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Lagrangian averaging plays an important role in the analysis of wave–mean-flow
interactions and other multiscale fluid phenomena. The numerical computation of
Lagrangian means, e.g. from simulation data, is, however, challenging. Typical
implementations require tracking a large number of particles to construct Lagrangian
time series, which are then averaged using a low-pass filter. This has drawbacks that
include large memory demands, particle clustering and complications of parallelisation.
We develop a novel approach in which the Lagrangian means of various fields (including
particle positions) are computed by solving partial differential equations (PDEs) that
are integrated over successive averaging time intervals. We propose two strategies,
distinguished by their spatial independent variables. The first, which generalises the
algorithm of Kafiabad (J. Fluid Mech., vol. 940, 2022, A2), uses end-of-interval particle
positions; the second uses directly the Lagrangian mean positions. The PDEs can be
discretised in a variety of ways, e.g. using the same discretisation as that employed
for the governing dynamical equations, and solved on-the-fly to minimise the memory
footprint. We illustrate the new approach with a pseudo-spectral implementation for the
rotating shallow-water model. Two applications to flows that combine vortical turbulence
and Poincaré waves demonstrate the superiority of Lagrangian averaging over Eulerian
averaging for wave–vortex separation.

Key words: internal waves, computational methods, waves in rotating fluids

1. Introduction

Time averaging is a basic yet essential tool in fluid dynamics because of the ubiquity
of phenomena involving multiple time scales. Atmospheric and oceanic flows, for
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Figure 1. Vorticity field and its Lagrangian and Eulerian means in the shallow-water simulation of § 4.2.1:
(a) instantaneous vorticity, (b) Lagrangian mean vorticity, and (c) Eulerian mean vorticity. Both mean fields
share the same averaging period, corresponding to 3.6 wave periods. Panels (b) and (c) share the same colour
bar, shown to the right of (c).

instance, can often be decomposed usefully into fast and slow components (e.g. Vanneste
2013; Vallis 2017). Time averaging is then used to interpret numerical simulation and
observational data, and to assimilate the latter in ocean and weather models. More broadly,
it can be argued that all numerical simulations of time-dependent flows rely implicitly on
time averaging, since they do not resolve phenomena on time scales shorter than the time
step.

Time averaging can be performed in different ways. The most straightforward way is to
average the time series of flow variables at fixed spatial positions to obtain the so-called
Eulerian mean. An alternative is to average flow variables along particle trajectories, that
is, at fixed particle labels instead of fixed positions, to obtain the Lagrangian mean. There
are several practical and conceptual reasons to view Lagrangian averaging as superior to
Eulerian averaging.

From a practical viewpoint, the advection of fast motion (often consisting of waves)
by slowly evolving flow and vice versa adversely affect their Eulerian decomposition. For
instance, a strong, slowly evolving flow ‘Doppler shifts’ the frequency of fast waves. This
can lead to wave frequencies observed at fixed spatial locations that are much smaller than
the intrinsic frequency. It therefore obscures the time scale separation between waves and
flow. Lagrangian averaging resolves this issue, as demonstrated in several studies (Nagai
et al. 2015; Shakespeare & Hogg 2017; Bachman et al. 2020; Shakespeare et al. 2021;
Jones et al. 2022). Conversely, the advection of a slow background flow by waves leads to
flow features that are blurred by Eulerian averaging but not by Lagrangian averaging. We
illustrate this in figure 1, showing the vorticity field in a simulation of a turbulent rotating
shallow-water flow interacting with a mode-1 Poincaré wave. The instantaneous vorticity
in figure 1(a) is dominated by the high-amplitude wave. Both the Lagrangian and Eulerian
means (figures 1b,c) filter out the wave, but the Eulerian mean blurs out fine vorticity
structures that are well resolved by the Lagrangian mean (details of this simulation are
presented in § 4.2.1).

From a conceptual viewpoint, Lagrangian averaging provides a powerful tool to
study wave–mean-flow interactions. This is because the material conservation of key
fields (scalar concentrations, vorticity vector, circulation, potential vorticity) is inherited
naturally by the corresponding Lagrangian mean fields. As a result, the Lagrangian mean
of the dynamical equations is often simpler and more meaningful than the Eulerian
mean (Bretherton 1971; Soward 1972; Andrews & McIntyre 1978; Bühler 2014; Gilbert
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& Vanneste 2018). Relatedly, the Lagrangian mean emerges naturally in the asymptotic
derivation of wave-averaged models (Grimshaw 1975; Wagner & Young 2015). A striking
example of the dynamical relevance of the Lagrangian mean is provided by the observation
that geostrophic balance, the dominant balance in rapidly rotating flows, continues to hold
in the presence of strong waves provided that it is formulated in terms of Lagrangian mean
velocity and pressure instead of their instantaneous or Eulerian mean values (Moore 1970;
Bühler & McIntyre 1998; Kafiabad, Vanneste & Young 2021; Kafiabad 2022).

Despite its advantages, Lagrangian averaging is not used widely as a practical tool,
mainly because Lagrangian means are difficult to compute numerically. Most numerical
models are intrinsically Eulerian and provide the fields of interest at fixed spatial locations,
typically grid points. The standard approach for the computation of Lagrangian means
is then to seed a large number of passive particles in the flow, track them (forwards
or backwards in time) using interpolated velocities, and apply time averaging to the
resulting Lagrangian time series (e.g. Nagai et al. 2015; Shakespeare & Hogg 2017, 2018,
2019; Bachman et al. 2020; Shakespeare et al. 2021; Jones et al. 2022). This has a high
computational cost, requires a large memory allocation, suffers from possible particle
clustering, and, as discussed in Kafiabad (2022), is difficult to parallelise efficiently (see
Shakespeare et al. (2021) for a parallel implementation).

To circumvent the difficulties of particle tracking, Kafiabad (2022) developed a
grid-based method that computes the Lagrangian mean directly on an Eulerian grid,
building the mean through a time step iteration carried out over successive averaging
intervals. By eliminating the need to compute explicit particle trajectories, the method
reduces memory demands and simplifies integration into parallelised numerical models.
The present paper starts with the recognition that the algorithm of Kafiabad (2022) is a
particular discretisation of a partial differential equation (PDE) governing the evolution of
what we term a partial Lagrangian mean, that is, the mean carried out only up to some
intermediate time in the averaging interval. We formulate this PDE using the position of
particles at the intermediate time as independent spatial variable, as in Kafiabad (2022).
The (total) Lagrangian mean is then obtained by taking the intermediate time to be the end
of the averaging interval.

In this form, the Lagrangian mean does not match the Andrews & McIntyre (1978)
definition of the generalised Lagrangian mean (GLM): this requires the mean fields to
be expressed as functions of the mean position of fluid particles. To achieve this, it is
necessary to relate the mean positions of particles to their positions at the end of the
averaging interval, and to carry out a remapping of the Lagrangian mean fields. This
constitutes our strategy 1 for the computation of GLMs. We show that the algorithm of
Kafiabad (2022) amounts to a semi-Lagrangian discretisation of the PDEs of strategy 1.
We propose an alternative strategy, strategy 2, which formulates PDEs directly for the
partial Lagrangian means using the mean position as independent spatial variable. The
PDEs involved in both strategies can be solved by broad classes of numerical methods:
finite differences, finite volumes, finite elements or spectral methods. We illustrate this
with a pseudo-spectral Fourier implementation for a shallow-water flow in a doubly
periodic domain.

The paper is structured as follows. We introduce notation and define the Lagrangian
means in § 2. We derive the PDEs of the two strategies in § 3. We discuss their numerical
implementation and present two applications to shallow-water flows in § 4. The choice of
strategies, their advantages and costs are discussed in § 5. Technical aspects, including the
averaging of tensorial fields, are relegated to appendices.
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2. Formulation

We consider fluid motion in a two- or three-dimensional Euclidean space. We denote the
flow map by ϕ, with ϕ(a, t) ∈ R

2 or R
3 the position at time t of a particle identified by its

label a (which can be taken as the position at t = 0). The flow map and velocity field are
related by

∂tϕ(a, t) = u(ϕ(a, t), t). (2.1)

Lagrangian averaging is averaging at fixed particle label a, in contrast with Eulerian
averaging, which fixes the spatial position. Both can involve different types of means:
temporal, spatial or – as often used in theoretical work – ensemble mean. Here we focus
on a straightforward time average, of the form

ḡ(τ ) = 1
T

∫ τ+T

τ

g(s) ds, (2.2)

when applied to a function g(t) that depends on time only. Equation (2.2) introduces the
notation τ for the time at which the averaging is carried out, and T for the averaging period.
Usually, the middle of the averaging interval τ + T/2 is used as an argument for the mean
function, but we prefer to adopt τ (the beginning of the averaging interval) to simplify the
notation in the upcoming derivations. A simple shift in time switches from one convention
to the other. A weight function could be inserted into the integrand of (2.2) to generalise
the definition of the average; this would lead to minimal changes in what follows.

The Lagrangian mean trajectory associated with (2.2) is represented by the Lagrangian
mean map −ϕL defined by

−ϕL(a, τ ) := 1
T

∫ τ+T

τ

ϕ(a, s) ds. (2.3)

Thus −ϕL(a, τ ) returns the mean position from τ to τ + T of the particle labelled by a.
The definition (2.3) makes sense in R

n, when −ϕL can be interpreted as a vector and
averaged componentwise, but not on other manifolds where more complicated definitions
are necessary (Gilbert & Vanneste 2018). The (generalised) Lagrangian mean of a scalar
function f (x, t) is then defined by

−f L
(−ϕL(a, τ ), τ ) := 1

T

∫ τ+T

τ

f (ϕ(a, s), s) ds. (2.4)

Hence −f L
(x, τ ) is the average of f along the trajectory of the fluid parcel, regarded as a

function of the Lagrangian mean position x and time τ .
Our aim is the development of an efficient numerical method for the computation of

−f L that relies on solving PDEs, which can be discretised in a variety of ways, rather than
on tracking ensembles of particle trajectories. We propose two strategies and derive the
corresponding PDEs in the next section.

3. Two strategies

Following Kafiabad (2022), we introduce another representation of the Lagrangian mean
via tilde functions defined by

f̃ L
(ϕ(a, τ + T), τ ) := 1

T

∫ τ+T

τ

f (ϕ(a, s), s) ds

= −f L
(−ϕL(a, τ ), τ ). (3.1)
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f
(a) (b)

x

f̃ (ϕ(a, t), t; τ)

τ τ + T t τ τ + T t

f (ϕ(a, t), t)

ϕ(a, τ + T )

ϕ(a, t)
f̃ L

(ϕ(a, τ + T ), τ)

= f̄ L
(ϕ̄L (a, τ), τ)

ϕ̄L (a, τ)

ϕ̄(a, t; τ)

Figure 2. Lagrangian means and partial Lagrangian means in an averaging interval (τ, τ + T): (a) means of a
function f evaluated along the trajectory ϕ(a, t) of a fluid parcel labelled by a; and (b) means of the position,
shown here along a single coordinate axis.

Comparing this definition with (2.4) shows that the overbar indicates a mean along a
trajectory identified by the Lagrangian mean position, whereas the tilde indicates the same
mean but with the trajectory identified by the actual position at t = τ + T , that is, at the
end of the averaging. This is illustrated in figure 2. We also introduce the partial mean
versions of (2.3), (2.4) and (3.1), namely

ϕ̄(a, t; τ) := 1
t − τ

∫ t

τ

ϕ(a, s) ds, (3.2a)

f̄ (ϕ̄(a, t; τ), t; τ) := 1
t − τ

∫ t

τ

f (ϕ(a, s), s) ds, (3.2b)

f̃ (ϕ(a, t), t; τ) := 1
t − τ

∫ t

τ

f (ϕ(a, s), s) ds, (3.2c)

as in Kafiabad (2022); see figure 2. Clearly, the partial means give the total means when
evaluated at t = τ + T . We emphasise that all means used in the paper are Lagrangian
means, and that we indicate this explicitly by a superscript L only for the total means, to
distinguish them from the partial means, which are undecorated. The counterpart of (3.1)
holds for the partial means:

f̃ (ϕ(a, t), t; τ) = f̄ (ϕ̄(a, t; τ), t; τ). (3.3)

Since time-averaged quantities vary over time scales larger than the averaging period
T , it is neither necessary nor desirable to compute Lagrangian means at each of the times
at which the velocity u and scalar field f are known, typically discrete times separated
by a small time step. Rather, we think of the averaging time τ as a slow variable and
propose to compute the Lagrangian means only at τ = τn = nT for n = 0, 1, 2, . . .. We
can therefore carry out independent computations for each tn, each involving only the
fields for t ∈ (τn, τn + T). We now focus on one such interval, and to lighten the notation,
drop the parametric dependence on τ from the partial means in (3.2). For instance, we
use f̄ (ϕ̄(a, t), t) instead of f̄ (ϕ̄(a, t; τ), t; τ) in the following derivations, keeping in mind
the now implicit dependence of f̄ and ϕ̄ on τ . A warning about notation might be useful:
in what follows, we use the symbol x as a generic dummy variable, without attributing
it the specific meaning of either an actual or a Lagrangian mean position. This meaning
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is determined by the function in which x appears. Thus x in f̃ (x, t) is interpreted as an
actual position at time t, whereas in f̄ (x, t) it is interpreted as a (partial) Lagrangian mean
position.

We now formulate two distinct strategies for the computation of the Lagrangian mean
−f L

(x, τ ).

3.1. Strategy 1

Our first strategy parallels that of Kafiabad (2022) and consists in solving a PDE for f̃ (x, t),
evaluating the result at t = τ + T to obtain f̃ L

(x, τ ), then deducing −f L
(x, τ ) by applying a

suitable remapping. To derive the PDE for f̃ (x, t), we take the time derivative of (3.2c) at
fixed label a and use the chain rule and (2.1) to find

∂t f̃ (ϕ(a, t), t) + u(ϕ(a, t), t) · ∇f̃ (ϕ(a, t), t) = 1
t − τ

( f (ϕ(a, t), t) − f̃ (ϕ(a, t), t)).

(3.4)
Here and in what follows, the gradient ∇ is taken with respect to the first argument of f̃ .
Replacing ϕ(a, t) by x as independent variable yields the sought PDE:

∂t f̃ (x, t) + u(x, t) · ∇f̃ (x, t) = f (x, t) − f̃ (x, t)
t − τ

, (3.5)

which can be integrated from τ to t = τ + T to find the total mean f̃ L
(x, τ ) = f̃ (x, τ +

T; τ). This is a forced advection equation in which the forcing can be interpreted as a
time-dependent relaxation of f̃ to f . In a bounded domain, the solution of (3.5) requires no
boundary conditions since the differentiation u(x, t) · ∇ is along the boundary. The initial
condition is that f̃ (x, τ ) = f (x, τ ) so that the right-hand side is finite.

Computing f̃ L may be all that is needed for applications in which the spatial distribution
of the Lagrangian mean is not important. For example, wave-averaged geostrophy – the
modified form of geostrophic balance expressed in terms of Lagrangian mean quantities
– can be validated by comparing Lagrangian mean velocity and pressure gradient at the
same position (equivalently, the same label) regardless of where the position is located in
physical space (Kafiabad et al. 2021; Kafiabad 2022).

However, in many other applications, it is necessary to compute the (generalised)
Lagrangian mean field −f L

(x, t) for specified Lagrangian mean positions x. This
(generalised) Lagrangian mean field can be deduced from f̃ L

(x, t) by considering the lift
map Ξ(x, t), which returns the position at time t of the particle with x as partial mean
position from t̄ to t, that is,

Ξ(ϕ̄(a, t), t) = ϕ(a, t) (3.6)

(Andrews & McIntyre 1978; Bühler 2014). Its inverse Ξ−1(x, t) returns the partial mean
position of the particle that passes through x at t:

Ξ−1(ϕ(a, t), t) = ϕ̄(a, t) = 1
t − τ

∫ t

τ

ϕ(a, s) ds, (3.7)

where we used the definition (3.2a) of the mean position. The map Ξ and its inverse Ξ−1

are depicted in figure 3. The relation (3.1) between f̃ L and −f L can then be written in terms
of Ξ−1 as

f̃ L
(x, τ ) = −f L

(Ξ−1(x, τ + T), τ ). (3.8)
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Label space

x

Ξ–1

Ξ
a ϕ̄

ϕ

Physical space ⊆ Rn

ϕ̄(a, t; τ)

Figure 3. Flow map ϕ, Lagrangian (partial) mean map ϕ̄, lift map Ξ and its inverse Ξ−1.

Now, comparing (3.7) with (3.2c) makes it clear that the components of Ξ−1 can be
viewed as instances of functions f̃ with f (x) = xi. Thus we can rewrite (3.5) for this special
case to obtain

∂tΞ
−1(x, t) + u(x, t) · ∇Ξ−1(x, t) = x − Ξ−1(x, t)

t − τ
. (3.9)

Alternatively, we can take the time derivative of (3.7) and replace ϕ(a, t) by x to arrive at
(3.9). Integrating (3.9) provides the means to effect the remapping (3.8) between f̃ L and
−f L.

To recapitulate, our first strategy consists in solving the PDEs (3.5) and (3.9) from τ to
τ + T to obtain f̃ L

(x, τ ) = f̃ (x, τ + T; τ) and Ξ(x, τ + T; τ), then using (3.8) to compute
−f L by interpolation. The algorithm proposed by Kafiabad (2022) turns out to be a particular
discretisation of this strategy (see Appendix B).

3.2. Strategy 2

Our second strategy bypasses the use of f̃ and is instead based on PDEs for f̄ and Ξ . To
derive these, we first note that taking the time derivative of (3.2a) gives

∂tϕ̄(a, t) = ϕ(a, t) − ϕ̄(a, t)
t − τ

=: ū(ϕ̄(a, t), t). (3.10)

The second equality defines the auxiliary velocity field ū as the time derivative of the
partial Lagrangian mean position. Using (3.6), this velocity field can be written in terms
of the lift map as

ū(x, t) = Ξ(x, t) − x
t − τ

, (3.11)

where the dummy variable x can be thought of as the partial mean position. We emphasise
that ū(·, t), like Ξ(·, t), depends implicitly on τ , and warn that it should not be interpreted
as the partial mean of the Lagrangian velocity: as discussed in Appendix A, its value at
the end of the averaging interval, for t = τ + T , differs from the usual Lagrangian mean
velocity, that is, the time derivative of −ϕL(a, τ ) with respect to τ .
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Now, differentiating (3.2b) with respect to t at fixed label a and using (3.10) leads to

∂t f̄ (ϕ̄(a, t), t) + ū(ϕ̄(a, t), t) · ∇f̄ (ϕ̄(a, t), t) = f (ϕ(a, t), t) − f̄ (ϕ̄(a, t), t)
t − τ

. (3.12)

We obtain the desired PDE for f̄ (x, t) by using (3.6) and replacing ϕ̄(a, t) by the
independent variable x to write

∂t f̄ (x, t) + ū(x, t) · ∇f̄ (x, t) = f (Ξ(x, t), t) − f̄ (x, t)
t − τ

. (3.13)

This is a forced advection equation, analogous to the PDE (3.5) governing f̃ (x, t). However,
unlike (3.5), it is not closed since it involves Ξ(x, t), explicitly on the right-hand side and
implicitly through ū(x, t) on the left-hand side. It needs to be solved along an equation for
Ξ(x, t). We derive this equation by taking the time derivative of (3.6) at fixed a and using
(3.10) and (2.1) to obtain

∂tΞ(ϕ̄(a, t), t) + ū(ϕ̄(a, t), t) · ∇Ξ(ϕ̄(a, t), t) = u(ϕ(a, t), t). (3.14)

Hence, replacing ϕ̄(a, t) by x and using (3.6),

∂tΞ(x, t) + ū(x, t) · ∇Ξ(x, t) = u(Ξ(x, t), t). (3.15)

Strategy 2 consists in solving (3.13) and (3.15), with ū(x, t) defined by (3.11), for t ∈
(τ, τ + T), then deducing the Lagrangian mean of f as −f L

(x, τ ) = f̄ (x, τ + T; τ).
The initial conditions for (3.13) and (3.15) are that f̄ (x, τ ) = f (x, τ ) and Ξ(x, τ ) = x.

The boundary conditions are non-trivial: in bounded domains, f̄ (x, t) and Ξ(x, t) are
defined on the image of the label space by the Lagrangian mean map ϕ̄ (equivalently,
the image of the fluid domain by Ξ−1). Thus the problem in principle involves a boundary
moving with velocity ū, and can therefore be difficult to discretise. The common situation
where the physical domain has boundaries that coincide with constant-coordinate surfaces
(curves in two dimensions) is straightforward, however, because the componentwise
definition of ϕ̄ in (2.3) ensures that it maps such boundaries to themselves so the domain
remains fixed. The case of periodic domains is also straightforward.

4. Numerical implementation

The set of equations for each strategy of the previous section can be discretised in a
variety of ways. Here we focus on a pseudo-spectral discretisation, which we apply to
the computation of Lagrangian means in a turbulent shallow-water flow interacting with
a Poincaré wave. We make general remarks about the choice of strategy and numerical
discretisation, but leave a more complete analysis of numerical error and convergence for
future studies.

4.1. Strategy 1

To solve (3.5), it is convenient to introduce g̃(x, t) = (t − τ) f̃ (x, t), leading to

(∂t + u(x, t) · ∇) g̃(x, t) = f (x, t). (4.1)

Integrating this equation over the averaging period then yields the Lagrangian mean
f̃ L

(x, τ ) = g̃(x, τ + T)/T . For simple geometries, periodic in particular, standard
pseudo-spectral methods provide efficient solvers for (4.1), and if the remapping to
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Lagrangian mean positions is desired, (3.9). This is particularly convenient if the fluid’s
governing equations are also solved pseudo-spectrally, because f is then available on
spectral grid points to evaluate the right-hand sides of (4.1) and (3.9), and on physical grid
points to evaluate the nonlinear terms. An alternative is a semi-Lagrangian discretisation,
which leads to the algorithm of Kafiabad (2022) as detailed in Appendix B.

To investigate the validity of numerical solutions of (3.5), we consider a
two-dimensional incompressible inviscid flow for which the vorticity, ζ say, is conserved
materially. This implies that

ζ(x, τ + T) = ζ̃
L
(x, τ ). (4.2)

Hence we can calculate ζ̃
L by integrating (3.5) (or (4.1)) from τ to τ + T , and compare

it with the instantaneous vorticity at τ + T to study the accuracy of the computed
Lagrangian mean. Note that this is simply a test for (3.5) using the material conservation
of ζ as opposed to an application of the Lagrangian mean. As mentioned earlier, (3.5)
should usually by solved in tandem with (3.9) to get a meaningful spatial distribution of
Lagrangian mean quantities.

We perform a numerical simulation of this two-dimensional flow without viscosity in a
doubly periodic, [0, 2π]2 domain, using a standard pseudo-spectral discretisation and 2/3
de-aliasing with 1282 grid points. We start the simulation with the vorticity

ζ(x, y, t = 0) = e−(x−π+0.1)2−( y−π+π/3)2 + e−(x−π−0.1)2−( y−π−π/3)2
, (4.3)

corresponding to two like-signed vortices that subsequently merge. We use Heun’s
method for the time integration of the governing vorticity equation and for (4.1), with
time step Δt = 0.005. Figure 4 displays the instantaneous vorticity ζ at t = 25, and
ζ̃

L obtained for τ = 0 and T = 25. As expected from (4.2), the Lagrangian mean ζ̃
L

matches the instantaneous vorticity ζ . The pseudo-spectral solution for ζ̃
L, shown in

figure 4(d), in particular, shows an excellent agreement with ζ in figure 4(a). The
results of the semi-Lagrangian algorithm of Kafiabad (2022) with, respectively, linear
and cubic interpolations, are shown in figures 4(b,c) (see Appendix B). These show a
poorer agreement with figure 4(a), especially with the linear interpolation, because of an
accumulation of interpolation errors. The computation reported in figure 4 is, however,
rather extreme in both the coarseness of the resolution and the length of the averaging
interval. We have confirmed that the three numerical solutions for ζ̃

L converge to each
other and to ζ as the spatial resolution increases or the length of the averaging interval
decreases. (The interested reader will find a demonstration of this convergence in the
supplementary material available at https://doi.org/10.1017/jfm.2023.228.) Since we solve
the dynamical and Lagrangian mean equations without explicit dissipation, both require
small time steps. Our investigation for this particular example shows that the Lagrangian
mean equations are less restrictive than the dynamical equations for the size of time step.

The pseudo-spectral method leads to more accurate results, but it is not as stable as
its semi-Lagrangian counterpart and therefore requires smaller time steps. The difference
arises because the implicit time integration and numerical smoothing due to interpolation
that are inherent to semi-Lagrangian methods have a stabilising effect.

4.2. Strategy 2
We now implement strategy 2, which uses the Lagrangian mean position x as
independent spatial variable. In the periodic domain that we consider, there are no
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0.4
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0

Figure 4. Vorticity field and its Lagrangian mean for a two-dimensional incompressible inviscid flow:
(a) instantaneous vorticity ζ at t = 25. (b–d) Computation of ζ̃ L by time integration of (3.5) from τ = 0 to T =
25, using (b) a semi-Lagrangian discretisation with linear interpolation, (c) a semi-Lagrangian discretisation
with cubic interpolation, and (d) pseudo-spectral discretisation.

difficulties associated with moving boundaries, and a pseudo-spectral discretisation is
straightforward. It is convenient to rewrite the PDEs to be integrated, (3.13) and (3.15),
in terms of the displacement map

ξ(x, t) = Ξ(x, t) − x, (4.4)

since ξ is periodic, unlike Ξ . (This is the partial mean analogue of the displacement
introduced by Andrews & McIntyre 1978.) As in strategy 1, it is also convenient to solve
for ḡ(x, t) = (t − τ) f̄ (x, t) instead of f̄ . With these transformations, ū = ξ/(t − τ), and
(3.13) and (3.15) are rewritten as

∂tξ(x, t) + ξ(x, t)
t − τ

· ∇ξ(x, t) = u(x + ξ(x, t), t) − ξ(x, t)
t − τ

, (4.5a)

∂tḡ(x, t) + ξ(x, t)
t − τ

· ∇ḡ(x, t) = f (x + ξ(x, t), t). (4.5b)

These are the PDEs that we solve numerically. When discretising in time, we found it
beneficial for stability to first update ξ using (4.5a), then use the updated ξ for the time
integration of (4.5b).

Below, we apply strategy 2 to two examples of rotating shallow-water flows. We write
the governing equations in a non-dimensional form, using a characteristic length L,
characteristic velocity U, time L/U and mean height H for scaling, leading to

∂u
∂t

+ u · ∇u + 1
Ro

ẑ × u = − 1
Fr2 ∇h + 1

Re
∇2u, (4.6a)

∂h
∂t

+ ∇ · (hu) = 0, (4.6b)

where we introduce the standard dimensionless numbers (e.g. Vallis 2017)

Ro = U
fL

, Fr = U√
gH

and Re = UL
ν

. (4.7a–c)

In the above, g is the gravitational acceleration, ν is the kinematic viscosity, f is the
Coriolis parameter, and ẑ is the vertical unit vector.
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Figure 5. Initial condition of the shallow-water simulation: (a) vertical vorticity of the geostrophic flow; and
(b) height field of the Poincaré wave.

4.2.1. Interaction of a turbulent geostrophic flow with a strong wave
In the first example, we compute Lagrangian means in a simulation of a turbulent flow
interacting with a Poincaré wave in rotating shallow water. We initialise our simulation
with a turbulent flow that is initially in geostrophic balance, with vorticity ζ = ∂xv −
∂xu shown in figure 5(a), and superimpose a mode-1 Poincaré wave, with the height
field shown in figure 5(b). The initial geostrophic flow is generated from the output
of an incompressible two-dimensional Navier–Stokes simulation, which has reached a
fully-developed turbulent state, and the height field that is in geostrophic balance with
this vortical flow. We use the root-mean-square velocity of the geostrophic flow as
the characteristic velocity U, and choose the length scale of the first Fourier mode as
characteristic length L. This makes the dimensionless doubly periodic domain [0, 2π]2,
which we discretise with 256 × 256 grid points. The right-travelling mode-1 Poincaré
wave has the form

u′ = a cos(x − ωt), v′ = a
ω Ro

sin(x − ωt), h′ = a
ω

cos(x − ωt), (4.8a–c)

where the intrinsic frequency is ω = (Ro−2 + Fr−2)1/2, and the velocity amplitude a is a
constant, taken as a = −1.8 in our simulation. This implies wave velocities that are almost
twice as large as the geostrophic velocities. It is in this sense that we regard the wave as
strong. We set the dimensionless parameters to

Ro = 0.1, Fr = 0.5 and Re = 3.84 × 103, (4.9a–c)

which results in ω = 10.2.
We evaluate (4.8a–c) at t = 0 and add the wave fields to the geostrophic field to

form the initial condition. We solve the dynamical equations (4.6) in tandem with the
Lagrangian mean equations (4.5) over a single averaging time interval, taken to be T =
2.2, corresponding to approximately 3.6 wave periods. We use a de-aliased pseudo-spectral
discretisation and a forward Euler integrator, with time step 1.25 × 10−4 for (4.6), and
2.5 × 10−4 for (4.5). A bilinear interpolation is used to evaluate u and f at x + ξ(x, t) in
the right-hand sides of (4.5). The link for the scripts and data used to produce the results
of this section is provided in the ‘Data availability statement’ at the end of this paper.
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Figure 6. Potential vorticity (PV) q and its Lagrangian and Eulerian means in the shallow-water simulation:
(a) instantaneous PV q at t = 1.1, (b) Lagrangian mean q̄L, and (c) Eulerian mean PV. The mean fields are
averaged from τ = 0 to T = 2.2. All panels share the same colour bar.

Figure 1, discussed briefly in § 1, displays the vorticity field ζ at t = T/2 (figure 1a)
and its Lagrangian and Eulerian means (figures 1b,c). The strong wave dominates the
instantaneous vorticity field. It is filtered successfully by time averaging. Clearly, the
Lagrangian mean captures small-scale structures in the vorticity that are blurred by the
Eulerian mean. This blurring is the result of the advection of the vorticity by the velocity
field associated with the wave, which causes the vorticity structures to oscillate with the
wave period. By construction, the Lagrangian mean removes these oscillations, leading to
a sharper definition of the flow features.

It is interesting to examine the effect of Lagrangian and Eulerian averaging on the
potential vorticity (PV) q = (1 + Ro ζ )/h. In the absence of dissipation (Re → ∞), this
is a materially conserved field, meaning that q(ϕ(a, t), t) = q0(a), with q0 determined
by the initial condition. By definition (2.4), the Lagrangian mean PV then satisfies
q̄L(ϕ̄(a, t), t) = q0(a). Thus both q and q̄L are (smooth) rearrangements of the initial
PV and hence rearrangements of one another; specifically, q̄L(x, t) = q(Ξ(x, t), t). This
imposes constraints such as the two fields sharing the same values for their local extrema.
Because ϕ̄ is not area-preserving, the distribution functions of q and q̄L (measuring the
areas of regions where the fields are below specified values) do not coincide. Figure 6
shows q at t = T/2 and q̄L as well as the Eulerian mean PV. The Lagrangian mean
PV q̄L appears as a slight deformation of q, consistent with it being rearrangement
by a map Ξ that is close to the identity. In contrast, the Eulerian mean PV, which is
not transported materially, shows blurred features, with in particular extrema that are
substantially reduced compared with those of q and q̄L. There is a strong argument that
the study of wave–mean-flow interactions, in the shallow-water model and more broadly,
would benefit from the systematic analysis of Lagrangian mean fields such as the ones
displayed in figures 1(b) and 6(b).

4.2.2. Moderate-Rossby-number flow initialised in geostrophic balance
In the second example, we initialise the shallow-water simulation with the same
geostrophic flow as in § 4.2.1, but without any waves. The set-up is identical, but with
resolution 1282 and an increased Rossby number Ro = 0.6. As the flow evolves at this
relatively high Ro, small-scale imbalance is generated, as shown in the instantaneous
vorticity of figure 7(a) and the associated enstrophy spectrum in figure 7(d). Figures 7(b,e)
show the Lagrangian mean vorticity field and the corresponding perturbation field,
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Figure 7. (a) Instantaneous vorticity ζ(x, t) at t = 1.1. (b) Lagrangian mean vorticity ζ̄
L
(x, τ = 0)

corresponding to averaging from t = 0 to T = 2.2. (c) Eulerian mean vorticity averaged from t = 0 to 2.2.
(d) Enstrophy spectra of instantaneous velocity at t = 2.2 and the Lagrangian and Eulerian mean fields.
(e) Lagrangian perturbation field. ( f ) Eulerian perturbation field.

respectively. The perturbation field is computed as −
ζ

L
(x, τ ) − ζ(x + ξ(x, τ + T), τ + T)

with, in this case, τ = 0 and T = 2.2. The Lagrangian average preserves the large-scale
balanced flow so that the corresponding perturbation extracts the small-scale imbalance.
This is evident in the enstrophy spectra of figure 7(d), where the instantaneous and
Lagrangian mean spectra overlap at small wavenumbers, and the jump in the tail of the
instantaneous spectrum is removed in the Lagrangian mean spectrum. In contrast, the
mean flow is weakened in the Eulerian average (figure 7c) because at this moderate Ro,
the vortices are advected substantially during the averaging period. This is corroborated
in the Eulerian mean enstrophy spectrum, which has lower values for small wavenumbers,
and follows the jump of the instantaneous spectrum at large wavenumbers. Consequently,
balanced flow features dominate the Eulerian perturbation field (figure 7f ). The results of
figure 7 are similar to those of the synthetic flow considered by Shakespeare et al. (2021).

5. Discussion

This paper presents a novel approach for the numerical computation of Lagrangian means
that relies on solving PDEs rather than tracking particles. We propose two strategies, each
leading to a separate set of PDEs. Both strategies are based on the derivation of equations
governing the evolution of partial means with respect to t. These partial means are defined
as averages over a subset (τ, t) of each averaging interval (τ, τ + T), and yield the (total)
means for t = τ + T . Strategy 1 uses the position of particles at time t as independent
spatial variable. Hence it requires a map from the positions at the final time t = τ + T to
the Lagrangian mean positions to ultimately present the results in terms of the latter, as is
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standard in GLM theory. Strategy 2 computes directly the Lagrangian means in terms of
Lagrangian mean positions.

A natural question is which of the two strategies should be preferred. There is no
definitive answer: each strategy has pros and cons. If the spatial distribution of Lagrangian
means does not matter in an application, then it suffices to solve (3.5) of strategy 1. When
the spatial distribution is needed, strategy 1 requires the remapping (3.8), which can be
affected by clustering: the mean positions Ξ−1(x, τ + T) obtained from (3.9) for x on a
regular grid may have a highly non-uniform distribution. This can lead to large numerical
errors in the interpolation required to discretise (3.8). Strategy 2 circumvents this issue, as
the generalised Lagrangian mean is computed directly on the desired spatial grid points.
However, this advantage comes at the computational cost of evaluating more complicated
right-hand sides in (3.13) and (3.15), which require interpolation at each averaging time
step. Furthermore, strategy 2 leads to PDEs posed on a moving domain, unless the domain
is periodic or has boundaries that correspond to constant coordinates.

As discussed in Kafiabad (2022), the full potential of our approach in saving memory
and reducing computational cost is realised when the PDEs for the Lagrangian mean fields
are solved on the fly, together with the dynamical model (as opposed to offline, using
saved model outputs). In this case, it is beneficial to solve the Lagrangian mean PDEs
using a numerical scheme that matches closely that of the dynamical model, because the
instantaneous values of f and u (required to solve the Lagrangian mean PDEs) are readily
available at the same (physical or spectral) grid points. Moreover, the reasons that led to
a particular choice of numerical discretisation for the dynamical equations – such as the
type of boundary conditions – typically also apply to the Lagrangian mean PDEs.

In the main body of the paper, we restrict our attention to the Lagrangian averaging of
a scalar function f (x, t). The averaging of vectors, differential forms and more general
tensors is, however, of interest in applications. For instance, the Lagrangian means of
the momentum 1-form u · dx (the integrand in Kelvin’s circulation) and of the magnetic
flux 2-form play crucial roles in the theory of wave–mean-flow interactions in fluid
dynamics and magnetohydrodynamics (Soward 1972; Andrews & McIntyre 1978; Holm
2002; Gilbert & Vanneste 2018, 2021). The derivations in § 3 generalise straightforwardly
to tensors when the language of push-forwards, pull-backs and Lie derivatives is employed.
We illustrate this in Appendix C by generalising (3.13) of strategy 2 for the partial
Lagrangian mean of f (x, t) to a tensor field σ(x, t).

We conclude by noting that practical averages such as the time average in (2.2)–(2.4) do
not satisfy exactly the axioms of the more abstract averages assumed in the development
of GLM and similar theories. In particular, the basic requirement that averaging leaves
mean quantities unchanged, that is, ¯̄g = ḡ, fails for (2.2), though the difference is small
if there is a clear time scale separation between mean flow and perturbation. Interpreting
numerically computed Lagrangian mean fields in light of these theories will therefore
require us to understand how theoretical predictions are affected by the precise nature of
the average.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.228.
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Appendix A. Partial and total Lagrangian mean velocities

We show that the partial mean velocity ū in (3.11) is not related to the Lagrangian
mean velocity −uL as might be expected naively: −uL(x, τ ) �= ū(x, τ + T; τ), where we have
reinstated the parametric dependence on τ for clarity. The definition of −uL itself is not
without ambiguity: the most natural definition is as the derivative of the total Lagrangian
mean map with respect to the slow time, i.e.

∂τ
−ϕL(a, τ ) = −uL(−ϕL(a, τ ), τ ). (A1)

Taking the derivative of the definition (2.3) of −ϕL gives the explicit form

−uL(−ϕL(a, τ ), τ ) = 1
T

(ϕ(a, τ + T) − ϕ(a, τ )). (A2)

In contrast, the partial mean velocity ū is defined via a derivative with respect to the fast
time t as seen from the definition (3.10), which takes the form

∂tϕ̄(a, t; τ) =: ū(ϕ̄(a, t), t; τ), (A3)

on reinstating the parametric dependence on τ .
The difference between ū(x, τ + T; τ) and −uL(x, τ ) should not come as a surprise since

ū(x, τ + T; τ) is constructed independently for each value of τ and hence cannot capture
the change of −ϕL(·, τ ) measured by −uL. It can be made explicit by deducing from (A2) that

−uL(x, τ ) = 1
T

(ϕ(ϕ̄−1(x, τ + T; τ), τ + T) − ϕ(ϕ̄−1(x, τ + T; τ), τ ))

= 1
T

(Ξ(x, t; τ) − ϕ(ϕ̄−1(x, τ + T; τ), τ )), (A4)

which differs from ū(x, τ + T; τ) = (Ξ(x, τ + T; τ) − x)/T since ϕ(ϕ̄−1(x, τ +
T; τ), τ ) �= x.

Note that in GLM, −uL is defined as the Lagrangian mean of the components of u instead
of via (A1). In Euclidean space, the two definitions are equivalent since

1
T

∫ τ+T

τ

u(ϕ(a, s), s) ds = 1
T

∫ τ+T

τ

∂sϕ(a, s) ds = ϕ(a, τ + T) − ϕ(a, τ )

T
, (A5)

using (2.1). This equivalence does not hold for definitions of the Lagrangian mean flow
that have been proposed as geometric alternatives to GLM valid on any manifold (Soward
& Roberts 2010; Gilbert & Vanneste 2018; Vanneste & Young 2022).

Appendix B. Semi-Lagrangian discretisation of strategy 1

We show that the algorithm developed by Kafiabad (2022) for the ‘grid-based calculation
of Lagrangian average’ is equivalent to a semi-Lagrangian discretisation of (3.5) and (3.9).
We denote the grid points by X i, with i a multi-index in dimension more than 1, and the
set of all grid points by {Xα}. The semi-Lagrangian discretisation (3.5) gives the value
f̃ (X i, tn+1) of f̃ at each grid point at tn+1, the end of a time step, in terms of the set
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of values f̃ ({Xα}, tn) at tn, the start of the time step. It is based on a semi-Lagrangian
discretisation of the equivalent PDE (4.1), namely

g̃(X i, tn+1) = g̃(Y i, tn) + (tn+1 − tn) f (X i, tn+1), (B1)

where we use a backward Euler step for the time stepping. Here, Y i denotes the position
at tn of the particle that passes through X i at tn+1; it can be evaluated using

Y i = X i − (tn+1 − tn) u(X i, tn+1), (B2)

which follows from approximating the derivative in (2.1) by a backward finite difference.
Rewriting (B1) in terms of f̃ and rearranging, we obtain

f̃ (X i, tn+1) = (tn − τ) f̃ (Y i, tn) + (tn+1 − tn) f (X i, tn+1)

tn+1 − τ
, (B3)

which is the same as (2.6) in Kafiabad (2022) when the last term is replaced by their (2.7).
Using the trapezoidal rule instead of backward Euler leads to

f̃ (X i, tn+1) = (tn − τ) f̃ (Y i, tn) + (tn+1 − tn)[f (Y i, tn) + f (X i, tn+1)]/2
tn+1 − τ

, (B4)

which is (2.8) of Kafiabad (2022) and can provide more accurate results. Note that the
evaluation of f̃ (Y i, tn) requires an interpolation since Y i is not on the grid.

If we consider the particle position as a special case of f , (B4) turns into

Ξ−1(X i, tn+1) = (tn − τ)Ξ−1(Y i, tn) + (tn+1 − tn)(X i + Y i)/2
tn+1 − τ

, (B5)

which parallels (2.9) in Kafiabad (2022). The complete algorithm iterates (B3)–(B5) from
t0 = τ to tN+1 = τ + T to obtain f̃ L

(x, τ ) = f̃ (x, τ + T) and Ξ−1(x, t + T). In the final
step, Ξ−1(x, t + T) is employed to apply the remapping (3.8) to calculate −f L

(x, τ ).

Appendix C. Lagrangian mean of tensors

We show how (3.13) for the Lagrangian mean of scalar functions generalises readily to
tensors when phrased in the language of push-forwards, pull-backs and Lie derivatives
(e.g. Frankel 2004). The definition (3.2b) of the partial Lagrangian mean generalises as

	ϕL∗
τ

−σ L
τ := 1

T

∫ τ+T

τ

ϕ∗
s σs ds. (C1)

Here, we make the time variable appear explicitly as a subscript, and we use 	ϕL∗
t and

ϕ∗
t to denote the pull-backs by, respectively, the Lagrangian mean map and flow map.

Pull-backs are interpreted differently depending on the nature of σt: in particular, for a
scalar, (ϕ∗

t f )(x) = f (ϕt(x)), while for a 1-form, (ϕ∗
t (u · dx))(x) = uj(ϕt(x)) ∂iϕtj(x)dxi.

The definition (C1) is a natural, geometrically intrinsic definition of the Lagrangian mean
because it ensures that the tensors σs at different times s are transported to the same
position in label space before the averaging is carried out (see Gilbert & Vanneste 2018).
The partial mean of σt associated with (C1) reads

ϕ̄∗
t σ̄t := 1

t − τ

∫ t

τ

ϕ∗
s σs ds, (C2)

and is understood to depend parametrically on σ .
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Computing Lagrangian means

Differentiating (C2) with respect to t and using that ∂tϕ̄
∗
t σ̄t = ϕ̄∗

t (∂t + Lū)σ̄t, where Lū
is the Lie derivative, gives (Gilbert & Vanneste 2018)

ϕ̄∗
t (∂t + Lū)σ̄t = −ϕ̄∗

t σ̄t + ϕ∗
t σ̄t

t − τ
. (C3)

Pushing forward by ϕ̄t∗ reduces this to

(∂t + Lū)σ̄t = Ξ∗
t σt − σt

t − τ
, (C4)

on using that (3.6), here in the form Ξ t = ϕt ◦ ϕ̄−1
t , implies that Ξ∗

t = ϕ̄t∗ϕ∗
t . Equation

(C4) generalises (3.13) to tensors. Its coordinate form depends on the type of tensor
because of the different forms taken by Lū and Ξ∗

t . Note that (3.9) and (3.15) for Ξ−1 and
Ξ do not have a tensorial nature: because of the Cartesian definition of the Lagrangian
mean map (2.3), Ξ is simply a triple of scalar functions rather than a vector. See Gilbert
& Vanneste (2018) for geometrically intrinsic definitions of the Lagrangian mean map
alternative to (2.3).
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