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Initialization

The simulation is such that [one] generally perceives the sum of many billions of
elementary processes simultaneously, so that the leveling law of large numbers
completely obscures the real nature of the individual processes.

John von Neumann [2]

Thanks to substantial investments into computer technology, modern artificial intelli-
gence (Al) systems can now come equipped with many billions of elementary com-
ponents. When these components are properly initialized and then trained, AI can
accomplish tasks once considered so incredibly complex that philosophers have previously
argued that only natural intelligence systems — i.e., humans — could perform them.

Behind much of this success in Al is deep learning. Deep learning uses artificial
neural networks as an underlying model for Al: while loosely based on biological
neural networks such as your brain, artificial neural networks are probably best thought
of as an especially nice way of specifying a flexible set of functions, built out of many
basic computational blocks called neurons. This model of computation is actually quite
different from the one used to power the computer you're likely using to read this book.
In particular, rather than programming a specific set of instructions to solve a problem
directly, deep learning models are trained on data from the real world and learn how to
solve problems.

The real power of the deep learning framework comes from deep neural networks,
with many neurons in parallel organized into sequential computational layers, learning
useful representations of the world. Such representation learning transforms data into
increasingly refined forms that are helpful for solving an underlying task and is thought
to be a hallmark of success in intelligence, both artificial and biological.

Despite these successes and the intense interest they have created, deep learning
theory is still in its infancy. Indeed, there is a serious disconnect between theory and
practice: while practitioners have reached amazing milestones, they have far outpaced
the theorists, whose analyses often involve assumptions so unrealistic that they lead
to conclusions that are irrelevant to understanding deep neural networks as they are
typically used. More importantly, very little theoretical work directly confronts the deep
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of deep learning, despite a mass of empirical evidence for its importance in the success
of the framework.

The goal of this book is to put forth a set of principles that enable us to theoretically
analyze deep neural networks of actual relevance. To initialize you to this task, in the
rest of this chapter we’ll explain at a very high-level both (7) why such a goal is even
attainable in theory and (i) how we are able to get there in practice.

0.1 An Effective Theory Approach

Steam navigation brings nearer together the most distant nations. ... their theory is
very little understood, and the attempts to improve them are still directed almost by
chance. ... We propose now to submit these questions to a deliberate examination.

Sadi Carnot, commenting on the need for a theory of deep learning [3].

While modern deep learning models are built up from seemingly innumerable elementary
computational components, a first-principles microscopic description of how a trained
neural network computes a function from these low-level components is entirely manifest.
This microscopic description is just the set of instructions for transforming an input
through the many layers of components into an output. Importantly, during the training
process, these components become very finely-tuned, and knowledge of the particular
tunings is necessary for a system to produce useful output.

Unfortunately, the complexity of these tunings obscures any first-principles macro-
scopic understanding of why a deep neural network computes a particular function
and not another. With many neurons performing different tasks as part of such a
computation, it seems hopeless to think that we can use theory to understand these
models at all and silly to believe that a small set of mathematical principles will be
sufficient for that job.

Fortunately, theoretical physics has a long tradition of finding simple effective
theories of complicated systems with a large number of components. The immense
success of the program of physics in modeling our physical universe suggests that per-
haps some of the same tools may be useful for theoretically understanding deep neural
networks. To motivate this connection, let’s very briefly reflect on the successes of
thermodynamics and statistical mechanics, physical theories that together explain from
microscopic first principles the macroscopic behavior of systems with many elementary
constituents.

A scientific consequence of the Industrial Age, thermodynamics arose out of an
effort to describe and innovate upon the steam engine — a system consisting of many many
particles, and perhaps the original black box. The laws of thermodynamics, derived from
careful empirical observations, were used to codify the mechanics of steam, providing a
high-level understanding of these macroscopic artificial machines that were transforming
society. While the advent of thermodynamics led to tremendous improvements in the
efficiency of steam power, its laws were in no way fundamental.
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It wasn’t until much later that Maxwell, Boltzmann, and Gibbs provided the missing
link between experimentally-derived effective description on the one hand and a first-
principles theory on the other hand. Their statistical mechanics explains how the
macroscopic laws of thermodynamics describing human-scale machines could arise sta-
tistically from the deterministic dynamics of many microscopic elementary constituents.
From this perspective, the laws of thermodynamics were emergent phenomena that only
appear from the collective statistical behavior of a very large number of microscopic
particles. In fact, it was the detailed theoretical predictions derived from statistical
mechanics that ultimately led to the general scientific acceptance that matter is really
comprised of molecules and atoms. Relentless application of statistical mechanics led
to the discovery of quantum mechanics, which is a precursor to the invention of the
transistor that powers the Information Age and — taking the long view — is what has
allowed us to begin to realize artificial machines that can think intelligently.

Notably, these physical theories originated from a desire to understand artificial
human-engineered objects, such as the steam engine. Despite a potential misconception,
physics doesn’t make a distinction between natural and artificial phenomena. Most
fundamentally, it’s concerned with providing a unified set of principles that account
for past empirical observations and predict the result of future experiments; the point
of theoretical calculations is to connect measurable outcomes or observables directly
to the fundamental underlying constants or parameters that define the theory. This
perspective also implies a tradeoff between the predictive accuracy of a model and
its mathematical tractability, and the former must take precedence over the latter for
any theory to be successful: a short tether from theory to physical reality is essential.
When successful, such theories provide a comprehensive understanding of phenomena
and empower practical advances in technology, as exemplified by the statistical-physics
bridge from the Age of Steam to the Age of Information.

For our study of deep learning, the key takeaway from this discussion is that a
theoretical matter simplifies when it is made up of many elementary constituents. More-
over, unlike the molecules of water contained in a box of steam — with their existence
once being a controversial conjecture in need of experimental verification — the neurons
comprising a deep neural network are put in (the box) by hand. Indeed, in this case we
already understand the microscopic laws — how a network computes — and so instead
our task is to understand the new types of regularity that appear at the macroscopic
scale — why it computes one particular function rather than another — that emerge from
the statistical properties of these gigantic deep learning models.

0.2 The Theoretical Minimum

The method is more important than the discovery, because the correct method of
research will lead to new, even more valuable discoveries.

Lev Landau [4].
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Figure 0.1 A graph of a simple multilayer neural network, depicting how the input
x is transformed through a sequence of intermediate signals, s s@ and @, into
the output f(xz;6). The white circles represent the neurons, the black dot at the top
represents the network output, and the parameters 6 are implicit; they weight the
importance of the different arrows carrying the signals and bias the firing threshold
of each neuron.

In this section, we’ll give a high-level overview of our method, providing a minimal
explanation for why we should expect a first-principles theoretical understanding of deep
neural networks to be possible. We’ll then fill in all the details in the coming chapters.

In essence, a neural network is a recipe for computing a function built out of many
computational units called neurons. Each neuron is itself a very simple function that
considers a weighted sum of incoming signals and then fires in a characteristic way by
comparing the value of that sum against some threshold. Neurons are then organized
in parallel into layers, and deep neural networks are those composed of multiple layers
in sequence. The network is parametrized by the firing thresholds and the weighted
connections between the neurons, and, to give a sense of the potential scale, current
state-of-the-art neural networks can have over 100 billion parameters. A graph depicting
the structure of a much more reasonably-sized neural network is shown in Figure 0.1.

For a moment, let’s ignore all that structure and simply think of a neural network
as a parameterized function

f(x;0), (0.1)

where z is the input to the function and 6 is a vector of a large number of parameters
controlling the shape of the function. For such a function to be useful, we need to
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somehow tune the high-dimensional parameter vector 6. In practice, this is done in
two steps:

e First, we initialize the network by randomly sampling the parameter vector 0 from
a computationally simple probability distribution,

p(0). (0.2)

We'll later discuss the theoretical reason why it is a good strategy to have an
initialization distribution p(#), but, more importantly, this corresponds to what
is done in practice, and our approach in this book is to have our theoretical analysis
correspond to realistic deep learning scenarios.

e Second, we adjust the parameter vector as § — 6*, such that the resulting network
function f(x;0*) is as close as possible to a desired target function f(x):

f@;07) = f(). (0.3)

This is called function approximation. To find these tunings 6*, we fit the
network function f(z;0) to training data, consisting of many pairs of the form
(z, f(z)) observed from the desired — but only partially observable — target function
f(x). Overall, making these adjustments to the parameters is called training, and
the particular procedure used to tune them is called a learning algorithm.

Our goal is to understand this trained network function:
flz;0%). (0.4)

In particular, we’d like to understand the macroscopic behavior of this function from a
first-principles microscopic description of the network in terms of these trained param-
eters 0*. We’d also like to understand how the function approximation (0.3) works and
evaluate how f(x;6*) uses the training data (z, f(z)) in its approximation of f(x). Given
the high dimensionality of the parameters 6 and the degree of fine-tuning required for
the approximation (0.3), this goal might seem naive and beyond the reach of any realistic
theoretical approach.

One way to more directly see the kinds of technical problems that we’ll encounter
is to Taylor-expand our trained network function f(x;6*) around the initialized value
of the parameters . Being schematic and ignoring for a moment that 6 is a vector and
that the derivatives of f(x;0) are tensors, we see

d2
(9*_9)261754“”" (0.5)

Flas0%) =Fa:0)+ (0" ) D 12

where f(x;60) and its derivatives on the right-hand side are all evaluated at the initialized
values of the parameters. This Taylor representation illustrates our three main problems:
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Problem 1
In general, the series (0.5) contains an infinite number of terms
df  &*f &Bf dif

I w0 a2 @ @t

and to use this Taylor representation of the function (0.5), in principle we need
to compute them all. More specifically, as the difference between the trained and
initialized parameters, (6* — 6), becomes large, so too does the number of terms
needed to get a good approximation of the trained network function f(x;60*).

(0.6)

Problem 2
Since the parameters 6 are randomly sampled from the initialization distribution,
p(0), each time we initialize our network we get a different function f(z;0). This
means that each term f, df /df, d*f/d6?, ... , from (0.6) is really a random function
of the input z. Thus, the initialization induces a distribution over the network
function and its derivatives, and we need to determine the mapping,

df d?
p(e)_>p< 7Ci.]g7cl9.£7"'>7

that takes us from the distribution of initial parameters 6 to the joint distribution
of the network function, f(x;#), its gradient, df /df, its Hessian, d? f /df?, and so
on. This is a joint distribution comprised of an infinite number of random functions,
and in general such functions will have an intricate statistical dependence. Even if
we set aside this infinity of functions for a moment and consider just the marginal
distribution of the network function only, p(f), there’s still no reason to expect
that it’s analytically tractable.

(0.7)

Problem 3
The learned value of the parameters, 6*, is the result of a complicated training
process. In general, 6* is not unique and can depend on everything:

af d&2f

* — [p* “ 2 J
9 7[9 ](07 f7 d97 d027 .

..; learning algorithm; training data> : (0.8)
In practice, the learning algorithm is iterative, accumulating changes over many
steps, and the dynamics are nonlinear. Thus, the trained parameters 8* will depend
in a very complicated way on all the quantities at initialization — such as the
specific random sample of the parameters 6, the network function f(z;6) and all
of its derivatives, df /df, d*f/df?, ... — as well as on the details of the learning
algorithm and also on the particular pairs, (z, f(z)), that comprise the training
data. Determining an analytical expression for 8* must involve taking all of this
into account.

If we could solve all three of these problems, then we could in principle use the Taylor-
series representation (0.5) to study the trained network function. More specifically, we’'d
find a distribution over trained network functions
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p(f*) = p(f(a:; 9*)‘ learning algorithm; training data), (0.9)

now conditioned in a simple way on the learning algorithm and the data we used for
training. Here, by simple we mean that it is easy to evaluate this distribution for different
algorithms or choices of training data without having to solve a version of Problem 3
each time. The development of a method for the analytical computation of (0.9) is a
principal goal of this book.

Of course, solving our three problems for a general parameterized function f(x;6)
is not tractable. However, we are not trying to solve these problems in general; we only
care about the functions that are deep neural networks. Necessarily, any solution to the
above problems will thus have to make use of the particular structure of a neural-network
function. While specifics of how this works form the basis of the book, in the rest of this
section we’ll try to provide some intuition for how these complications can be resolved.

A Principle of Sparsity

To elaborate on the structure of neural networks, please scroll back a bit and look at
Figure 0.1. Note that for the network depicted in this figure, each intermediate or hidden
layer consists of five neurons, and the input x passes through three such hidden layers
before the output is produced at the top after the final layer. In general, two essential
aspects of a neural network architecture are its width, n, and its depth, L.

As we foreshadowed in §0.1, there are often simplifications to be found in the limit
of a large number of components. However, it’s not enough to consider any massive
macroscopic system, and taking the right limit often requires some care. Regarding the
neurons as the components of the network, there are essentially two natural ways that we
can make a network grow in size: we can increase its width n holding its depth L fixed,
or we can increase its depth L holding its width n fixed. In this case, it will actually
turn out that the former limit will make everything really simple, while the latter limit
will be hopelessly complicated and useless in practice.

So let’s begin by formally taking the limit

lim p(f*) (0.10)

n—oo

and studying an idealized neural network in this limit. This is known as the infinite-
width limit of the network, and as a strict limit it’s rather unphysical for a net-
work: obviously you cannot directly program a function to have an infinite number of
components on a finite computer. However, this extreme limit does massively simplify the
distribution over trained networks p(f*), rendering each of our three problems completely
benign:

e Addressing Problem 1, all the higher derivative terms d*f/do* for k > 2 will
effectively vanish, meaning we only need to keep track of two terms,

af

fo (0.11)
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e Addressing Problem 2, the distributions of these random functions will be inde-

pendent,
df d? d
ggop<f,6£,d9£, > =p(f)p<d§) , (0.12)

with each marginal distribution factor taking a very simple form.

e Addressing Problem 3, the training dynamics become linear and completely
independent of the details of the learning algorithm, letting us find a complete
analytical solution for 8" in a closed form

Jim 0" = [67] (0, fs %; training data) . (0.13)
As a result, the trained distribution (0.10) is a simple Gaussian distribution with a
nonzero mean, and we can easily analyze the functions that such networks compute.

These simplifications are the consequence of a principle of sparsity. Even though
it seems like we’ve made the network more complicated by growing it to have an infinite
number of components, from the perspective of any particular neuron, the input of an
infinite number of signals is such that the leveling law of large numbers completely
obscures much of the detail in the signals. The result is that the effective theory of many
such infinite-width networks leads to extreme sparsity in their description, e.g., enabling
the truncation (0.11).

Unfortunately, the formal infinite-width limit, n — oo, leads to a poor model of deep
neural networks: not only is infinite width an unphysical property for a network to
possess, but the resulting trained distribution (0.10) also leads to a mismatch between
theoretical description and practical observation for networks of more than one layer. In
particular, it’s empirically known that the distribution over such trained networks does
depend on the properties of the learning algorithm used to train them. Additionally,
we will show in detail that such infinite-width networks cannot learn representations
of their inputs: for any input z, its transformations in the hidden layers, sV, s ...
will remain unchanged from initialization, leading to random representations and thus
severely restricting the type of functions that such networks are capable of learning. Since
nontrivial representation learning is an empirically demonstrated essential property
of multilayer networks, this really underscores the breakdown of the correspondence
between theory and reality in this strict infinite-width limit.

From the theoretical perspective, the problem with this limit is the washing out of the
fine details at each neuron due to the consideration of an infinite number of incoming
signals. In particular, such an infinite accumulation completely eliminates the subtle
correlations between neurons that get amplified over the course of training for represen-
tation learning. To make progress, we’ll need to find a way to restore and then study
the interactions between neurons that are present in realistic finite-width networks.

With that in mind, perhaps the infinite-width limit can be corrected in a way such
that the corrections become small when the width n is large. To do so, we can use
perturbation theory — just as we do in physics to analyze interacting systems — and
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study deep learning using a 1/n expansion, treating the inverse layer width, ¢ = 1/n,
as our small parameter of expansion: € < 1. In other words, we're going to back off the
strict infinite-width limit and compute the trained distribution (0.9) with the following
expansion:

P | )

n n?

p(f*) = pO () +

o, (0.14)

where plO(f*) = lim,_o p(f*) is the infinite-width limit we discussed above, (0.10),
and the pt#}(f*) for k > 1 give a series of corrections to this limit.

In this book, we’ll in particular compute the first such correction, truncating the
expansion as

n2

o) =0+ P (L) (015)

This interacting theory is still simple enough to make our three problems tractable:

e Addressing Problem 1, now all the higher derivative terms d* f /df* for k > 4 will
effectively give contributions of the order 1/n? or smaller, meaning that to capture
the leading contributions of order 1/n, we only need to keep track of four terms:

df d>f a3 f
ao’ dez’  de3’
Thus, we see that the principle of sparsity will still limit the dual effective theory
description, though not quite as extensively as in the infinite-width limit.

f, (0.16)

e Addressing Problem 2, the distribution of these random functions at initializa-

tion,
df &f df
p(fvle? d927d03 ) (017)

will be nearly simple at order 1/n, and we’ll be able to work it out in full detail
using perturbation theory.

e Addressing Problem 3, we’ll be able to use a dynamical perturbation theory to
tame the nonlinear training dynamics and find an analytic solution for #* in a
closed form:

0*=1[6"]10,f df d&°f d°f learning algorithm; training data (0.18)
= — , —= —=; learnin rithm; trainin . :
) 9 de ) daz d03 ) g g i g
In particular, this will make the dependence of the solution on the details of the
learning algorithm transparent and manifest.

As a result, our description of the trained distribution at order 1/n, (0.15), will be a
nearly-Gaussian distribution.
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In addition to being analytically tractable, this truncated description at order 1/n will
satisfy our goal of computing and understanding the distribution over trained network
functions p(f*). As a consequence of incorporating the interactions between neurons, this
description has a dependence on the details of the learning algorithm and, as we’ll see,
includes nontrivial representation learning. Thus, qualitatively, this effective theory at
order 1/n corresponds much more closely to realistic neural networks than the infinite-
width description, making it far more useful as a theoretically minimal model for
understanding deep learning.

How about the quantitative correspondence? As there is a sequence of finer descrip-
tions that we can get by computing higher-order terms in the expansion (0.14), do these
terms also need to be included?

While the formalism we introduce in the book makes computing these additional
terms in the 1/n expansion completely systematic — though perhaps somewhat tedious —
an important byproduct of studying the leading correction is actually a deeper under-
standing of this truncation error. In particular, what we’ll find is that the correct scale
to compare with width n is the depth L. That is, we’ll see that the relative magnitudes
of the terms in the expansion (0.14) are given by the depth-to-width aspect ratio:

r=L/n. (0.19)

This lets us recast our understanding of infinite-width vs. finite-width and shallow
vs. deep in the following way:

e In the strict limit » — 0, the interactions between neurons turn off: the infinite-
width limit (0.10) is actually a decent description. However, these networks are
not really deep, as their relative depth is zero: L/n = 0.

e In the regime 0 < r < 1, there are nontrivial interactions between neurons:
the finite-width effective theory truncated at order 1/n, (0.15), gives an accurate
account of the trained network output. These networks are effectively deep.

e In the regime r > 1, the neurons are strongly coupled: networks will behave
chaotically, and there is no effective description due to large fluctuations from
instantiation to instantiation. These networks are overly deep.

As such, most networks of practical use actually have reasonably small depth-to-width
ratios, and so our truncated description at order 1/n, (0.15), will provide a great quan-
titative correspondence as well.!

From this, we see that to really describe the properties of multilayer neural networks,
i.e., to understand deep learning, we need to study large-but-finite-width networks. In
this way, we’ll be able to find a macroscopic effective theory description of realistic deep
neural networks.

"More precisely, there is an optimal aspect ratio, *, that divides the effective regime r < r* and the
ineffective regime r > r*. In Appendix A, we’ll estimate this optimal aspect ratio from an information-
theoretic perspective. In Appendix B, we’ll further show how residual connections can be introduced
to shift the optimal aspect ratio r* to larger values, making the formerly overly-deep networks more
practically trainable as well as quantitatively describable by our effective theory approach.
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