 1 1 5 3 21 31

Savannas 1 3 5 4 10 38 61

Hot deserts 5 35 9 61 110

Temperate

Matorral 5 47 1 25 171 249

Warm moist temperature woodlands (Broad-leaved evergreen) 1 1 1 2 6 11

Deciduous-temperate 2 36 113 151

Grasslands 8 8 11 119 146

Cold deserts 7 7 30 44

Subalpine/boreal 2 35 111 148

Alpine/high-latitude tundra 1 46 51 98

Montane 1 2 5 8

Woodland 2 1 2 5

Special habitats

Aquatics 2 11 13

Salt marsh/desert 3 2 10 15

Psammophytes 1 3 2 5 11

Totals 7 7 37 143 2 6 221 782 1205

Fig. 1. Proportion of Asteraceae species with non-dormant (ND) and physiologically
dormancy (PD) cypselae in each tropical and temperate vegetation zone.
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Table 6. Number of species of trees, shrubs, vines and herbs with non-dormant (ND) and physiologically dormant (PD) cypselae in tribes of Asteraceae in tropical and temperate regions

Tribe

Tropical/Subtropical Temperate/Arctic

Trees Shrubs Vines Herbs Trees Shrubs Vines Herbs

Total speciesB/C/HA ND PD ND PD ND PD ND PD ND PD ND PD ND PD ND PD

Anthemideae C 2 6 6 6 19 34 68 141

Arctotideae C 1 5 10 16

Astereae C 5 14 1 11 18 6 12 1 36 103 202

Athroismeae C 1 1

Bahieae HA 3 1 4

Barnadesieae B 1 1

Calenduleae C 3 4 1 2 10 20

Chaenactideae HA 1 1

Cichorieae C 6 1 2 19 75 103

Coreopsideae HA 1 1 4 8 4 23 41

Corymbieae C 1 1

Cynareae C 3 2 19 78 102

Dicomeae C 1 1 2

Eupatorieae HA 1 3 1 8 14 1 3 24 55

Gnaphalieae C 1 20 22 17 64 124

Gochnatieae B 2 1 2 5

Gymnarrheneae C 1 1

Helenieae HA 1 8 3 7 19

Heliantheae HA 1 13 7 22 1 3 60 107

Hyalideae B 1 1 2

Inuleae C 2 1 1 1 7 15 27

Liabeae C 1 1 2

Madieae HA 4 3 1 16 24

Millerieae HA 1 7 4 5 1 3 21

Mutisieae B 1 1 1 1 1 1 1 5 5 17

Nassauvieae B 1 1

Perityleae HA 1 1

Pertyeae B 1 1

Plucheeae C 1 4 1 6
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respectively, with 74.4, 78.8 and 81.3% of them having cypselae
with PD, respectively.

Vegetation zone and dormancy

The proportion of species with ND and PD cypselae for each
vegetation zone is shown in Fig. 1. In evergreen and semi-
evergreen rain forests, more species have ND than PD cypselae.
However, in all other vegetation zones, except the (temperate)
alpine/high-latitude tundra, where the number of species with
ND and PD is the same, more species have cypselae with PD
than ND.

Tribes, life forms, vegetation zones and dormancy

In the tropical region (all tropical vegetation zones combined), the
number of tribes of tree species with ND and PD was 4 and 2,
respectively; shrubs 11 and 17, respectively; vines 2 and 2, respect-
ively; and herbs 13 and 22, respectively (Table 6). In the temperate
region, the number of tribes of tree species with ND and PD was 0
and 1, respectively; shrubs 6 and 9, respectively; vines 0 and 4,
respectively; and herbs 17 and 25, respectively. Thus, in the trop-
ical region, more tribes are represented by shrubs and herbs than
by vines or trees, and more shrubs and herbs have PD than ND.
In the temperate region, more tribes are represented by herbs than
by trees, shrubs and vines, and more herbs have PD than ND.

Across the tropical and temperate zones and all life forms, the
tribes with ≥10% of the 1205 species were Anthemideae (11.7%),
Astereae (16.7%) and Gnaphalieae (10.3%). The tribes Antroismeae,
Barnadesieae, Chaenactideae, Corymbieae, Gymnarrheneae,
Nassauvieae, Perityleae, Pertyeae, Polymnieae and Stiffieae are repre-
sented by only one species (0.08%) each (Table 6). Among the 35
tribes, 19 had both ND and PD, 7 only ND and 9 only PD. In the
basal grade (B), central grade (C) and Heliantheae Alliance (HA)
of Asteraceae (sensu Susanna et al., 2020), if a tribe was represented
by two or more species, both ND and PD were found among them,
except for Bahieae, Liabeae and Tarchonantheae. Bahieae (HA) was
represented by four PD species, Liabeae (HA) by two ND species
and Tarchonantheae (C) by two ND species. We note that tribes
Eremothamneae, Famatinantheae and Feddeeae are monospecific.
Information about the occurrence of ND and PD is plotted on the
Asteraceae tribe-level chronogram of Mandel et al. (2019) shows
that both ND and PD are widely distributed throughout the family
(supplementary Fig. S1).

Tropical trees occurred in 1, 2 and 1 tribe(s) in B, C and HA,
respectively, but temperate trees were in only one C tribe
(Table 6). Except for one tropical C tribe (Vernonieae) with
both ND and PD, all tribes of trees had only ND cypselae.
Tropical shrubs were in 3, 10 and 7 tribes of B, C and HA,
respectively, and temperature shrubs in 2, 8 and 1 tribe(s),
respectively. With the exception of species in 1 C and 2 HA tribes
in the tropical zone and 1 B and 1 C tribes in the temperate zone
with ND cypselae, all tribes had either both ND and PD or only
PD. Tropical vines were in 1, 1 and 2 tribes of B, C and HA,
respectively, and temperate vines in 1, 1 and 2, respectively.
With the exception of species in 2 HA tribes in the tropical
zone with ND cypselae, all tribes had cypselae with PD.
Tropical herbs were in 1, 14 and 9 tribes of B, C and HA, respect-
ively, and with the exception of species in 1 C tribe with ND cyp-
selae all tribes had either both ND and PD or only PD. Temperate
herbs were in 2, 14 and 10 tribes, respectively, and with the
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Table 7. Tribes of Asteraceae in different vegetation zones represented by one or more species with non-dormant (N) or physiologically dormant (P) cypselae

Tribe

Rainf Mont Alpine Semie Dry Sav H-D Mator Br Decid Grassl C-D Boreal Alpine Mont Woodl

N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P

Anthemideae x x x x x x x x x x x x x x x x x x

Arctotideae x x x x

Astereae x x x x x x x x x x x x x x x x x x x x x x x x x x x

Athroismeae x

Bahieae x x

Barnadesieae x

Calenduleae x x x

Chaenactideae x

Cichorieae x x x x x x x x x x x x x x

Coreopsideae x x x x x x x x x x

Corymbieae x

Cynareae x x x x x x x x x x x x x x x x

Dicomeae x

Eupatorieae x x x x x x x x x x x x x x x x x x

Gnaphalieae x x x x x x x x x x x x x x

Gochnatieae x x x x

Gymnarrheneae x

Helenieae x x x x x x x x

Heliantheae x x x x x x x x x x x x x x x x x x x

Hyalideae x x

Inuleae x x x x x x x x x x x x x

Liabeae x x

Madieae x x x x x x x

Millerieae x x x x x x x x x x

Mutisieae x x x x x x x x x x x

Nassauvieae x

Perityleae x

Pertyeae x

Plucheeae x

Polymnieae x

Senecioneae x x x x x x x x x x x x x x x x x x x x x x x
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exception of species in 2 B tribes with ND cypselae, all tribes had
either both ND and PD or only PD.

The tribes with the best representation across the different
vegetation zones are: Senecioneae (in all zones except temperate
montane) and Astereae (not in rainforest or hot desert)
(Table 7). The second most geographically widely distributed
tribes are the Eupatorieae and Heliantheae, but each is missing
from four vegetation zones. Eupatorieae was not recorded in tem-
perate montane, temperate alpine, matorral or cold desert and
Heliantheae was not in tropical alpine, temperate alpine, temper-
ate montane or broad-leaved evergreen.

The number of tribes represented by one or more species (with
ND or PD) in each vegetation zone ranges from 3 to 20 (Table 7).
The low number (3) is for tribes in the temperate montane zone,
where data were found for only five species of Asteraceae, while
the high number (20) is for hot deserts, where data are available
for 108 species (Table 5). Of the six tribes found in the rainforest,
5 and 3 of them had species with ND and PD, respectively.
However, for all vegetation zones, except the rainforest and the trop-
ical alpine (5 and 5 with ND and PD, respectively), the tribes were
represented by more species with PD than ND. Tribes represented
by either ND or PD (but not by both) in only one vegetation
zone are Antroismeae, Barnadesieae, Chaenactideae, Corymbieae,
Dicomeae, Gymnarrheneae, Nassaurieae, Perityleae, Petryeae,
Plucheeae and Polymnieae. Clearly, more data are needed for
Asteraceae in many of the vegetation zones, especially for the poorly
represented tribes.

Dormancy/germination flexibility and adaptability

ND and PD are found in cypselae of Asteraceae in various tribes,
genera and species; life forms and life cycles; and in all vegetation
zones on earth. Except for one of the three morphs of the cypsela-
trimorphic species Heteracia szovitsii (Lu et al., 2020) with inter-
mediate PD, the level of PD in the Asteraceae is non-deep.
Furthermore, six types of non-deep PD have been identified,
and all of them are known to occur in the Asteraceae. The
types of non-deep PD are broken by exposure of cypselae to
environmental conditions that are not favourable for seedling
establishment and growth. Since dormancy-break occurs during
the non-favourable season for growth, cypselae are ND and can
germinate at the beginning of the favourable season for growth,
giving the seedling the full length of the favourable season to
become established. Variation in the types of non-deep PD allows
for fine-tuning of germination, which is part of the suite of adap-
tations of Asteraceae species to many of the vast diversity of habi-
tats on earth. In general, we can conclude that cypselae dormancy
in Asteraceae is not complicated but that it is very flexible.

According to the evolutionary transition analysis between seed
dormancy states, morphophysiological dormancy (MPD) is prob-
ably the ancestral dormancy state, and there have been three
major shifts from MPD to PD (Willis et al., 2014). PD has been
an evolutionary hub and has given rise to seeds that are ND
and to those with MPD, morphological dormancy (MD), physical
dormancy (PY) and combinational dormancy (PY + PD).
However, there have been transitions from ND, MPD, PY, PY +
PD and MD back to PD. Thus, the close association between
ND and PD throughout the Asteraceae is no doubt related to
the transitions between PD and ND (i.e. PD↔ND). Willis
et al. (2014) described ND as ‘either a recent evolutionary devel-
opment or an ephemeral state’. However, in an investigation of
the evolutionary transitions between seed dormancy and ND,
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Zhang et al. (2022) found no evidence that ND is an evolutionary
end point or that species with ND seeds have a higher extinction
rate than those with dormant seeds. Further ND ‘has adaptive
evolutionary significance’ (Zhang et al., 2022).

Clearly, PD is an adaptive strategy for the persistence of
Asteraceae species growing in habitats with annually fluctuating
favourability/unfavourability of conditions for germination and
seedling survival. On the other hand, the lack of dormancy in
cypselae of an Asteraceae species would seem to indicate that cyp-
selae mature and are dispersed at a time of high predictability that
environmental conditions are favourable for seedling establish-
ment. That is, there is no benefit in germination being delayed
via PD. However, as described for Helenium amarum (Baskin
and Baskin, 1973), cypselae dispersed late in a so-called favour-
able season for seedling establishment may not germinate due
to environmental temperatures being below those required for
germination. In which case, germination can be delayed until
the temperatures increase again. Would this scenario lead to selec-
tion for Type 2 non-deep PD?

In response to the selective pressure due to changes in seasonal
patterns of temperature and precipitation and/or dispersal of
seeds/cypselae to new habitats, six types of non-deep PD have
evolved. The evolutionary pathways proposed for type of non-
deep PD are Type 4→ Type 2→ Type 3 and Type 5→ Type
1→ Type 3 (see Fig. 12.21 in Baskin and Baskin, 2014). Type 6
was not known at the time these pathways were proposed.
However, the occurrence of Types 1 and 6 in cypselae of
Silybum marianum (Monemizadeh et al., 2021) from different
populations suggests a close relationship between Types 1 and
6. Type 6 in which seeds/cypselae germinate over a wide range
of temperatures without going through conditional dormancy
may represent a response to unpredictable timing of rainfall dur-
ing the growing season.

Conclusions

ND and the six types of non-deep PD in Asteraceae enhance the
flexibility of the dormancy-break/germination and seedling estab-
lishment stages of the life cycle. Thus, germination is closely linked
to the time/season when the probability of successful seedling
establishment is high. In addition to the various reasons that
have been proposed (see Introduction) to help explain high species
diversification in Asteraceae, we suggest that dormancy-break and
germination need to be considered. The great flexibility/adaptabil-
ity in terms of control of timing of dormancy-break and germin-
ation of Asteraceae helped ensure the survival of new species as
they evolved, and it promoted successful establishment when cyp-
selae were dispersed to new habitats. Furthermore, the occurrence
of ND and PD in the basal tribes of Asteraceae suggests that flexi-
bility of dormancy/germination has long been a part of the ability
of species in this family to adapt to new habitats.

Supplementary material. To view supplementary material for this article,
please visit: https://doi.org/10.1017/S0960258523000107.
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