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ON NEAR-RINGS IN WHICH THE CONSTANTS FORM AN IDEAL

PETER FucHs

Let C denote the class of all near-rings which have the property that the subnear-ring
of constants forms an ideal. Prominent examples are abstract affine near-rings and a
generalisation of these by Feigelstock [1]. In this note we show C forms a variety and
construct a proper sub-class ¢ C C such that every N € C can be embedded into some
N € €. It turns out that near-rings N € C have an ideal structure which is similar to
the ideal structure of abstract affine near-rings, in contrast to the situation for arbitrary
elements of C.

The following result which describes the arithmetic in near-rings N € C is implicitly
in Pilz [2, p.318]. The centre of a group G will be denoted by Z(G).

PROPOSITION 1. Let N € C, ng,ng,ng € Ny, n.,n. € N.. Then:
(1) no+n.=nc+np;
(2) NoN.C Z(N.);
(3)  no(ng + nc) = nong + none;
(4) no(nc +ngnl) = non. + nenpnl.

We now show that conditions (1), (3) in Proposition 1 already imply that N € C.

PROPOSITION 2. For a near-ring N the following are equivalent:
(1) Nec;
(2a) Vng€ Ny Vn €N, nog+n.=nc+no,
(2b) Vng,ng € Ny Vn.€ N, no(ng + ne) = nong + none.

ProoF: (1) = (2): by Proposition 1.

(2) = (1): by (2a), (Ne,+) is a normal subgroup of (N,+) and since N,
is always right invariant it suffices to show that N. is a left ideal. Let n € N,
neN,n=mny + n., n' =ng+mn, and A, € N.. Then (ny +n.)(ny +n. + 7,)
—(no + nc)(ng + ny) = no(ng + ni + fic)+ne—(no(ng + nl.) +n.) = nony +no(nl. + #.)

—non. — ngng = ng(nL + i) — nen, € N,. n
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THEOREM 3. C is a variety and therefore closed under the formation of subnear-
rings, direct products and homomorphic images.

PRrROOF: If n € N and n = ny +n,, then n, = n0 and ny = n —n0. Thus
equations (2a) and (2b) in Proposition 2 are equivalent to:
(a') (Yn,n')(n —n0+n'0 =n'0 +n —nd);
(o) (vn,n,n")((n —n0)(n' —n'0 +n"0) = (n — n0)(n' — n'0) + (n — n0)n"0).
The result now follows. ]

It has already been shown that the class of abstract affine near-rings is a variety
(2, p.316].

Let G be a group, G1, G2 normal subgroups of G such that G; ® G, = G and
let G; be a subgroup of Z(G,).

Define R(G1,G2,G3) = {m € Mo(G) | m(Gy) € Gy,m(G;) C G; &
(V91 € G1,92 € Gz2,95 € Gs) (m(g1 + 92) = m(g1) + m(g2), m(g2 + 93) = m(g2) + m(g3))}
and C(Gz) = {m € M(G) | (3g € G2)(Vg € G)(m(g) =9)}.

Let N = R(G,,G2,G3) + C(Gz) = {m1+mz | m;y € R(G1,G3,G3)& m, €
C(G2)}-

We often write simply R, C if it is clear which parameters G, G5, G3 are meant.

PROPOSITION 4. N is a subnear-ring of M(G), No = R, N. = C and N, is an
ideal in N .

PROOF: It is easy to check that R is a subnear-ring of My(G) and that C is a
subnear-ring of M.(G). If m € R, then m(G;) C G3, hence RC C C. Let m,,
my € R, m3 € C, my(g) =g forall gc G andlet g€ G, g =g, +9;. Then
(ma + m3)(g) = ma(g) + § = mi(g1) + ma(g2) + 3 = 3 + ma(g1 + g2) = (ma + ™1 )(g),
hence my + m3 = m3 + my. Also mi(mz(g) + ms(g)) = mi(ma(g1) + m2(g2) + 3) =
mima(g1) + mi(mz(g2) + g) = mama(g1) + mima(g2) + m1(g) = mima(yg) +myms(g),
thus my(mz + m3) = mymy + mym;. Now let n; = m; + m{ € R+ C and
ng = my+mfyH € R+C. Combining our results we get n; —n; = my—mg+mj—m) € N
and ning = (my + mi)(ma + mh) = my(mg + mb) + m{ = myma + myms + m\ € V.
Thus N is a subnear-ring of M(G) and clearly Ny = R, N. = C. By Proposition 2,
N, is an ideal of N . R

Let € denote the class of all near-rings of the form N = R(G1,G3,G3) 4+ C(Gy).
We are now ready to state our main result.
THEOREM 5. For a near-ring S, the following are equivalent:

(1) Sec;
(2) S can be embedded into some near-ring N € C.
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PROOF: Clearly (2) implies (1), by Theorem 3 and Proposition 4.
Conversely, let S € C. Let (G,+) = (S,4+) x(Z2,+), (G1,+) = (S0, +) X (Z2,4),

(G2,+) =(S¢,+) x {0} and (G3,+) = ( > Sosc,+> x {0}. By Proposition 1 each
8c€Se

subgroup Sys. is contained in Z(S$.), hence G; is a subgroup of Z(G;). Define a
map ¢o: So = Mo(G), ¢o(s) = f,, by fo((s',2)) = (s5',0) if s’ ¢ S. or z =0,
fo((s',2)) =(s+38s',0) if '€ S, and z=1.

Let 51,32 € Sp and s' € S.. Then

for+e,((8',1)) = (81 + 82 + (51 + 82)8',0) = (81 + 52 + 518’ + s25',0)
= (81 + 3818 + 82+ 528',0) = fa((s',1)) + faz((sl,l))'

Also fo 4,((s',1)) = (8182 + 81528',0) and

f‘l o f‘z((‘s,’l)) = fﬂl (f02(3,71)) = f81 (‘92 + 323’,0)
= (81(82 + 823,),0) = (8132 + 81828',0)

by Proposition 1.

In a similar way we can prove that f, 4+,,((s',2)) = f,,((s',2)) + fs,((s',z)) and
for82((8',2)) = fay © fo,((s',2)) forall (s',2z) € SxZ; where s' ¢ S. or z =0. Thus
¢o is a homomorphism and ¢ is also injective, since s; # s; implies

fal((oyl)) = (81,0) ?é (52,0) = fdz((o’]-))'

If s € So then clearly f,(G1) € Gy and f,(G2) C G3. Let g4 = (¢',2) € Gy,
g2 =(5,0) € G, and g; = (s*,0) € G3. If g; = (0,1) then f,(g1 +92) = fa((5,1)) =
(s +3,0) = (s,0) + (3,0) = £,((0,1)) + f,((5,0)). If g5 # (0,1) then either z # 1 or
s'+3 ¢ S., hence

fa(gl + 92) = fd((sl + 3"z)) = (3(3, + 3)’0) = (33’)0) + (35’0) = fa(gl) + f5(92)'

By Proposition 1 and by induction it is easy to see that s;(s; + s3) = 5182 + 8133 for

all 8y € So, 82 € Sc7 83 € Z Sosc.
8cESc

Thus f,(g2 + 93) = (s(8+ 5*),0) = (55 + s5*,0) = f,(g2)+ f+(g3) . We have shown
that ¢0(So) - R(G],Gz, G3)

Let ¢c: Sc = Mc(G), ¢c(s) = m,, where m,: G — G, m,(g) = (s,0) for all
g € G. Evidently ¢. is an embedding and ¢.(S.) = {m € M.(G)|(3 g€ G:)(Vg €G)
(m(g) = )} = C(Gz).-

Finally define ¢: § - R4+ C, ¢(s0 + 3c) = do(s0) + ¢#c(sc). One can check that
f is an embedding. i
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In [1] Feigelstock generalised the notion of an abstract affine near-ring (a.a.n.r.).
It is easy to see that these generalised abstract affine near-rings (g.a.a.n.r.) are just all
near-rings N which have the property that N, is an ideal of N, (N, +) is abelian
and no(nc + fic) = none + nofic for all ng € Ny, nc € N and A, € No. If N € C and
NyN,. = N, then it readily follows from Proposition 1 that N is a g.a.a.n.r. Feigelstock
showed that if N is a g.a.a.n.r., then I is an ideal of N if and only if [ = [ + I,
where Iy is an ideal of Ny and (I.,+) is a subgroup of (N, +) such that [oN. C I,
and Nol. C I,. This is well-known for a.a.n.r. For near-rings N € C we have a similar

result.

THEOREM 6. For a near-ring N € C, N = R(G1,G2,G3) + C(G;) the following
are equivalent:
(1) I is an ideal of N ;
(2) I=1Iy+1,, where Iy is an ideal of Ny and (I.,+) is a normal subgroup
of (N.,+) such that IyN. C I. and NoI. C I..

PROOF: (1) = (2): similar to the a.a.n.r. case.
(2) = (1): it follows readily from Proposition 1 that (I,+) is a normal subgroup
of (N,+) and that I is right invariant. Let : € I, m,n € N, i =iy +1i., n = ng +n,,

m = my + m.. Using Proposition 1 we get

(no + ne)(mo + me + io + i) — (no +ne)(Mo + me)

= no(mo + 10) — nomo + no(m¢ + i) — nomc.

We need to show that j = no(m. +i.) — nom. € I.. Let C(G;) denote the set of all
m € N. which map into G3. Clearly j € C(G3). If ¢. € C(G3), then

ng(Mme + ic) — neme = nyme + Nt — noM = ngi, € I..

Suppose that i, ¢ C(G3) and let h € G3. Define a function f € My(G) by
flg1+g2) = hif g1 € G1, g2 € G2\G; and f(g) = 0 otherwise. One checks that
f € R(G1,G2,G3) and that fi.(9) = h for all ¢ € G. Since fi. € I. we have
C(G3) C I.. ]

The following example however shows that Theorem 6 does not remain true in
general for near-rings N € C if NgyN, # N, , not even if (N, +) is abelian.

Example 7. Let R, Q, 7 denote the sets of all reals, rationals and integers re-
spectively. Let G; = {0}, G, = R, G3 = @ and R = {m € My(R) | m(R) C
Q & (Vz1 € Ryz; € Q)(m(zy + z2) = m(z1) + m(z2))}.

By Proposition 4, N = R + M.(R) is a subnear-ring of M(R) and M,.(R) is an
ideal of N .
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Let = € R\Q and let H denote the subgroup generated by {z} U Z. Define
R ={m € R| m(H) C Z}. It is easy to see that N' = R' + M.(R) is a subnear-
ring of N, hence, by Theorem 3, M.(R) is an ideal of N'. For each c € R let m,
denote the function m.: R —» R, m.(y) = ¢ for all y € R. Define I, = {0} and
I. = {m.| c€ H}. Evidently I, is a subgroup of M.(R) and R'I. C I.. Denote by
H the subgroup generated by HUQ andlet 2 € R\Q, z ¢ H. Let g € Q\H and
define a function m: R — R by m(z +¢q) = g for all ¢ € @, m(y) = 0 otherwise. One
can check that m € R'.

Since Z+z ¢ £+Q, m(me +mz)—mmy =0-my ¢ I, thus I. is not an ideal
of N'.

From the proof of Theorem 6 we get:

THEOREM 8. Let N € C. Then I is an ideal of N if and only if I = I + I,
where Iy is an ideal of Ny, I. is an ideal of the Ny-group N, and Iy,N, C I..
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